
INFORMATION AND CONTROL 9., 2 2 6 - 2 5 9  (1959) 

On the Mechanical Simulation of 
Habit-Forming and Learning* 

SAUL QORN 

Moore School of Electrical Engineering and University of Pennsylvania 
Computer Center, Philadelphia, Pennsylvania 

This paper discusses digital techniques by which habit-forming and 
learning may be simulated. After classifying the types of simulation 
mechanisms it discusses types of habit-forming and learning to be 
simulated, focusing attention upon reinforcement. It  uses the lan- 
guage of computer programming to describe the flow of control, and 
the language of mathematical probability to analyze the effect of 
various reinforcement functions on the asymptotic behavior of simu- 
lating programs. It shows further, again in programming terms, how 
the "delayed random selector" part of the simulating process may 
be "factored out" as a separate unit applicable either to habit-forming 
or learning, which latter are distinguished by whether the reinforce- 
ments are applied immediately or upon "comparison with a goal." 

Several reinforcement models are considered, including the "linear 
asymptotic" model used extensively by Bush and Mosteller, two 
simple "absorbing boundary" models, and a "nonlinear asymptotic" 
model currently being investigated by Bush, Galanter, and Luce. A 
sketch is given of the Harris-Bellman-Shapiro analysis of the linear 
asymptotic model. Contrasted with this, a complete analysis is given 
of the simpler absorbing boundary model, with explicit proof of even- 
tual absorption, and formulae for probability of absorption in n trials, 
and the expected number of steps to absorption. Finally, a special 
example is given of the second absorbing boundary model to show 
how its structure differs from the others. 

* The research in this paper was, in part, made possible by a grant from the 
National Science Foundation to the University of Pennsylvania Computer Center. 
Portions of its material have been presented at several University of Michigan 
summer courses ("The Applications of Logic to Digital Computer Programming" 
in August, 1957, and "The Applications of Digital Computers to Artificial Intelli- 
gence" in June, 1958) as well as to the seminar on "Automatic Computers and 
Their Capabilities" jointly sponsored in 1957-58 by the Moore School of Electrical 
Engineering and the Society for Industrial and Applied Mathematics. 
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INTRODUCTION 

Why should "life" scientists be interested in mechanical models for 
experimentation ? 

It  is because the living subject, being "irritable" and intricate, often 
yields more information about the disturbance caused by the experiment 
than it does about the factor being investigated. 

A machine, on the other hand, can be constructed to abstract only 
what is under investigation. 

This paper will concern itself with a class of mechanical models of the 
type obtained by programming a general purpose digital computer to 
simulate many special mechanical models. Each such program is a 
linguistic description in "command" form of the special mechanical 
model desired. (In just such a way a complete abstract theory is a 
"linguistic mechanism.") These programs are relatively easy to form, 
and one could try hundreds of such mechanisms and experiments on the 
same general purpose machine. In fact, one could have a "library" of 
such programs and "compile" intricate larger mechanisms by suitably 
programming the order in which the sub-mechanisms are to appear. 

This paper, because it discusses programmed models of the "reinforce- 
ment" type, will, perforce, use two types of language in their descrip- 
tion. The first is a language suitable for presenting the flow of controls 
in the models, i.e. the "command language" of programming as pre- 
sented in flow charts. I t  will provide the simplest means to show how 
control selections are made, delayed, and randomized; for, whatever else 
they may be, habit-forming and learning are delayed random selection 
processes. The second is a language suitable for presenting the asymp- 
totic analysis of the feedback of communications in these models, that 
is, the "descriptive language" of mathematics as it is used to analyze 
the random "memory" processes being mechanized. 

We can expect such mixed command and descriptive languages to ap- 
pear whenever mechanisms are specified and analyzed. 

Such emphasis on language, is, however, forced upon us by the fact 
that our models are programmed. We should here pause to remark on 
other mechanical approaches. 

The mechanical simulation of habit-forming and learning may be 
analog or digital. Examples of analog simulation mechanisms appear in 
the path-breaking work by W. Ross Ashby (1952) and W. Grey Walter 
(1953). In these studies, selection by the mechanism is from a continu- 
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ous data range rather than from discrete information domains; the 
emphasis is on the study of behavior stability rather than on the variety 
of selection procedures. 

If the mechanical simulation is digital, it may be achieved either by a 
special purpose machine or by programming for a general purpose ma- 
chine. The special purpose machines appear in digital hardware, rather 
than programming. Such machines have been designed by Minsky (1956) 
and by Solomonoff (work as yet unpublished). 

However, these two methods, special purpose digital and general pur- 
pose digital, hardware and programming, are completely equivalent, 
for all programs for general purpose machines are descriptions of special 
purpose machines in a serial command language. Conversely, any special 
purpose digital machine may be simulated on a generM purpose machine 
by a program designed to give the same results. However, because the 
present general purpose machines are essentially serial, such programs 
do violence to the internal timing being simulated, since it could have a 
degree of concurrent operation. 

The lines in the flow chart of a program indicate the flow of control, 
which will branch at certain critical nodes. These nodes might indicate 
simultaneous action or selective action; they might be "and-nodes" or 
"or-nodes." Since present machines are essentially serial, and-nodes do 
not appear in digital flow charts as they do in analog flow charts. When 
concurrently operating general purpose digital computers appear, it will 
no longer be necessary to simulate simultaneous actions by stringing 
them out serially. The equivalence of programming and hardware will 
become immediately apparent; flow charts for routines and logical de- 
signs of corresponding machines will match box for box and arrow for 

1 arrow if the degree of detail of the language describing each is the same. 
We see, then, that no loss in generality occurs if we describe the me- 

chanical simulation of habit-forming and learning in terms of programs 
for general purpose machines. The distinction is in manner of simulation 
rather than in what is simulated. The same is essentially true in the 
analog-digitM dichotomy. 

A more essential dichotomy in "learning" is concerned with whether 
the storage of relevant experience during the process is explicit or im- 
plieR. The explicit method stores suitably coded and classified lists of 

Feedback in the machine corresponds to looping back in the program. All the 
general purpose machines for which we program such simulation possess a com- 
mand language permitting loop control (Gorn, 1957). 
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relevant experiences to be used in the delayed selection of the proper 
response to a stimulus. The implicit method affects the memory merely 
by reinforcing the more appropriate responses whenever an experience 
so warrants, without any more detailed storage of information. Control 
at the moment of selection is automatic and immediate, without elab- 
orate digestion of past information. 

Evidently the explicit method is more likely to simulate the intelligent 
development of gestalts in habit-forming and learning. But it must be 
used with discretion, for, with no other intermediary, the piling up of 
experience rapidly develops an information retrieval problem. The more 
experience piles up, the longer is the selection of information therefrom. 
The action of the control choosing the proper response to the stimulus 
becomes more delayed. It is as though advice were asked of an old, old 
man--the type who responds, in ancient mariner fashion, with a lengthy 
biographical sketch of largely irrelevant experiences before arriving, if 
ever, at the required suggestion for action. 

The implicit method, on the other hand, though it yields faster re- 
sponses to stimuli, simply simulates reinforcement or avoidance reae- 
tions; it is thereby less "intelligent" and more like brute habit-forming 
or like learning of the conditioning or reflex type. 

There is no doubt, then, that when experimental models are con- 
structed, they should include a number of judicious combinations of the 
implicit and explicit simulations. This paper will be restricted to a dis- 
cussion of the implicit type. The reader will find interesting information 
on the explicit type in the studies by Newell and Simon (1957). 

In this paper, the question of asymptotic behavior will emerge as the 
result of studying stochastic difference equations rather than of examin- 
ing singular points of differential equations, as would be done with analog 
models. 

We study, then, functional equations connected with decision-making 
processes, such as the Bales-Householder model which is analyzed by 
Harris, Bellman, and Shapiro (1953) and used extensively by Bush and 
Mosteller (1955). 

Although, in the digital decision (that is, selection) processes discussed, 
the question of whether a habit will be established is an important one, 
the main issue will nevertheless be the selection procedures themselves. 
We therefore begin by discussing selection methods, the or-nodes re- 
ferred to above. 
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SELECTION METHODS 

Three ways to classify selection methods are relevant to our subject. 
First, selection methods can vary according to the categorization struc- 
ture of the list from which the selection is made. Second, selection meth- 
ods can vary  by the amount  of delay between the moment of choice and 
the moment at which such choice affects further action. Third, selection 
methods can vary from the completely deterministic to the rectangularly 
distributed random. 

Consider first the classification by the structure of the domain from 
which the selection occurs. There~are two extremes. If we have n objects 
or courses of action from which the choice is to be made, the most direct 
- - b u t  least economical--is to examine the list in any order, asking 
whether the one at hand is elected. At the other extreme, if we have a 
system of classification levels defined for the n objects, each of which 
approximately bisects a class at the previous level, we can make our 
selection in the manner of the game "twenty questions". 

The table-look-up method requires n questions but  is extremely flexi- 
ble; the binary tree method needs approximately log2n questions but  is 
rigid. [A theorem in set theory shows that  any polyadic system can be 
reorganized into a dyadic one; see Hansdorff (1957).] In hardware, these 
extremes are exemplified by contrasting the "order"  type selector in the 
control of a binary machine to the "matr ix"  type selector for a machine 
like the Univac (the latter regains much of the time economy by con- 
current action below the instruction level). In our introductory remarks, 
we noted that  the explicit method of storing relevant information could 
present an excessive delay at the time of selection. The same delay could 
occur in the selection of responses to a stimulus. The models we will 
consider hereafter will look like binary-tree selections, but  they will be 
essentially of the table-look-up type. Flexibility is needed to achieve 
generality. 

This is all we need say about the first method of classification. Hence- 
forth in this paper we will focus our at tention on the method of delaying 
the effect of selection and more or less making it random. 

Distinguishing "routines" from "live" or "intelligent" behavior de- 
pends not so much on their simulation of decision making or thinking 
but on their completely deterministic pattern. 

Most routines do simulate "rout ine" thinking, as opposed to "execu- 
rive" thinking in which creative or random choices of alternatives are 
involved. They  are most sharply and economically represented by flow 
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charts, and these flow charts branch off a t  or-nodes either to loop back 
with or without modification (feedback) or to indicate selection alterna- 
tives at  certain critical points. At these critical branching points, the 
choices are either made on the spot by  "discriminations" or achieved by  
delayed decisions made previously. In  the lat ter  ease, they are called 
"variable exits" or "variable remote connections." Thus, the branching 
in Fig. l a  could be achieved in a routine either by the method in Fig. 
l b  or tha t  in Fig. lc (note: the symbol x --~ y means tha t  the contents of 
storage x are put  into storage y, erasing what was previously in y but  
not affecting the contents of x). 

The method indicated in lc will be our standard method of delaying 
selection. In  programming it is, as the name of a indicates, a s tandard 
way to exit from a portion of a program which we would like to use in 
many  sections of the main program. Our models will, therefore, be "sub- 
routines" in the usual sense of the word. 

FIG. la 

FIG. lb. Immediate selection 

[ - - - ,  , 

FIG. lc. Delayed selection 
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Turning now to the possibility of randomization, we are interested in 
simulating systems in which the choice at or-nodes is made at random. 
A flow chart (such as that in Fig. la) in which or-nodes have selection 
probabilities attached--such as 50 % to exit 1, 20 % to exit 2, and 30 % 
to exit 3--would simulate not a procedure but a process in the statistical 
sense. This is especially true if these probabilities may vary at each feed- 
back to the same selection point. 

We may wonder how a purely syntactical and rigidly routine instru- 
ment such as a general purpose computer may be made to simulate 
random phenomena. We could, of course, attach some random process 
to the input of the computer. Such a method is not entirely satisfactory, 
since we lose sight of or control over the process. We could of course 
record these inputs and run the problem again with the copied inputs. 
In that case we could have used a table of random numbers, preassigned, 
in the first place. There is, however, a more simple and direct way, using 
a simple routine, to simulate the production of a random table. The 
paradox that randomness may be simulated on a deterministic machine 
is explained by a theorem of de Leeuw, Moore, Shannon, and Shapiro 
(1956). The theorem states, roughly, that if a probabilistic machine 
works on random information which has a computable distribution, it is 
possible to simulate the probablistie machine by an appropriate deter- 
ministic device. 

A number of simple routines produce such "pseudo-random" numbers 
[see Taussky and Todd (1955); Juncosa (1953)]. Perhaps one of the 
simplest is Lehmer's method, in which, beginning with an arbitrary 
number r0 which fills a storage position and an appropriate number r, 
we find, recursively, 

rn+i --- r~r (mod R ~) 

by multiplying each rn (in double precision) by r and retaining as r~+l 
the least significant half (assuming an s-place machine whose arithmetic 
operates with radix R). A computation by elementary number theory, 
for example, shows that for Univac, which is an ll-place decimal ma- 
chine, using 

r = 54, 638, 671,877 

we get the maximum cycle of numbers rn possible, namely 5 X 109. 
Samples of rn which are small compared to 5 ~4 109 pass most of the 
statistical tests for randomness. 
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We will represent any such subroutine which generates "pseudo- 
random" numbers by  the symbol 

-~ [ generate p ] -~ 

in a flow chart. 
The stage is now set to program random selection routines. As in Fig. 

1, we can achieve the effect of the random or-node 2a immediately, as in 
Fig. 2b. We are now ready to achieve the effect of the delayed random 
selection 2c by  combining the method of 2b with that  of lc. We will then 
be able to look upon a and what precedes it as a "stimulus" with the 
responses a l ,  ~2, and ~a. 

T H E  G E N E R A L  R E I N F O R C E M E N T  S U B R O U T I N E  

As the introduction states, we are restricting our discussion to the 
programmed simulation of habit  forming and learning as delayed selec- 

FIG. 2a 

FIG. 2b 

-® 

FIG. 2c 
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tion processes of the implicit type. If the stimulus simulation a has n 
possible responses a l ,  a2, " "  , a~, there will be a probability vector 
@1,p2 ,  " " , p ~ )  = p for which p~ Jr p2 -t- " "  ~- p~ = 1 ; a t  each 
selection, p~ will be the probability that  al be chosen. The implicit method 
can be achieved by making this vector a variable which is different at 
each feedback to the selecting subroutine. We can now distinguish the 
learning type from the habit-forming type because the variation of p 
occurs in learning when there is a comparison with some goal. Thus, in 
learning, the transformation of the vector p must occur outside the ran- 
dom selection subroutine. In habit forming, such transformation does 
not have to occur outside the subroutine. For a general habit-forming 
subroutine, then, for each response, a , ,  there is a set of transformations 
T~j~ of the vector p, the distribution of responses; here j is an index de- 
scribing the past history of responses, and s an index--whether  random, 
deterministic, or a combination of both--which describes the "strength 
of the stimulus." The vector p is transformed at each stimulus with 
response i (occurring with probability pi), past history of responses j ,  
and strength s into the vector T~.~p, ready for the next application of 
the stimulus. Presumably, the resulting component pl will be greater 
than the previous p~ if there is a habit-forming tendency to response a~ ; 
we might call this a "posit ive" or "reinforced" response. However, the 
whole habit-forming pat tern might tend to avoid response a~ because 
of its consequences; i.e., the i th  component of T~j~p might be smaller 
than the original p~. In such a case, we might call a~ a "negative" re- 
sponse (or an avoidance response). 

Further  classifications of habit-forming and learning processes might 
be made according to the nature of s or j .  Apart  from these, an important  
classification concerns whether a component p~ can ever become 1 or 0 
and whether, if such is indeed possible, it could ever change from such a 
vMue, once attained. If no p~ can ever become 1 or 0, but  can approach 
them as close as we please, we say that  the model is asymptotic. If the 
p~ can attain these values and, having done so, cannot change, we say 
that  the model is of the absorbing boundary type. Psychologists call 
this last the "perfect learning" type. 

Other classifications depend upon the nature of the transforming tune- 
tions T (linear, proiective, etc.),  the resulting process (Markovian or 
not) ,  and similar factors. 

In this paper we will restrict our discussion to a number of models 
most of which are special cases of the general reinforcement type habit- 
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FIG. 3. T~ : reinforcement functions; p = (Pl , p2 , "' ", p,,); p~ >_-- 0, i = 1, 
E o - . . ,  n ;  ~ _ 1 P l  = 1. 

forming subroutines indicated by  Fig. 3. In  this figure T~ are the various 
reinforcement  functions,  p = ( p l ,  p2, " ' "  , Pn), pl >= 0 for 

and 

i - 1 ,2 ,  . . .  , n ,  

~ p l  =- 1 
i = l  

In  such a subrout ine we could defer the reinforcement,  Tip --~ p, 
until  after the response a~ has been taken.  By  doing so we can use the  
result ing subrout ine either for habi t  forming or for learning. I t  has, in 
fact,  become a pure r a n d o m  selector. On a ny  machine with loop control  
(Gorn,  1957) this r andom selector m a y  be achieved more compac t ly  as 
shown in the " schemat ic"  flow char t  of Fig. 4, in which instruct ions such 
as i -k 1 --+ i mus t  modi fy  a number  of instructions.  B y  such a me thod  
we have " fac to red"  out  the pure r andom selector and separated it f rom 
the reinforcement  functions.  

Because of the t remendous  var ie ty  of choices for the  operators  T~, 
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)--~ GENERATE r N ~  

FIG. 4. General random selector for a vector for responses 

not only need the model not be reinforcing, it need not even be stochastic. 
For  example, suppose 

T i p  -=- T ~ p  . . . . .  T n p =  (p2 , p~ , " "  , p~ , p l )  

tha t  is, all the operators Ti merely permute  the components cyclically, 
and suppose further  tha t  p begins initially as (1, 0, • • • , 0). In  tha t  case, 
the model will merely cycle the responses a l ,  a s ,  • • • , an in tha t  order, 
leaving no randomness at  all. Suppose, again, tha t  n = 2, and tha t  
( T i p )  ~ represents the j t h  component  of T i p ;  we might  have (Tip)  i < p l  

and (T~p)~ < p~ ; i.e., each response weakens the probabil i ty of its own 
occurrence at  the next stimulus. 

All tha t  can be said a p r i o r i  about  the operators Ti is tha t  they are 
functions mapping the simplex 

pl -t- p2 -4- " "  d- p~ = 1, Pi _--_ 0, i = 1, . . -  , n 

into itself in n-space. They  can be graphed by presenting n ( n  - 1) 5 
two-dimensional graphs of ( T i p ) i  v e r s u s  pk  • For n = 2 and T~ = T2 = T, 
determined as in Fig. 5, if pl begins a t  the first stimulus a t  p~0, where 
( T p  ) l  = p~o = 1 - p~o and (Tp)2 = plo , each response causes the proba- 
bilities of the two responses to be interchanged. On the other hand, if 
pl = p~l initially, the model will develop the asymptot ic  behavior 
whereby al will tend to appear  with probabil i ty p ~ .  

Evident ly  we can expect  a var ie ty  of models, each of which must  be 
judged by  its usefulness in approximating observed behaviors. 

One a t t empt  to determine uniquely properties of the Ti on a p r i o r i  

grounds is interesting enough to receive special mention. This is the so- 
called "combining of classes" condition (see Bush and Mosteller, 1955; 
Bush, Mosteller, and Thompson,  1954). 

Suppose the responses ~ represent, really, classes of responses. Sup- 
pose, further, tha t  we have decided tha t  the mutual ly  exclusive and ex- 
haustive response possibilities a~, a~, - • • , a,~ included some irrelevant 
subdivisions. We would, therefore, like to combine certain subsets of 



MECHANICAL SIMULATION OF HABIT-FORMING AND LEARNING 237 

(TP)I 

PJO P&co Plt 
Fla. 5 

p~--I- plo 

these response classes into single response classes. Consider whether 
there are any  operators T which, when used for any  T~, are unaffected 
by such combining of classes (unaffected in the sense tha t  those left un- 
grouped will not have their T-transformed p components changed, in- 
dependent  of the choice of subsets).  

If  n ~ 2, the answer is trivial, because the only combination of classes 
leaves only a single response class, which must  be assumed with proba- 
bility one. Any functions T~ will satisfy this condition because 

(Tp) l  + (Tp)~ = 1 

as well as Pl + p~ = 1. 
If, however, n > 2, this question changes from a very  trivial one to a 

very  powerful one, so powerful tha t  it is surprising tha t  there is any  
answer a t  all. The condition has been formulated in this way in the cited 
reference: 

Let  ~ be a subset of the indices 1, 2, • . .  , n of the components of p; 
further,  let n~ be any index of the set a. We define tile projection opera- 
tor C,,n~ in the (p l ,  p2, " "  , pn) simplex as the t ransformation yielding 
the sum of the ~ components for the new n, component,  giving zero for 
all the other new a components,  and leaving all the non-z components 
unchanged. I f  p is represented as a column matrix,  C~.~,p m a y  be ob- 
tained by  multiplying p on the left by  the matr ix  obtained from the 
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identi ty matr ix  upon (1) replacing every diagonal element in a z-column 
unequal to n~ by  zero and (2) replacing every zero in the n~ row of a 
z-column by  one. The combining-of-classes (CC) condition, then, has 
the formal s ta tement :  The operator T fulfills the CC condition if 

for every a, n~, and p, where n~ ~ a and a ~ l  1, 2, • • • , n}. 
A generalization by  Bush, Mosteller, and Thompson (1954) of a 

theorem of Savage states tha t  any operator mapping the p-simplex into 
itself and satisfying the CC condition must  be linear and of the form 
Tp = ,~p + (1 - ~)X, where X is a fixed vector and ~ is a constant.  

Note  that  X is an eigenvector of T with eigenvalue one. I f  

T~ = T2 . . . . .  T~ = T, ~ = (pl~ , p2~ , " ' "  , p ~ )  

in the notat ion of Fig. 5. Repeated T-reinforcement produces an asymp-  
totic distribution of responses. 

The combining-of-classes argument  can hardly be considered a cogent 
a priori reason for restriction of the models to linear asymptot ic  reinforce- 
ment  functions. I t  demands first tha t  the model be impervious to an 
error in judgment  in the choice of possibly irrelevant response classes. I t  
also demands a like relationship between the scientist 's method of 
analysis (possibly mistaken)  and the nature of the system analyzed for 
2 ~ - n - 2 possible basic reorientations (or n(n  - 1)/2  primitive re- 
orientations).  

On the other hand the linear model it yields should be one of the prime 
reinforcements of the asymptot ic  type to be studied. 

}'or most  of the remainder of this paper, however, the previous argu- 
ment  is of academic interest only, since the models we propose to dis- 
cuss in greater detail all have n = 2. 

ASYMPTOTIC AND ABSORBING BOUNDARY MODELS 

When n : 2, the general reinforcement model is completely deter-  
mined by  two functions, namely, the two functions of p~ yielding the 
first components of T~p and T2p. 

If, for example, in the linear asymptot ic  model resulting f rom the 
CC condition, we want  T~ to reinforce asymptot ical ly to ~ with proba- 
bility 1 and T2 to reinforce ~2 similarly, we must  have X : (1, 0) in 
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the first case and }, = (0, 1 ) in the second. This means tha t  

Co (Tip = (P2 
1 - -  o~ 

and (1) 

T~p 1 -- ~ KP2 

(Here  we have 1 - a instead of a in T1 and z instead of a in T~ .) 
Thus (T~p)l = pl Jr up2 = a + (1 - a)pl ,  and (T~p)~ = ,Tp~. The 

model is therefore determined by the graphs in Fig. 6. 
The asymptot ic  nature of the model is indicated by  the crossing of the 

45 ° line within or on the boundary  of the square. If  the model is to be 
symmetric  in the reinforcement for the responses a~ and a~, the parame-  
ters must  reduce to one; i.e., z -- 1 - a. This symmetric  model has the 
following simple interpretat ion:  a t  each response a~, the reinforcement 
consists of adding to p~ an additional a times (1 - p~), tha t  is, a fixed 
percentage of the probabil i ty  of not getting response a i .  

This symmetr ic  linear asymptot ic  model, proposed first by  W. K. 
Estes (1950), immediately suggests the construction of several simple 
symmetr ic  models of the absorbing boundary  type, models H~t and H ~ .  
Note tha t  H~t is less likely than H2~ to have physical significance. Our 
purpose, however, will be to show that ,  on the one hand, the asymptot ic  
and the absorbing boundary  types call for completely different methods 
of analysis and that,  on the other hand, such simple models as H~t and 
H2~ can present completely different structures. 

At each response a~, model H~t will have a fixed addition t to the prob- 
abili ty p~ of achieving tha t  response at  the next stimulus. As soon as 

OC 

! 

Fin. 6. Linear asymptotic reinforcement, n = 2 
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FIG. 7. Subroutine for model Hit 
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FIG. 8. Symmetric, additive, absorbing boundary reinforcement (model Hit), 
~ = 2 .  

p~ -~- t becomes greater than or equal to one, we will take p~ = 1 thence- 
forth. In other words, if we let q~ be the value of pl after the n th  stimu- 
lus, 

[Min (q~-i + ~, 1) if r~ < qn--1 
q'~ = [Max (q , -1 - -  t, 0) i f r ,  ->_ q~_~ 

( 2 )  

The flow chart for the subroutine corresponding to model H~t is 
shown in Fig. 7, and its T1 - T2 diagram is shown in Fig. 8. 

Any routine using model H~t as a subroutine would set its free varia- 
bles, t and the initial value of q(qo). Thus, somewhere in the main rou- 
tine we will find the instructions setting t, and substituting q0 --+ q and 
a0 --+ a. Tha t  the model is symmetric follows immediately from the 
equations: 

1 - r a i n  [ ( 1  - q )  + t, 1] 

= 1 + m a x [ - - 1  + q -  t, --1] = m a x [ q -  t, 0] 

1 - m a x  [(1 - q)  - t, 01 

= 1 + m i n i - l +  q +  t, 0] = m i n [ q +  t, 1] 
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Furthermore. since the subroutine is of the "perfect learning" type, 
it may  be set to seal itself off by  placing just before the exit a 1 the flow 
chart in Fig. 9. 

An example of how model Hit could be extended to allow for more 
than two responses is given in Fig. 10. 

FIG. 9. Self-sealing exit for perfect learning models 

MIN{PI+r, I}~ Pl 

I -  Pj - P2~P3 

N,O 

I YEs 

I ° 
MIN {P2 + r* I }-*" P2 I 

I -  P2 - P3 ~" p I 

X 3 - - ~  05 I 

M~N {P3+rl I} -P P3 

I...{p3--~ .,-~}*p, L I- %-Pl..~Pz 

Fig. 10. Extension of model Hit to more than two responses 
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[GENEeATE" P ] 

I 1 Pt 2 = q ~----~ ~,---  ~_] Q-~ 

FIG. 11. Subroutine for model H2~ 

Let us now describe the second symmetric absorbing boundary model, 
model H2~. 

At each response a~ model H~  will add a fixed percentage--iT %-- to  
p~. Thus pl is replaced by [1 + (IT/100)] p~, unless this result is greater 
than or equal to one; in such an event p~ will become and remain 1. 

The stochastic difference equation for model H2~, where we let % be 
the value of p~ after the nth stimulus, is now: 

m o[% 1 , 1 i f  r~ < q,,_~ 

(~) 

if r,, _>- q~-i max[qn_l(l-~-~O0) --~,OIT 1 
Again, this condition is symmetric because 

1 - -  m i d  

= min Eq~-~ (1 + 1-~0) - - ~ , 0  IT ] 

01 

Model H~  follows the flow chart of Fig. 11 and the T1 -- T~ chart 
of Fig. 12 (where we have IT = 200). 

As with model Hi t ,  it is possible to at tach a self-sealing program 



MECHANICAL SIMULATION OF HABIT-FORMING AND LEARNING 243 

q 

F i e .  12. R e i n f o r c e m e n t  ( m o d e l  H2~), n = 2,  z = 200  

(Fig. 9), and it is possible to generalize the model to more than two 
responses, as in Fig. 10. 

For each of these models, the following fundamental  questions arise: 
(a) Is  there an asymptot ic  response pat tern  established, or is there 

a probabil i ty greater than zero tha t  a floundering between responses 
will continue indefinitely? 

(b) In  the case where it can be shown tha t  an asymptot ic  response 
pat tern  is established (with probabil i ty 1), can we define a measure of 
the "degree" with which it is established, and, for any such degree, can 
we find the number  of stimuli expected to produce such a degree of 
establishment? 

For the most  trivial of the models here shown, model H i t ,  these 
questions will be answered completely. 

A N A L Y S I S  OF A S Y M P T O T I C  M O D E L S  

For asymptot ic  models we expect tha t  (Tip)~ = 1 for p = (1, 0), 
and tha t  (T2p)I = 0 for p = (0, 1) as in Fig. 6. If  we let x = p l ,  then 
let us define the functions as in Fig. 6, expressed as functions of x alone, 
as follows: 

h (x )  = (T1p)~, h(1) = 1 
(4) 

t2(x) = (T2p)~, t2(O) = 0 

Thus the linear asymptot ic  model of Eqs. (1) has: 

h(x)  = ~ + ( 1 -  ~)x 
(5) 

t 2 ( x )  = ~ x  

and we note that ,  for 0 -< x -< 1, we have h (x )  > t2(x). 
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In this section we will sketch the analysis given by Harris, Bellman, 
and Shapiro (1953) in order to do the following: 

1. Define the expressions: a sequence of trials "concludes a~" or 
"concludes as", and define the probabilities r~(x) and ~r2(x) of doing so. 

2. Prove the following: 
THEOREM 1. Both 7rl(X) and ~2(x) satisfy the functional equation: 

f ( x )  = x f ( t l ( x ) )  + (1 -- x) f ( t2 (x ) )  (6) 

with boundary conditions: 

7r1(0) = 0, ~r~(1) = 1 
(7) 

~r2(0) = 1, 7r2(1) -- 0 

THEOREM 2. If f (x )  satisfied the functional equation (6), and g(x)  = 
f (1  - x),  then g(x) satisfies 

g(x) = xg(1 -- t2(1 -- x) )  -~ (1 -- x)g(1 -- t~(1 -- x) )  (8) 

then 

THEOREM 3. If, for the linear asymptotic model of (5) we define: 

f~,~(x) = lh(x),  (9) 

~2(x) = f1-~,1-,(1 - x) 

THEOnEM 4. For each set of boundary conditions: 

f (0 )  = f 0  and f (1 )  = f ~ ,  

where 

(10) 

0 =<f~ -< 1, (i  = 1 ,2)  

there is a unique solution of the functional equation (6), where t l(x) 
and t~(x) are defined by Eqs. (5), and this solution is absolutely mon- 
otonic [ tha t  is, f(k)(x) >= 0 for all integers k] and analytic. 

THEOREM 5. ~rl(X) + ~2(X) -- 1 

3. I t  therefore follows that  the analysis of asymptotic models can be 
expected to have the following features: 

a. I t  will yield an asymptotic probability distribution which satisfies 
a functional equation. 
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b. T h e  uniqueness  of the  so lu t ion  shows d i r ec t l y  t h a t  the  p r o b a b i l i t y  
of " f lounder ing"  is zero. 

c. T h e  d i s t r i bu t ion  is ana ly t i c .  
Thus  ques t ion  a a t  the  end of the  l as t  sec t ion is c o m p l e t e l y  se t t l ed ,  

and  i t  is f a i r ly  obvious  t h a t  ques t ion  b can be hand led ,  t h o u g h  a con- 
s t ruc t ive  fo rmu la t i on  of i t  will be lef t  an  open quest ion.  T h e  nex t  sec t ion  
will  show how the  ana lys i s  of abso rb ing  b o u n d a r y  models  has  a coin-  
p l e t e ly  different  f lavor.  

Definition. Le t  B be the  sequence of even t s  

B = (B1 ,B2 ,  " " , B ~ ,  " " )  

where  each  even t  B~ is the  a p p e a r a n c e  of e i ther  the  response a l ,  or  the  
response  a2 .  A sequence B is said to  "conc lude  a l "  if the re  is a n u m b e r  
n such t h a t  B m =  a l  if m => n;  a s imi lar  def ini t ion appl ies  to  the  expres -  
sion "B concludes  a2". 

Definition. L e t  r~(x) be the  p r o b a b i l i t y  of conc luding  a~ when,  a t  t he  
in i t ia l  t r ia l  B~, we have  p~ = x. 

Proof of Theorem 1. B concludes  a l  if: e i ther  B1 = al  and  (B2,  . - .  , 
B,~, • • . )  concludes  a l  wi th  p~ = t~(x), or B~ = a2 and  (B2,  • • • , B ~ ,  
• . • ) concludes  a l  w i th  p~ = t2(x). Thus  Eq .  (6)  holds  for  7n(x).  I f  we 
replace  the  express ion "conc ludes  a~" b y  "conc ludes  a2" in the  first  
sentence  of th is  proof,  the  resu l t ing  sentence  is aga in  t rue ,  and  Eq .  (6)  
holds  for r2(x) .  

Proof of Theorem 2. This  is obvious  when one first  subs t i t u t e s  1 - x 
for x in (6)  and  then  subs t i t u t e s  g(x) for  f ( 1  --  x)  and  g(1 - y)  for  
f ( y )  for  the  a p p a r e n t  express ions  y. Note: Since n = 2, we have  

pl + p2 = 1 or p2 = 1 --  x 

(T~p)~ + (T~p)2 = 1 or (Tip)2 = 1 - tl(x) 

(T2p)I ~- (T2p)2 = 1 or (T2p)~ = 1 -- t2(x) 

Thus  an  in t e rchange  of a~ and  a2 ,  w i th  the  cor respond ing  redef in i t ion  
of x, would  have  led to  the  d e d u c t i o n  of (8)  and  (7)  for  the  newly  de-  
fined ~n(x) and  ~r2(x); t h e y  would  be r2(1 --  x)  and  ~1(1 - x)  respec-  

t ive ly .  
Proof of Theorem 3. F o r  1 --  t2(1 --  x)  = 1 --  a (1  - x)  = (1 - 

~) - ~ a x ,  a n d l  - -  t~(1 - - x )  = 1 --  ~ +  ( 1 - -  a ) ( 1  - - x )  = (1 --  a ) x .  
T h u s  Eq.  (8)  is ob ta ined  f rom (6)  b y  rep lac ing  a b y  1 - z and  a b y  
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1 - -  a.  E q u a t i o n  (10) is t hus  an  i m m e d i a t e  coro l la ry  of t h e o r e m  2. 
q.e.d. 

Proof of Theorem 4 (sketch). Le t  us define the  func t iona l  o p e r a t o r :  

Ah = xh (~  + (1 - ~ ) x )  + (1 - x ) h ( ~ x ) ,  (11) 

app l i cab le  to  a n y  func t ion  h(x) for which  0 < h(x) =< 1 when  0 < x <- 1. 
h is, then ,  a func t iona l  ope ra to r  w i th  the  fol lowing p roper t i e s :  

a. I t  p rese rves  the  b o u n d a r y  va lues ;  t h a t  is, if hi = hh, t hen  h~(0) = 
h (0 )  and  h~(1) = h (1 ) .  

b. I t  is l inear ;  A(hl  + h2) = Ahl + hh~and A(ch) = ckhfor  a n y  
cons t an t  c. 

c. I f  hi = hh, t hen  we also have  0 =< h~(x) =< 1 w h e n 0  =< x =< 1; 
t h a t  is, A m a p s  i ts  doma in  in to  itself.  S imi l a r ly  for A'~h for all n a t u r a l  
number s  n. 

d. I f  h is con t inuous  in the  closed in t e rva l  [0, 1], and  0 ~ a =< 1, 
0 < z = 1, t hen  Ah is also cont inuous  in [0, 1]. 

e. I f  h is cons tan t ,  t hen  hh = h. 
f. A x = x [ a +  ( 1 - - a ) x ] +  ( 1 - - x ) z x = x +  ( a + z - -  1 ) x ( 1 - -  x) .  
g. I f  h (0 )  = h (1)  = 0, h is con t inuous  on the  closed in t e rva l  [0, 1], 

h = Ah, and  ne i the r  a nor  z is 0 or 1, t hen  h(x) ~ O. F o r  if x0 is a p o i n t  
of (0, l )  a t  which  I h(xo) I is m a x i m u m ,  then  h(xo) = h(zxo) because  
h = Ah requi res  t h a t  the  m a x i m u m  or m i n i m u m  value ,  h(x0),  lie be-  
tween  h(¢xo) and  h(a + (1 - a)x0) and  mus t ,  therefore ,  be equal  to  
bo th .  A r epe t i t i on  of th is  a r g u m e n t  shows t h a t  I h l  m u s t  assume i ts  

2 
m a x i m u m  a t  zx0,  z x0, • • • , z~x0, • • • - ~  0. B y  c o n t i n u i t y  th is  maxi -  
m u m  m u s t  be  h (0)  = 0. 

h. I f  h~(0) = h2(0), h i ( l )  = h2(1), h~ and  h2 are  con t inuous  on the  
closed i n t e rva l  [0, 1], h~ = Ahl ,  h~ = Ah2 and  ne i the r  a nor  z is 0 or 1, 
t hen  hi -~ h~. F o r  h = hi - h2 fulfills all  the  cond i t ions  of g. Thus ,  
unde r  the  condi t ions  on a and  z, the re  can be no more  t h a n  one cont in-  
uous  so lu t ion  of h = Ah for any  pa i r  of b o u n d a r y  condi t ions .  

i. ~ l (x )  = l ira A 'x .  F o r  if h0 ~ x, t hen  b y  f ,  

h~(x) 

h2(x) 

h.+~(x) 

But ,  b y  c, A'~[x(1 

= Ah0 = x + ( a  + ~ - -  1 )x(1  --  x)  

= Ahl  = hi  + ( ~  + ~ - -  1 ) A [ x ( ~  - x ) ]  

= Ah~ = h,  + ( a  + ~ - 1)An[x(1 --  x)]  

- -  x)]  is pos i t ive .  Hence  the  h~(x) form a mono ton ic  
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sequence bounded  b y  0 and  1, nondecreas ing if a + z > 1, and non- 
increasing if a -t- ~ _-< 1. In  ei ther  case, convergence follows, and,  if 

~- z - 1 ¢ 0, l im An[z(1 -- x)] ------ 0. Tak ing  the  l imit  of hn+1 = Ah~ 
shows t h a t  the  l imit  satisfies (5) .  F r o m  the expression for h '  ~+1 obta ined  
f rom (5) one shows t h a t  h J  is un i fo rmly  bounded  and posit ive,  whence 
h, the  limit,  is cont inuous  and  monoton ic ;  it mus t  therefore  be ~rl(x) 
b y  step h. A similar  t r e a t m e n t  of h "  ~+1 shows t h a t  7rl(x) is convex if 

+ ~ > 1 and  concave if a -t- ~ _-< 1. An induct ion on the successive 
der iva t ives  of hn+l then  yields ana ly t i e i ty  and absolute  mono ton ie i ty  
of 7r~. T h e o r e m  4 now follows b y  not ing t h a t  fo + ( f l  - fo)rrl(x)  ful- 
fills all the  conditions,  and m u s t  be the unique solution b y  h. We 
note  t h a t  the  cited reference, by  summing  h~+l = h,~ -t- (a  + ~ - 1)A ~ 
Ix (1 -- x)], obta ins  such identi t ies as: 

A ~ [ x ( 1  - x ) ]  - 
f ( x )  x 

n=o c ~ - - } - ~ - -  1 

i f ~ - ~  ~ ~ 1 , ~  ~ 0 , ~  ~ 1 ; a n d i f ~  + a = 1, t henA~[x(1  -- x)] = 
(1 - a2 ) ' x (1  -- x) and  

x(1 - x) i r a  ¢ 0 .  
1 

~=0 A' [x(1  -- x)] = 

T h e o r e m  4 is then  general ized to cover  the equa t ion  

f ( x )  = p ( x ) f ( G ( x ) )  --I- (1 -- p ( x ) ) f ( H ( x ) )  

where 

a ( x )  = ~(x)  + (1 - ~ (x ) )x ,  H ( x )  = x~(z)  

and ~ (x ) ,  a (x ) ,  p ( x )  are cont inuous and fulfill: 

0 < ]c = < c~(x) = < 1, 0 = < c~(x) = < 1 - k, 0 = < p ( x )  -_ < 1 

p(0 )  = 0, p (1 )  = 1 

P r o o f  of Theorem 5. This  is an immed ia t e  corol lary of T h e o r e m  4; 
since ~r2(0) = l, 7r2(1) = 0, hence 7r2(x) = 1 - lrl(x).  

A N A L Y S I S  OF  M O D E L  ti l t  

Model  H~t does not  possess an analyt ic  p robab i l i ty  d is t r ibut ion  such 
as Try(x) in the a s y m p t o t i c  case. I n s t ead  it has  discrete probabi l i t ies  of 
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absorption at the n th  trials by  al or a2. Even their generating functions 
are nonanalytic. On the other hand we will obtain explicit formulae 
answering question b of the section before last. 

Definition. Let N = N(t) be the integer determined by  Nt <= 1 < 
(N + 1)t. Then 

0 <= 1 - -  N t  < t <= 1 - ( N -  1)t < 2t =<_ - - .  
(12) 

< ( N -  1)t__< 1 - t < Nt <= 1. 

For example, in Fig. 8, N = 2. 
Definition. Let PI(x, n) be the probability of absorption by  a l ,  in 

exactly n trials when the probability of al at the first trial is x; tha t  is, 
Pl(x, n) = Pr{pn = 1/p~-1 < 1, p0 = x}. Similarly, for P2(x, n) and 
0~2 : 

P 2 ( x ,  n) = PrIp~ = 0/pn-1 > 0, p0 --- x} 

Definition. Let G1(x, u) and G2(x, u) be the generating functions for 
~bsorption at al and a~ when p0 = x; tha t  is, 

Gl(x, u) = k P1(x, n)u' ,  G~(x, u) = ~ P2(x, n)u ~ 
lifO n~O 

Definition. Let E(x) be the expected number of steps to absorption 
(either at a~, or ~t a2) when p0 = x; tha t  is, 

E(x) = ~ n{Pl(x, n) + P2(x, n)} 
n~O 

Now, to obtain explicit formulae for the G~ and E, let us define the fol- 
lowing determinants: 

Do(x, t, u) = 1, 

Dl(x, t, u) -- 1, 

and, for k = 2, 3, - . .  , N + 1, the determinant Dk given in Eq. (13). 
And let the determinants Fk,j(x, t, u) be obtained from Dk by replacing 
the j t h  column by a column of ones. I t  is easy to see that  the deter- 
minants Dk satisfy the recursion formula: 

Dj+l(x, t, u) = Dj(x, t, u) 
(14) 

-- (x + (j  -- 1)t)(1 -- x -- jt)u2Dj_l(*, t, u) 
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B y  a slight modification of the analysis of the problem of "Gamble r ' s  
Ru in"  [see Feller (1950)] we will prove the following theorems.  

THEOREM 6. G~(x, u )  and G2(x, u )  are the following piece-wise ra- 
tional funct ions in 0 =< x _-< 1 : 

xuJ+iD . ( ( x  -4- j t )  . . .  N - i ( x -  ( N  j ) t , t , u )  

D N + l ( x -  ( N  - j ) t , t , u )  

for  ( N  - j ) t  < x < 1 - j t ;  j = 0 , 1 , - . . , N  
G l ( x , u )  = 

(x  + j t )  . . .  xu~+lD~_5_ l (x -  ( N  - j - 1)t , t ,u) (15) 
- - - - - -  -D ~ ~ t ~ , u )  . . . .  

[ f o r l - ( l  + j ) t < = x < = ( N - j ) t ;  j = O , I , . . . , N - 1  

[[1 - x + ( N  - j ) t ]  " "  (1 - x)uN-J+IDj(x + t,t,u) 

D~+l[x - ( N  - j) t , t ,u] 

f o r ( N - j ) t < - x < - l - j t ;  j =  0 , 1 , . . . , N  
G 2 ( x , u )  = ) 

l 
[1 -- x -{- (N  - j  - 1)t] . . -  (1 - x)u~V-JDj(x -~ t,t,u) (16) 

f o r l  ( l + j ) t < = x < ( N - j ) t ;  j = O, 1, . . . , N  - 1  

THEOREM 7. GI(x,  1) -~- G2(x, 1) ~ 1, so tha t  the probabi l i ty  of ab- 
sorption is one ( there  is no indefinite f loundering).  

THEOREM 8. The  expected number  of steps to absorpt ion  is a piece- 
wise rat ional  funct ion of x and t: 

FN+~.j[x-- ( j  -- 1)t,t,1] 
DN+I[x-- ( j  -- 1)t,t,1] 

for  ( j  - - 1 ) t  =< x =< 1 - ( N - j + l ) t ;  j = I , . - . , N + I  
E ( ~ )  -= 

FN, j (x  -- ( j  -- 1)t,t,1) (17) 
D~[x  - ( j  --  1)t,t,1] 

f o r l - ( N - j + l ) t < = x < j t ;  j =  1, . . . , N  

If,  for example,  N = 2, as in Fig. 8, then  from (14) 

Do--- 1 

D I =  1 

D 2 ( x ,  l, u )  = 1 -- x(1 -- x -- t ) u  2 

D 3 ( x , t , u )  = 1 -- Ix(1 -- x - -  t) + (x + t ) (1  -- x - -  2t)]u 2 
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T h e r e f o r e ,  for  t h e  success ive  i n t e r v a l s ,  we  ge t  f r o m  (15) ,  (16 ) ,  a n d  (17)  : 

f o r 0  < x -_< 1 - 2t, 

Gi(x,u) = (X ÷ 2 t ) ( x  ÷ t ) x u  a 
D a ( x , t , u )  

G2(x ,u )  = (1 - x )u[1  - (x  ÷ t ) ( 1  - x - 2 t ) u  2] 

Da( x , t ,u  ) 

E ( x )  - Faa(x , t , 1 )  _ 2 ( x  ÷ t) 2 ÷ (1 - t) 

Da(x , t , l  ) Da (x , t , u )  

for  1 --  2t <= x < t, 

G~(x,u) = (x ÷ t ) xu  ~ 
1 - -  x (1  --  x - -  t ) u  2 

G~(x,u) = ( t -  x ) u  
1 - -  x (1  - -  x - -  t ) u  2 

E ( x )  = F 2 a ( x , t , l !  = 
D2( x , t ,1)  

f o r t  = x -< 1 - t, 

l + x  
1 --  x ( 1  - -  x - -  t ) '  

Gl(x,u)  = (x + t ) xu  2 
! - -  [ ( x - -  t ) ( 1  --  x )  ~- x (1  --  x - -  t ) ]u  2 

G~(x,u) = (1 - x + t ) ( *  - x ) u  2 
1 - [ ( x  - t ) ( 1  - x )  + / ( 1  - x - t ) ] u  ~ 

E ( x )  = Fa.2(x - -  t , t ,1) = 2 
D a ( x  - t , t ,1) 1 - -  [ (x  - -  t ) ( 1  - -  x)  q- x (1  - x - t)] 

a n d  s i m i l a r l y  for  t h e  l as t  t w o  s u b i n t e r v M s .  T h u s ,  for  x = ½ we  h a v e  

4 
E ( ~ )  - - -  

2t-l- 1 

F o r  e x a m p l e ,  for  t = ~ ,  E ( ½ )  - ~ - -  ] - T .  

P r o o f  o f  T h e o r e m  6. I f  t < x < 1 - -  t, 

Pl(X, re ÷ 1 )  = xPl (x  ÷ t, lt) ÷ ( 1  - -  x )P l (x  - l , n )  

a n d  

P 2 ( x ,  n ÷ 1) = x P 2 ( x  ÷ t, n )  ÷ (1 - -  x ) P 2 ( x  - t, n )  
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T h e  b o u n d a r y  c o n d i t i o n s  a re  

I 0 f o r x  < 1 
Pl(X, O) J 

l l  for x > 1 

P l ( x , n )  = O f o r x _ - <  O, 

P 2 ( x , n )  = O f o r x  => 1, 

T h u s ,  for 1 - t < x =< 1 we h a v e :  

Pl(x,  n A- 1) = (1 - -  X ) P l ( X  - t, n )  

a n d  

P2(x, n -4- 1) = (1 - x)P~(x - t, n) 

while ,  for  0 -< x =< t we h a v e :  

P2(x, n + 1) = xP2(x + t, n) if 

a n d  

Pl(x, n + 1) = xPI(x + t, n) 

(1 for x =< 0 
a n d  P2(x, O) J 

10 for x > 0 

or f o r x  > l a n d n  > 0 

or f o r x  < O a n d n  > 0 

if n > O, P I ( x ,  1) = x 

(18)  

n > O, P2(x ,  1) = 1 - -  x 

,G~(x, u )  = 

xuGl(x -t- t, u) for 0 = x ___< t 

xuGl(x + t, u) -t- (1 - x)uGl(x - t, u) 

f o r t  < x < 1 - t 

x u  + (1 - x ) u G ~ ( x  - t, u )  

for 1 - -  t -  x - 1 

~xuG2(x + t, u) + (1 - -  x)u  

for  0 < x 

xuG2(x + t, u) + ( 1  - x)uG2(x - t, u) 

f o r t  < x < 1 - -  t 

( 1  - -  x)uG2(x - t, u) 

f o r 1  - t =< x _-__ 1 

a l ( x ,  ~ )  = 

T h e  b o u n d a r y  c o n d i t i o n s  on  the  g e n e r a t i n g  f u n c t i o n  are,  t he re fo re :  

l l i f x  > 1 I 0 i f x  > 1 
al(x,  U) G2(x, U) 

[ O i f x  < 0 [ l i f x  < 0 

whi le  these  g e n e r a t i n g  f u n c t i o n s  fulfill  t h e  fo l lowing  c o n d i t i o n s :  
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Now if 

then 

and 

O < x < l - N t  

t < = x ~ - t  <= 1 - ( N -  1)t 

( N -  1)t < x +  ( N -  1)t =< 1 -  t 

N t  <= x d- N t  <= 1 

If, therefore, in the functional equations (18), we successively sub- 
st i tute x d- t, . . .  , x ~- (N  - 1)t for x in the middle equations, and 
x d- N t  for x in the third of each set, we will obtain two systems of 
N d- 1 equations in the unknowns Gi(x,  u) ,  Gi(x  -4- t, u),  . . .  , Gi(x  -4- 
(N  - 1 )t, u),  and Gi(x  d- Nt ,  u) ; in both  cases the matrix of coefficients 
has the determinant  DN+I(x, t, u ) ,  and the system is valid whenever 
0 <= x <= 1 - Nt .  The constant  terms will all be 0 except for the last  
in the G1 system, namely (x d- N t ) u ,  and the first in the G~ system, 
namely (1 - x )u .  Similarly, whenever 1 - N t  <= x <= t, corresponding 
substi tutions yield two systems of N equations each in the quantities 
G~(x, u) ,  . . .  , Gi (x  d- ( N  - 1)t, u).  Applying Cram~r 's  rule to the 
two systems for which 

0 <= x < 1 - N t y i e l d s  

Gl(x  + ( N  - j ) t , u )  

. . . .  3 ) t ) u  D~_~(x,t,u) (x ~- Nt )  (x -{- ( N  " J+~ 
D~+1(x,t,u) 

G2(x + ( N  - j ) t , u )  

(1 - x ) ( 1 -  x -  t) 
• . .  (1 - x - ( N  - j ) t )uN-J+iDj (x  -~- ( N  - j + 1)t,t,u) 

D~+l(x, t ,u)  

while the two systems for which 

1 - N t < = x < = t  

yield the same formulae in which N - 1 is substi tuted throughout  for 
N. We have now only to substi tute x - (N - 1 - j ) t  f o r x  for the 



254 GORN 

first set of intervals  and x - (N  - 1 - j) t  for x for the second set to 
obtain Theo rem 6. 

Proof of Theorem 7. Let  

G(x, u) = al(x, u) + G2(x, u). (19) 

Now add the two systems (18) equat ion by  equat ion to  get:  

xuG(x + t, u) + (1 - x)u 

for 0 =<_ x =< t 

+ t, u) + (1 - x)uG(x  - t, u) 

f o r t  ~ x < 1 - t 

+ (1 - x)uG(x  - t, u) 

f o r l  -- t -< x -< 1 

G(x, u) = ! I xuG(z (20)  

! 
X U  

[ 
with b o u n d a r y  conditions 

( l i f x  => 1 
G(x, u)  = ~ (21)  

[ 1 i f  x__<0 

The  same method  as t ha t  used on Eqs. (18) therefore yields a un ique  
solution for G(x, u) in each subinterval  via Cram~r 's  rule. This unici ty,  
as in the asympto t i c  case, quickly yields wha t  we are after, for it is 
obvious when we subst i tute  u = 1 in (20) and (21) t h a t  G(x, 1) - 1 
is the solution. Since 

G(x, 1) = ~ 1Pt(x, n)  ~- P2(x, n)} 
n ~ O  

this means tha t  the probabi l i ty  of absorption,  whether  by  a~ or by  a2,  
is one. 

Proof of Theorem 8. Apply  to (20) the process described in the  proof 
of Theorem 6 to  (18).  This will yield for 0 _-< x _-< 1 - Nt a sys tem of 
N -t- l e q u a t i o n s i n G ( x  + ( j -  1 ) t , u ) , j  = 1, . . - , N  + 1, whose 
de te rminan t  is again D~+t(x, t, u) and whose column of r ight  hand  sides 
is the N -t- 1 dimensional  vector  [(1 - x)u,  0, . . .  , O, (x + Nt)u]. 
N o w  the sum of all the columns of D~+l(X, t, u) is the  vector  

(1, . . .  , 1) (1  -- u)  + [(1 -- x)u,  O, . . .  , O, (x + Nt)u]; 
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hence the numerator  for G(x - t  ( j  - 1)t, u) in CramOr's rule is 

D~+l(x, t, u)  -~ (u -- 1)F~+l,y(x, t, u)  

by the rule for adding determinants with all but  one column in common. 
In other words: 

DN+I(X, t, u)G(x + ( j  -- 1)t, u) 

= (u - 1)E~+l.j(x,  t, u)  + D~+l(X, t, u) (22) 

for 

O < _ x < _ l - N t  

Similarly, for 1 -- Nt  <= x <= t, substitute N - 1 for N in (22). (Note 
that  substituting u = 1 yields G --- 1, as in Theorem 7.) Differentiating 
(22) with respect to u, substituting u = 1, and hence G -- 1, yields 

G[x ~- ( j  - 1)t,u] 1.=1 = FN+~,~(x,t, 1) DN+l(x,t,1 ) ~ 

But 

0 G(x,u)]~=1 = ~ n{Pl (X,n)  + P2(x,n)} = E ( x )  
c~U n=0 

and (17) follows by the usual substitutions. 

REMARKS ON MODEL H2~ AND OTHER MODELS 

Naturally,  the analysis of H2~ (see Fig. 12) would more closely re- 
semble that  of H~t than it would resemble the asymptotic case. However, 
its structure is completely different. Rather  than embark on such an 
analysis, we will examine a special case which, though extreme, makes 
the difference in structure evident. Let  us take z = 200; tha t  is, at 
each response a i ,  the probabili ty of tha t  response at the next stimulus 
is tripled. 

Here, if ½ _< pl =< ~, absorption, whether by a1 or a2, must  occur at  
the first stimulus. Similarly, for each of the middle thirds of the remain- 
ing two intervals ( that  is, for ~ =< pl = ~ and for ~ =< pl =< §), absorp- 
tion may occur at the first stimulus, but  must occur by the second. Con- 
tinuing this process, we see that  2 ~-~ intervals of length 3 -n may last 
through n -- 1 stimuli but  must be absorbed at the nth. If p~ is expanded 
in radix 3, it can have, at most, two representations (occurring in the 
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case of a finite expansion)• I f  either representation of Pl uses a digit 
one, let the first occur at  digit n beyond the ternary  point• Then ab- 
sorption must  occur on or before the nth  stimulus. 

The residual set when all intervals of necessary absorption are re- 
moved is the well-known "Cantor  Ternary  Set".  This nowhere dense 
set consists of the only points at  which a "floundering" is at  all pos- 
sible. I~ is, therefore, intuitively evident tha t  the probabil i ty of absorp- 
tion is one. 

I f  such a model is programmed for a digital computer  and, as is most  
usual, the probabil i ty t ransformation is computed with finite precision, 
the preceding analysis requires the further complication of taking round- 
off into consideration• Thus, unlike the infinite precision analysis, 2 the 
description of the model does not require an infinite number  of intervals• 
Nevertheless, we have sufficient indication tha t  the structure is com- 
pletely different from the finitely intervalled model H i t .  Indeed, it is 
evident tha t  the same can be said for the general model H2~, at  least 
when ~ > 100. 

W e  have seen tha t  the absorbing boundary  models, even when they 
looked linear, lost all semblance of linearity. Model Hit involved non- 
analytic functions• I t  is an interesting conjecture tha t  no continuous 
asymptot ic  models have such nonanalytic features. 

An interesting nonlinear model is being studied by  Bush, Galanter,  
and Luce. This model derives from an axiom system developed by  Luce 
(1958). 

In  this model there are n + 1 "response al ternatives",  E °, E 1, . . .  , 
E n, with the usual variable probabil i ty vector (p0, p l ,  "-" , p~). Since 
this model is closer to learning than the habit  forming models we have 
been discussing, to each response al ternative there will be m -t- 1 pos- 
sible outcomes E~o, E i l ,  " "  , E~m with a fixed probabil i ty vector  (~ri0, 
• • • , ~ri~', • • • , 7rlm), for which ~3-~=07r~j = 1 for every i between 0 and n. 
The (m + 1) (n  -t- 1) reinforcement operators for all outcomes of all 
response alternatives are provided by  the (m -t- 1) (n  ~- 1) 2 functions 

~jpk 
flk,Pk + (1 --  Pk) 

where fl~j = 1 if i ~ k. 
n 

(Thus ~ flkipk-~ (1 -- pk) = ~ k i p k )  
k ~ 0  

2 We note that most classical numerical analysis assumes infinite precision at 
some point. 
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Because this is a learning model, the reinforcements must occur after 
the choice of response alternatives. In the general habit  forming sub- 
routine of Fig. 3, we saw that  we could have deferred the reinforcement. 
By placing the reinforcement outside the subroutine, we can use it 
either for habit  forming or for learning. The resulting subroutine is, 
then, a pure random selector, as we saw in the schematic chart, Fig. 4. 

The BGL random selector has the form of Fig. 13. This is again a 

i 

©@-. 

' ' 1 C ~ -  
I 
i 

FIG. 13. The  Bush-Ga lan te r -Luce  r andom selector  

I, GENE 

~'_ 

L Czp,,?) 
K=O 

K=0 

~A 7 '~; 

~' f  *~": ( l + j - " - ~ j )  

NO 
r 

FIo.  14. Schemat ic  flow char t  of BG L  random selector 
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"schematic" flow chart, in which such instructions as "1 -~ i" must 
modify a number of instructions. 

As before, this random selector may be achieved more compactly 
with judicious use of storage and with one multipurpose loop. For exam- 
ple, the Bush-Galanter-Luce reinforcement model has been programmed 
for the University of Pennsylvania's Univac by P. Z. Ingerman in such 
a way that the random selector subroutine has essentially the schematic 
of Fig. 14. 

CONCLUSION 

A feature of general habit forming and learning simulation which has 
become evident is the possibility of separating the random selector por- 
tion of the simulation from the response type portion. The latter may 
be simulated by "experience retrieval" methods, by "reinforcement 
function" methods, or by a combination of both. From a machine point 
of view, then, we visualize separate sections, either in hardware or in 
programming, dedicated to these three functions. For example, simula- 
tor programs will be formed by assembling suitable subroutines of these 
three types, for each of which there may be a sizeable "library". 

We might, therefore, have a master program--called a " compi l e r " -  
which would automatically assemble an appropriate selection from such 
a library at the call of a psychologist. Such a procedure would free the 
psychologist from one of the main problems natural scientists beyond 
the physical sciences have always had to face, namely the fact that 
experiments usually disturb unduly the system being controlled during 
the experiment. The main use of machine models is to run the experiment 
without fear of such disturbance. Psychologists can then choose the 
appropriate model from among many by comparing their outcomes with 
direct observations of the systems being simulated. 

RECEIVED: August 26, 1958; revised March 16, 1959. 
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