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Making use of results of Curtis [4] on the representations of Lie algebras
of classical type, Steinberg [12] has shown that all irreducible representations
of a semisimple algebraic group in characteristic p can be obtained in a simple
way from a finite number of basic representations. To obtain these basic
representations, one can make use of reduction mod. p of representations
in characteristic 0, which is possible after choice of a Chevalley basis in the
representation space [3]. In this paper we apply this to the simple algebraic
group of type F, in characteristic 2. From the representations of F, we
determine the 2-modular (Brauer) characters of the Ree group of type F,
parametrized by the field of 2 elements.

In Section 1 we recall results of Steinberg and Chevalley, in section 2 we
apply these to obtain the representations of a group of type F, in charac-
teristic 2. In section 3 we compute the 2-modular characters and the Cartan
matrix of the Ree group of type F, over the field of 2 elements.

The author is indebted to Professor R. Steinberg for pointing out important
simplifications in the proofs.

1. Let G be a connected semisimple linear algebraic group over an
algebraically closed field k; we shall identify G with the group of its &-
rational points. We refer to [2] for results on algebraic groups and their
representations which will be used throughout in this paper. Let T be a
maximal torus of G, X(T) the character group of T, V = X(T) &, R the
real vector space generated by X(T). We choose an ordering on the set X of
roots relative to 7, and denote the simple roots by a ,..., o; . Let W be the
Weyl group of G and let (-, -) denote an inner product on V invariant
under W.

An irreducible rational projective representation of G is uniquely
determined by its highest weight. The set of possible highest weights consists
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of all linear combinations with non-negative integral coefficients of the {
fundamental highest weights 4, ,..., d; .

Now let ¢ be a rational endomorphism of G such that G, is finite. We may
assume the maximal torus T and the ordering of the roots to be chosen so
that ¢ leaves T invariant and that the transpose of the restriction of o to T
induces a linear transformation ¢* on V which permutes positive integral
multiples of the posttive roots (see [13] 10.10). Then there exist a permutation
p of the roots and for each root a a power ¢(a) of p = char(k) (0 in this
situation) such that p permutes the positive roots and ¢%pa = g(a)a for every
root o (see {13], §§11 and 13 for these and the following facts). Assume G,
moreover, to be simply connected; then every projective representation is
induced by a linear one. Let & denote the set of irreducible rational linear
representations of G for which the highest weight g = Y/ ; n,d, satisfies
0 < n; < g(oy) for 1 <i <L Then the collection T]; o R;o o (tensor
product, B; €%, most R; trivial) is a complete set of irreducible rational
linear representations of G, each counted once. The restrictions to G, of
the representations € % form a complete set of irreducible representations of
the finite group G, (besides [13], see {12], §§1 and 12).

There is an affine group scheme G, of finite type and smooth over Z,
such that G = G, Xz k. If char(k) = 0, any irreducible representation of G
comes from a representation of G, over Z (see [3, 9]). If char(k) = p, any
irreducible representation 7 of G can be obtained as follows. Let g be the
highest weight of 7, m, an irreducible representation of Gy, over Z with highest
weight g. The tensor product over Z of m, with & is a representation & of G
such that 7 occurs as an irreducible constituent of .

Assume & = C, and let = be an irreducible representation of G. The
representation m, of G, which induces = is obtained in the following way.

In the Lie algebra L(G) of G a system of root vectors X, can be chosen
which satisfy the following equations.

(L.1)
(2) [X,,X_,]= H,, which is an integral linear combination of the
H; = H, ({=1..10).
(b) Hy ..., H, form a basis for the Cartan subalgebra L(T') of L(G).
(0) [H., Xg] = B(H.) X, B(H,) = 2(( B)/(os ))-
(d) Whenever a, 8 and « - 8 are roots,
[X,, Xz] = £(p(o B) + 1) X, 5, (o, B) denoting the largest integerz > O
such that 8 — iw is a root. [X, , X;] = 0if « 4- 8 is not a root.
Hy ..., H; , X (« € Z) form a basis for I(G), called a Chevalley basis for L(G).
Let M be the representation space for . dn is a representation of L(G)
in 3. A basis (my ,..., m;) of M is called a Chevalley basis for = if every m;

481/16/3-2



328 VELDKAMP

is a weight vector, and if for any root o and any integer 7 > 0, (i)™ dw(X,)*
maps
My = Zm, & -+ ©Zm,

into itself. M, is a representation module for 7, (see [3, 9]).

Now assume & has characteristic p and # is an irreducible representation
of G = G, with highest weight g = 22:1 nd; such that 0 < #n; < p for
t = 1,..,l. Then = is an irreducible constituent of the representation 0
obtained by reduction modp of a representation =, of G, with highest
weight g. Let the module M, for my and the Chevalley basis m, ,..., m,, be as
above. M = M, @ k is the representation module of 6. Let M, D M, be
G-submodules of M such that @ induces = in M,/M, = N. Let d be an
extreme weight of 7 (hence also of § and of ). The corresponding weight
spaces N; in N and M; in M (and M,) are 1-dimensional, and
Ny = (My + M,)]M, . Thus N, is spanned by some v; == (m; mod p) + M, .
We shall say that such a vector v, is obtained from the Chevalley basis
My ey My

2. Now assume char(k) = 2. Let G be the simple algebraic group of
type F; over k and let o be the endomorphism of G such that, in the above
notation, p interchanges long and short roots and with g(ey) = g(o) = 1,
q(oy) = g(ay) = 2, where oy and «, are the long simple roots, «, and «, the
short ones. Then G, is the Ree group of type F, parametrized by F,, the
field of two elements (see [8] and [13], 11.6).

Let nynyn4n, denote the weight Z?=1 n,d; and also the representation having
this as highest weight. # consists of the representations 0000, 0001, 0010
and 0011.

We first determine a table of representations in characteristic 0, that is,
for G, or, which amounts to the same, for the complex group G¢ = G, X, C.
The multiplicities of the weights in an irreducible representation can be

TABLE 1
Multiplicities in Characteristic 0 for the Group of Type F,

—_ 0000 0001 1000 0010 0002 1001 0100 0011 (g,g+20) dim

g

0000 1 0 1
0001 2 1 12 26
1000 4 1 1 18 52
0010 9 5 2 1 24 273
0002 12 5 3 1 1 26 324
1001 2 14 6 4 1 1 32 1053
0100 26 13 10 4 3 1 1 36 1274
0011 64 40 24 14 8 4 2 1 39 4096
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computed by means of Freudenthal’s formula (see [6], [7], Ch. VIII, or [10],
3.10). In table 1 we have listed the irreducible representations with highest
weight g satisfying (g, ¢ 2p) < 39 = (g9, 8 + 2p), where g, = 0011 and
where p = £ Y root0® = 21—1 d; . The author’s computations for table 1
have been checked by computations on the X8 of the Electronic Computing
Department of the University of Utrecht by Mr. ML.I. Krusemeyer, to whom
the author wishes to express his gratitude.

Before we proceed to determine the representations of G in characteristic 2,
we give some lemmas. We use the following notation. If V" is the space of 2
representation of a semisimple algebraic group G (in any characteristic) and
if d is 2 weight of this representation, then ¥, is the space of weight vectors
of weight 4. In L(G.) we assume some Chevalley basis is chosen. Then
H,, X, have the same meaning as in (1.1), but they also denote the corre-
sponding vectors H, mod p, X, mod p, resp., in L(G) if the characteristic cf
the ground-field 2is p > 0.

(2.1) Levva.  If dis a weight of a representation of G in V, o a root of G
and d + «not a weight, then X, Vg = 0.

(2.2) LemMa. If d is an extreme weight of an irveducible representation of G
in V and o a root of G such that 2((d, o)/(x, o)) = 0, then X, V; = 0.

Proof. d is conjugate under the Weyl group W to the highest weight g.
2((g, ®){(e, o)) = 0 implies that « > 0, hence XV, = 0 as is well known.

{2.3) LemmMa. Let d be an extreme weight of an irreducible representation of
G in V with highest weight g = zz_l n,d; , and let o be a root of G such that
2((d, @)f(w, ®)) = —1. Assume in case the ground-field K has characteristic p
that 0 <n; <p for i =1,.., Then d -+ o is an extreme weight and
Xty = —Vg.,, where vge Vy and vy, € Vg, belong to a Chevalley basis
if k has characteristic O, or are obtained from a Chevalley basis if k has characte-
ristic p.

Proof. Ler v, € IV be the reflection in the hyperplane orthogonal to w.
Then r,d = d + «, hence d + o is extreme and dim V; = dim ¥V, = 1.
Xy = muvg,, for somemeZ. X_,., = nv,; for some n e Z. Hence

mnvg = X_ X 04
= —Hw,, since X 9, =0 by Lemma (2.2),

:'Ud.

Hence m = 1.
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(2.4) LemmMa. Let L be the complex Lie algebra of type F,. Assume
rootvectors X, have been chosen in L satisfying conditions (1.1). Let
I={oy, 0,0, 0,0 —2a, a + 20y + 20,}, where oy, ay are the long
simple roots of L and oy, o, the short ones. Let O be a set of positive roots
containing I" and having the property: For o, 0, [X,, Xg] = +X, for
some y € @. Then O consists of all positive roots.

Proof. From (1,1)(d) it follows: if « and B are positive roots such that
o + B 1s a root but & — 8 is not, then [ X, , X;] = +X,.s. Apply this to the
roots in @, starting from the roots in I". Then @ is seen to contain the following
roots

abed = aoy + bty - cay + duy .
1000, 0100, 0010, 0001, 0120, 0122.
1100, 0110, 0011, 0121, 1120, 1122.
1110, 0111, 1220, 1222, 1121, 1221.
1111, 1231.

These are all positive roots of L (see e.g. [14]).

(2.5) LemMa. Let d be a weight of an irreducible representation with highest
weight g of Fy in a space V. Assume d # g. Then V5 is generated by the vectors
X_ D4, where o vuns over I' = {0, , 05, 05, 0y, 05 + 205, 09 + 2005 - 204}
and where for each « such that d 4+ « is a weight, v,., runs over a basis of
Vagrw- If ve Vyis such that X,v = 0 for all e I', then v = 0. In case the
groundfield has characteristic p we assume, again, that g = Y ;_ nd; with
O, <pforl <1< 4.

Proof. 1t is known (see e.g. [12]) that V,; is generated by the vectors
X, X X v, with d+y, - +y =g y: positive roots, g,
a nonzero weightvector for g. It follows from the previous lemma that X, is
a linear combination of vectors of the form X g X g " X g with
Bi,--» Be€ I This proves the first statement. If v e F; has the property
X, = 0 for all xe I, then, again by the previous lemma, X, v = 0 for all
positive roots y. Since the scalar multiples of o, are the only vectors in an
irreducible representation having this property (see [4], or [12], 2.7 and
theorem 5.1), it follows that v = 0.

Now we shall determine a table of multiplicities for the representations in
characteristic 2 of a simple algebraic group G of type F, . It suffices to consider
the representations 0010, 06001 and 0011, since the other ones can be derived
from these. The simple roots and fundamental highest weights can be given
in the following form ([2], pp. 19-10 and 11).
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W = Wy, O =Wy — o, 0= wg, oy = H—w; —wy— w3+ wy).
d, =w1+w4=20t1—i—3a2—i—4"' 4+ 2 .
dy = w; 5 0y 4 2w, = 30y + 6oty - 8oy -+ 4o, -
d; = Howy + wy -+ wy + 3wy) = 20y + doy + 60y — 304 .
dy = wy = o -+ 200 + 305 - 20 .
Invariant metric: (w; , w;) = &;; .

{i) The representation with highest weight g = 0011. In table 1 one sees
that for any weight @ 5= g in this representation,

(@, a + 2p) = (& & + 2p) mod 2,

hence the multiplicities in characteristic 2 are the same as in characteristic 0
by Theorem 4.2 of [10]. This result also follows from [11] since 0011 induces
on G, the representation whose dimension equals the order of a Syiow
2-subgroup of G, .

(ii) The representation with highest weight g = 0001. Let 0 have multi-
plicity m in this representation. From the table of multiplicities in charac-
teristic 0 it follows that m <{ 2. Choose a highest weight-vector z, . Write

g =y +20 + 305+ 20y =« + 8

where
==y + 20 + 3053 -0, and B = a, areroots.
Set
vy = X X g7,
v, =X X v,.

v, and 7, are vectors of weight 0. Now

XX, = X X XX _go,
= H Hyw, since X o, = Xgv,=0 and
[X,, X 1= H, foranyrooty,
( (& a)) (& F) )
(a ) S\ (B, B)

= 7,

Similar computations yield:

X X, =0
XBXavl =0
XX vy =, .

Hence v, and v, are linearly independent, which implies that m = 2.
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(iii) The representation with highest weight g = 0010. From the multi-
plicities in characteristic Q it follows that the dominant weights are 1000,
0001 and 0000 with multiplicities m, < 2, m, < 5 and m; < 9, respectively.
The conjugates of g under the Weyl group are easily seen to be

%(:l:wi + wj; 4 wp 4= 30)1), tw; 4wy d- oy,

with 7, 7, k and [ distinct, all combinations of signs being permitted (see [2],
p- 19-10). The conjugates of d, are all possible

tw; +w;, 1.

(2) Computation of my. d; + o5+ a5 = §(w; — wy, — w; + 3wy is
conjugate to g under W, i.e. extreme. Consider the following vectors of
weight d; .

9 = X o X .\ Vataste

oyt oy

Uy = X—a4X—a3vd1+u3+ﬂz4 H

where for any extreme weight 4, v; denotes the element in V,; obtained

from a Chevalley basis which we assume chosen once and for all in part (iii).
By similar computations as in (ii), using Lemma (2.2), we find

XnLgXai)l = Vgtagtay » XX, U1 = O’

X, X,9; =0, X Xo®s = Vaprapras -

So #; and o, are independent, hence m; = 2.
(b) Computation of m,. d, + oy + 205 + 20y = —ewy + 2w, is not
a weight, since it is neither conjugate to g = d; nor to d, under the Weyl
group. dy - oy, dy + oy, dy + oy and d; + @, + 205 are extreme weights,
and d, -+ oy = wy - wy = ry1yd;, where 7, W denotes the reflection
in the hyperplane orthogonal to ;. Let w; be the (unique) realization of
7;in G, , the Chevalley group over F, . From Lemma (2.5) it follows that I,
is generated by the vectors
X=X o9

-
Yoy Xy = A——ocg7)d4+a2 ’ Xy = X—a4vd4+a4 )

%y = X_, w0y, xy = X, w,w,0,, ¥ = X oy 20,V rogt205 0

g

with ; and v, as under (a).
Since dy + oy + 205 + 20, is not a weight,

Xoyiragroa®i = 0, = 1,..,6.
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The action of the root vectors X, , « = o , o, %3, 0tg OF 0y + 203, OD ;18
given in the following table.

Xy Xay Ko Xay Koyrtey

Xy = X’°f’“4“‘~1 Y Vi, 0 0 Ve oty 2
X, = X"Jztd,lT&:_» Ca, 0 G G
wE T ‘X-":xf"d,l-i-a_i 0 0 7"%’341114
%y = X Wa¥1T1 0 0 0,0,
X5 = X_a3202w1-v.2 0 Va,+a, 9
xg = X, 0y Ua tq 42y, Vd oo 0 WyTaTy Ty oy

2 3 472N T8 2 1 4'74

The results of this table will be proved at the end of the present section (iii)(b}.
We first proceed to determine the value of m, . Let

6
2, e =

be any linear relation. From the action of X, o = o, o,y y and
oy - 22, on this equation we deduce

L =~ &g, VA2 oL 113

s =0, ¢,+¢=0, c+te=0 ¢=0
4 ¢4+ ¢ 1 T €

C;—
€ =0, ¢ s+ ¢ =0,

-+

3
respectively. Hence
(*) =0, ¢,=¢, G=¢=2¢.

. 6 . . . .
Consider, conversely, any v == Y ;_; ¢%; with ¢ ,..., ¢¢ satisfying (*). Then
Xo=0 for ael ={x,0,0, 0,0 + 205, a + 205 + 22}, hence
v == 0 by Lemma (2 5). It follows that the subspace V,,

LLIMINA (L.2). 23 L020W S

which is generated

)
by %, ,..-, ¥ , has dimension 4, i.e., m, = 4.
Now we shall give proofs for the above table of X, x;, @ = a3, oy, 95, 64,

! -~
Zg —~ &0 -
X% = X X 3 Papiy, = Hoapiay » by Lemma (2.2),
(dy + 2y, )
4 i 1 _
= 2——(———~~fz),,l4+m1 = 0.
&1 5 061)
Similarly for szxﬁ Xﬂac3 s %L_aaxg .
Xu - Xalx—a,vdp-az
=X X Va5, since oy — o, is DOt a root,
== X_ V4,040 by Lemma (2.3),

<:"

bv Lemma (23)

41’(!1 3 bt A
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In a similar way one obtains by application of Lemma (2.3), X, g, Xy% ,
X%.X’G L Xa2+2¢x3x1 4 Xa272u3‘x3 :
Xalx:i X X-—oqu4+o:4 = X—u4‘Xu17)d4+:(4 =0
by Lemma (2.2). In the same way we get
Xuz‘x3 ’ X&2:X'6 H Xu3x1 ’ Xa4x Xa.;xz H] ‘Ya2+213x2 .
X, %y = X, x; = 0 since d; + o + oy = — wy + w3+ w, Is nOt 2
weight.
X%y = X, X, wow,
= wElerlrgazX—rqua3
= wzle—ul+a)3X X—a4 dyagtay
= W1 X, Xy 0, X2 Py » by Lemma (2.3),
= Wyl —wl[X—le—us ’ —ag] z’d1+a3 T wzle X X—wl—wa‘vdl-;-%
= wu X2, 0410, + 0, by (1.1)(d) and Lemma (2.2),
— YnzUcb i 1y?2 -ith i
= 2RWgt1D_ 51ty 5 since X7, acts with integral
coefficients on a Chevalley basis,
= 0.
Similar arguments take care of KXoy, Koy, Xo5y Xyyeuta and

sz2+2a3‘x5'

KXoy = Xy X_, Vg, has weight w; 4+ w,, which is the weight of
wyenyv; , ¢ = |, 2, so consider
= X, p0X.

Firadgts —717a00r 3 (dytog)

XX,

L2
w—w3C—witwgtwy

D G O

wWp—wg
= le—wa (LXEwl) 7}001‘1"@‘34"1’4
X‘”I—‘J"X X X—w1 wyTwgtwy
+ le—uaH X —w e twgte,
2. D, G, GNP, S /)

wy—wg —wy Ywrtwgtwg

W W X, X\ Vi ya, =
—witwgtwy

(see below)

since

(1, o)

2 ~0,
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= 3X_ X X o Vuprwgtass Dy (1.1)(d) and
Lemma (2.2},

= X, Buopros T 3K g X X e Voo torgon

=X 0 Purrwatw, — O by Lemma (2.2},

—wawtogtay

=X _ X

~at4" dy-togtag >

by Lemma (2.3),
=7 .
We still have to show that

1X2 Yo, .. = T

—wyf Ywitegiwy —uytwatwg ¢

We know that, in the Z-module for G,

—unwytwztoy itwytey

By action of the Weyl group on this equation we get

2 —
le —untwytwy 717)u|+w3-w4
Hence
s — 2 yv2
47’w1+w3+w4 - X X—Ul w1Twy Ty

12,
- In 'Z"wIA-w3+w4 2

(see [12], p. 41, line 3) from which the result follows. This completes the
proof for the case X, x,. A similar line of reasoning works for X, x; and X, x,.
Finally, consider X, x, and X, x; . For these cases, we argue as follows.

X, Xy woww; = Hywowyv; -+ X X, wowqv;

=0,
since 7,7,7; has weight wy + w, and 2((wy + wy, o5)/{eg , o)) = 2.

(¢} Computation of my;. From the representation 0001, which we have
determined in (ii), we can compute the symmetric part of (0001) & (0001)
in characteristic 2; for this we find the following table of multiplicities m,
of the dominant weights 4.

. 1 I
i H i
4 | 0000 | ooor 1000 | 0010 | 0002
. = |
|
my 15 A T R

=)
W
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In the Grothendieck group of rational representations of G we have
[(0001) ® (0001)] = [0002] +- [0010] - a[1000] - 5[0001] -+ [0000].

On the representation space of 0001 there exists one nondegenerate bilinear
form (unique up to scalar multiples) which is invariant under G; hence ¢ = 1.
This is so because —1 belongs to the Weyl group of F, , hence any represen-
tation is equivalent to its contragredient representation. Comparing multi-
plicities we find
15=34+my~2a+42b

6=my +b

3=m +a
It follows that

g = 2(m, — my) — 6 = 6.

Thus the representation 0010 in characteristic 2 is completely determined.

In this way we have obtained the set 2 of basic, irreducible representations
in characteristic 2 from which one can obtain all other itreducible represen-
tations. In table 2 we have listed those with highest weight g such that
(88 +2p) < (80, & + 2p) for go = 0011.

TABLE I1
Multiplicities in Characteristic 2 for the Group of Type F,

a 0000 0001 1000 0010 0002 {001 0100 0011 dim

£

0000 1 1
0001 2 1 26
1000 2 0 1 26
0010 6 4 2 1 246
0002 2 0 0 0 1 26
1001 4 8 2 3 0 1 676
0100 6 0 4 0 2 0 1 246
0011 64 40 24 14 8 4 2 1 4096

3. From table 2 one can compute the 2-modular characters of G,
the Ree group of type F, parametrized by F, . For general information about
modular characters we refer to [5]. First we have to determine a representative
for each of the conjugacy classes of 2-regular elements of G, . We recall that
an element x is called 2-regular if its order is not divisible by 2; x is 2-regular
if and only if it is semisimple. The semisimple conjugacy classes can be
determined with the aid of lemma 3.9 of [12]. This lemma holds for any
endomorphism o such that G, is finite; the restriction on ¢ in [12], 3.9, was
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used in step (1) of the proof only, but that step holds in general as follows
from [13], Theorem 10.1; this is also implicit in the proef of [13],
Theorem 14.8.

Denote an arbitrary element of the maximal torus T of G by
(t;,ta, by, 1y, 8), B, k% §2 = §it850, . Each semisimple conjugacy class
of G contains a 7 & T satisfying of = wi for some w € W, the Weyl group of G.
Let

Y — £ t%(wl—i—w2+w3+w;}

] = §.

Wy 5eur, wy form a basis for V = X(T) & R. The simple roots are acted on
by ¢* as follows.

o¥oy = 20y, Yoy =205, ¥y =0, c¥u
From this it follows that
oFw; = —w; + g, 6Fw, = w,  wy,
6Fwy = wy — wy, Fwy = w; + wy.
Since (of)* = 1°*@:, we obtain from the above
(F1 2 o By s Bg o §) = (B0, , Tola , Laly hy Tafy , Boly)
oty Bay By s 8a s §) = Uy Ly, Lala s Talg ™, Byly , Doty)e
The Weyl group W, acting on 7', contains the transformations

€a €3 112(6,-—1)
(b lyslystys8)—> (t~u) 2Ty by s ot oS 11 10 )
1<i<e

7 any permutation, €; = —1 (in all possible combinations), and also

(t1 5ty s By s by, 8) > (B3 857, 110250, BES TS, 8, £y)
(see [2], p. 19-10).

G has order 212385213 and contains 4 semisimple (=2-regular) conjugacy
classes by [13], hence these must be C; , Cy, Cy , Ci5, where the elements of
C; have order 7. It is easily verified that the following elements in T satisfy
the equation o¢ = w¢ for some we W.

2 2 2 3 5 12
(17 L, 1,1, 1)7 (1) €3, €3, €3, €3 )a (1’ I, €55 Ea s €3 )’ (El?n €135 €13» 5?3’ 613):

where ¢; denotes a primitive j-th root of unity in A.
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Let ¢ be the isomorphism of the group of 3.5.13-th roots of unity in k*
into C* defined by

ple,) = e2min 7, n=235,13.

The 2-modular (Brauer) characters can now be computed from table 2.
We omit the tedious but straightforward calculations. In this way one
obtains table 3, where Xn ngnyn, denotes the 2-modular character of the
representation n,m,n,n, . Notice that these characters turn out to be integral,
hence they do not depend on the isomorphism ¢ from the group of 3.5.13-th
roots of unity in &£* onto the analoguous group in C*.

TABLE III
2-Modular Characters of the Ree Group of Type Fy over F,

class
m C1 C.'; Cs C13
J1 = Xonoo 1 1 1 1
2 = Xoonr 26 —1 1 0
$z = Xooio 246 3 —4 —1
bs = Xoon1 4096 —8 —4

We shall, finally, determine the Cartan matrix C == (¢;;) which expresses
the principal indecomposable characters of G, in the irreducible ones [1, 5].
¢, is the only character in its block, as follows from [11], Theorem 4, and [1],
Theorem 1, or [5], Theorem (86.3), hence

n=¢p=¢3=0, ¢y =1

Moreover, C is known to be symmetric. Let C-1 = (&), then

-~

n =€ =03 =0, &y =1

Let n denote the order of G, , n; that of the class C; ({ = 1, 3, 5, 13). Let g,
be a representative of C; . The following character relations are known

ne, =Y mp(g) e, 1<ij<4 (3.1)
z
Since for i = 4 the ¢;; are known, we can compute the numbers #, , keeping
in mind that g;* € C; in this case.

n =1

ny = 166 400 = 295?13
n; = 359 424 = 2103313
nyy = 2764 800 = 2123352
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The character relations (3.1) then yield C-2, from which C'is easily computed.

[ o]

10.

11

12.

14.

160 528 160 0O
C - 528 1972 572 O
1160 572 172 0

0 0 0 1
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