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Making use of results of Curtis [4] on the representations of Lie algebras 
of classical type, Steinberg [12] h as shown that all irreducible representations 
of a semisimple algebraic group in characteristic p can be obtained in a simple 
way from a finite number of basic representations. To obtain these basic 
representations, one can make use of reduction mod. p of representations 
in characteristic 0, which is possible after choice of a Chevalley basis in the 
representation space [3]. In this paper we apply this to the simple algebraic 
group of type F4 in characteristic 2. From the representations of Fd we 
determine the 2-modular (Brauer) characters of the Ree group of type F4 
parametrized by the field of 2 elements. 

In Section 1 we recall results of Steinberg and Chevalley, in section 2 we 
apply these to obtain the representations of a group of type F4 in charac- 
teristic 2. In section 3 we compute the 2-modular characters and the Cartan 
matrix of the Ree group of type F4 over the field of 2 elements. 

The author is indebted to Professor R. Steinberg for pointing out important 
simplifications in the proofs. 

I. Let G be a connected semisimple linear algebraic group over an 
algebraically closed field k; we shall identify G with the group of its K- 
rational points. We refer to [2] for results on algebraic groups and their 
representations which will be used throughout in this paper. Let T be a 
maximal torus of G, X(T) the character group of T, V = X(T) $& R the 
real vector space generated by X(T). W e choose an ordering on the set .Z of 
roots relative to T, and denote the simple roots by 01~ ,..., (Y-~ . Let IV be the 
Weyl group of G and let (. , .) denote an inner product on V invariant 
under IV. 

An irreducible rational projective representation of G is uniquely 
determined by its highest weight. The set of possible highest weights consists 
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of all linear combinations with non-negative integral coefficients of the I 
fundamental highest weights d1 ,..., d, . 

Kow let o be a rational endomorphism of G such that G,, is finite. We may 
assume the maximal torus T and the ordering of the roots to be chosen so 
that o leaves T invariant and that the transpose of the restriction of rj to T 
induces a linear transformation a* on V which permutes positive integral 
multiples of the positive roots (see [13] 10.10). Then there exist a permutation 
p of the roots and for each root N a power q((~j of p = char(k) (+O in this 
situation) such that p permutes the positive roots and &$x = n(~ja for every 
root LY. (see j13]: $511 and 13 for these and the foliowing facts). Assume G, 
moreover, to be simply connected; then every projective representation is 
induced by a iinear one. Let .S? denote the set of irreducible rational linear 
representations of G for which the highest weight g = ~~=, n,d, satisfies 
0 < n, < q(01~) for 1 < i < 1. Then the collection n7-a Ri 3 & (tensor 
product, Ri E B, most Ri trivial) is a complete set of irreducible rational 
linear representations of G, each counted once. The restrictions to G, of 
the representations E B form a complete set of irreducible representations of 
the finite group G, (besides [13], see [12], $51 and 12). 

There is an affine group scheme Ga , of finite type and smooth over Z, 
such that G = G, xz k. If char(k) = 0, any irreducible representation of G 
comes from a representation of G, over Z (see [3,9]j If char(k) = p; any 
irreducible representation 7: of G can be obtained as follows. Let g be the 
highest weight of 7~, r0 an irreducible representation of Gr, over Z with highest 
weight g. The tensor product over Z of r,-, with k is a representation 6 of G 
such that z occurs as an irreducible constituent of 8. 

Assume k = C, and let zr be an irreducible representation of G. The 
representation z-s of G,, which induces % is obtained in the following way. 

In the Lie algebra L(G) of G a system of root vectors X, can be chosen 
which satisfy the following equations. 

(1.1) 

(a) [Xx , X-J = H, , which is an integral linear combination of the 
Hi = Hei (i = l,..., I). 

(bj HI ,..., HI form a basis for the Cartan subalgebraL(Tj ofL(Gj. 

(c) [Cr, f -y8] = P(H,) Xe , B(Ha) = ‘((a, 8)/(~, ~jj~ 

(d) Whenever 01, ,8 and a: -/- p are roots, 

[X, ? Xa] = &(~(a, p) + 1) Xx+s , $(a, ,!3) denoting the largest integer i > 0 
such that ,!3 - B is a root. [X, , X6] = 0 if 01 + fi is not a root. 
H i ,..., H, , X,(x E 2) form a basis for L(G), called a CYievaZZey basis for L(G). 

Let M be the representation space for z. d?r is a representation of L(Gj 
in M. A basis (m, ,..., m,,) of M is called a C%eaaZZty basis for T if every m, 

481/16/3-z 



328 VELDKAMP 

is a weight vector, and if for any root 01 and any integer i > 0, (i!)” &(X,)” 
maps 

into itself. IIf0 is a representation module for r,, (see [3,9]). 
IL’ow assume k has characteristic p and r is an irreducible representation 

of G = Gk with highest weight g = xi=, nide such that 0 < ni < p for 
i = l,..., 1. Then 7c is an irreducible constituent of the representation 8 
obtained by reduction modp of a representation r0 of G, with highest 
weight g. Let the module AI,, for r,, and the Chevalley basis q ,..., PZ, be as 
above. M = Ma @ k is the representation module of 8. Let Mr 3 Ma be 
G-submodules of 44 such that B induces z in J&/M, = AT. Let d be an 
extreme weight of ST (hence also of 0 and of “a). The corresponding weight 
spaces Kd in :V and Md in M (and JQ are l-dimensional, and 
IV, = (Md + MJMs . Thus ATd is spanned by some vd = (q mod p) + Ms . 
We shall say that such a vector vd is obtained from tke CYzeaalley basis 
na, ,..., m, . 

2, Now assume char(k) = 2. Let G be the simple algebraic group of 
type E4 over k and let u be the endomorph&m of G such that, in the above 
notation, p interchanges long and short roots and with q(q) = q(~s) = 1, 
~(01s) = q(o~J = 2, where ol, and 01s are the long simple roots, 01~ and x4 the 
short ones. Then G,, is the Ree group of type FS parametrized by F, , the 
field of two elements (see [8] and [13], 11.6). 

Let n,n,nsn, denote the weight & nidi and also the representation having 
this as highest weight. W consists of the representations 0000, 0001, 0010 
and 0011. 

We first determine a table of representations in characteristic 0, that is, 
for G,, or, which amounts to the same, for the complex group Gc = G, x z C. 
The multiplicities of the weights in an irreducible representation can be 

TABLE I 

Multiplicities in Characteristic 0 for the Group of Type F4 

0000 0001 1000 0010 0002 1001 0100 0011 (g,g+2p) dim 

1 0 1 
2 1 12 26 
4 1 1 18 52 
9 5 2 1 24 273 

12 5 3 1 1 26 324 
21 14 6 4 1 1 32 1053 
26 13 10 4 3 1 1 36 1274 
64 40 24 14 8 4 2 1 39 4096 
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computed by means of Freudenthal’s formula (see [6], [7], Ch. VIII, or [lo], 
3.10). In table 1 we have listed the irreducible representations with highest 
weight g satisfying (g, g + 2~) < 39 = (g, , g, + 2pjl where g, = 0011 and 
where p = 4 CEroot,a 01 = C:=, di . The author’s computations for table 1 
have been checked by computations on the X8 of the Electronic Computing 
Department of the University of Utrecht by Mr. M.I. Krusemeyer, to whom 
the author wishes to express his gratitude. 

Before we proceed to determine the representations of G in characteristic 2, 
we give some lemmas. We use the following notation. If V is the space of a 
representation of a semisimple algebraic group G (in any characteristic) and 
if d is 2 weight of this representation, then Vd is the space of weight vectors 
of weight d. In L(Gc) we assume some Chevalley basis is chosen. Tnen 
H,, , Xz have the same meaning as in (l.l), but they also denote the corre- 
sponding vectors H, mod p, X, modp, resp., in L(G) if the characteristic cf 
the ground-field K is p > 0. 

(2.1) LEMMA. If d is a weight of a representation qf G in V, a a root %f G 
and d + 3 not a weight, then X-V, = 0. 

(2.2) Lmm. If d is an extreme wezkht of an irreducible representation of G 
ilz V and a: a root of G szich that 2((d, ol>/(ol, a)) > 0, then X,V, = 0. 

Proqf. d is conjugate under the Wey1 group W to the highest weight g. 
2((g, a)/(a, a)) > 0 implies that a: > 0, hence XaTg = 0 as is we11 known 

(2.3) ~EMNA. Let d be an extreme weight of an rreducibbie representation of 
G in V z&h highest weight g = zj=, nidi , and let OL be a root of G such that 
2((d, z)>i(o;, a)) = -1. .A ssume in case the ground-$eld K has characteristic p 
that 0 < zi < p for i = l,..., 1. Then d $ a is an extreme weight and 
&cd = -vd+, wherre vd E V, and ~1 - Lo+* E V,+, belong to a Chevalley basis 
{f k has characteristic 0, or are obtained from- a Chevalley basis <f k has characte- 
ristic p. 

Proof. Ler rc: E W be the reflection in the hyperplane orthogonal to Y. 
Then r,d = d $01, hence d + z is extreme and dim V, = dim Vd+ = 1. 
x&$ = mv6,, for some m EZ. X-I;ud+or = nvd for some a EZ. Hence 

mnv(j = x-,x$l, 
= -fLvd > since XJJ, = 0 by Lemma (2.2): 

= &!Ldv 
(a!, ix) a 

= Vd . 

Hence m = +l. 
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(2.4) LEMMA. Let L be the complex Lie akebra of type F4 . Assume 
rootvectors X, have been chosen in L satisfying conditions (1.1). Let 
r = (CQ , 01~ , as , a4 , 01~ T 2a, , a2 + 2as + 2~td, where oil , I’ll are the long 
simple roots of L and 01~ , aa the short ones. Let 0 be a set of positive roots 
containing r and having the property: For 01, j3 E 0, [X, , X,] = &X7 for 
some y E 0. Then 0 consists of all positive roots. 

Proof. From (1,1)(d) it follows: if LY and p are positive roots such that 
oi + p is a root but a: - /I is not, then [XE , X,] = hX,+, . Apply this to the 
roots in 0, starting from the roots in I’. Then 0 is seen to contain the following 
roots 

abed = aa, + ba, f c01~ + da, _ 

1000,0100, 0010,0001,0120,0122. 

1100,0110,0011,0121, 1120, 1122. 

1110,0111, 1220, 1222, 1121, 1221. 

1111, 1231. 

These are all positive roots of L (see e.g. [14]). 

(2.5) b?MiWA. Let d be a weight of an irreducible representation with highest 
weight g of F4 in a space V. Assume d + g. Then V, is generated by the vectors 
Xeavd-- , where a! runs over r = (01~ , oig , 01~ , 3+, 01~ + 23~~ , az + 29 + 231,) 
and whae for each a such that d f a: is a weight, vd+ runs over a basis of 

p-d+% . If v E S/, is such that X,v = 0 for all a: E r, then v = 0. In case the 
groundJield has characteristic p we assume, again, that g = C& n,d, with 
0 < n, < p for 1 < i < 4. 

Proof. It is known (see e.g. [12]) that V, is generated by the vectors 
X-.,lX-,V **. X,‘w, with d + yr + ... + yt = g, yi positive roots, vg 
a nonzero weightvector for g. It fo!lows from the previous lemma that X-,r is 
a linear combination of vectors of the form X-slX-s, *a* X-a, with 

P r ,..., /3, E r. This proves the first statement. If w E V8 his the property 
X,r; = 0 for all 01 E r, then, again by the previous lemma, X,V = 0 for all 
positive roots y. Since the scalar multiples of vs are the only vectors in an 
irreducible representation having this property (see [4], or [12], 2.7 and 
theorem 5.1), it follows that z? = 0. 

Now we shall determine a table of multiplicities for the representations in 
characteristic 2 of a simple algebraic group G of type F4 . It suffices to consider 
the representations 0010, 0001 and 0011, since the other ones can be derived 
from these. The simple roots and fundamental highest weights can be given 
in the following form ([2], pp. 19-10 and 11). 
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011=w1--w~, cLp=w~--w3, ff3=w3, CQ = $(-WI - ws - ws + w*). 

d, = WI f wq = 201, + 3a, f 4, f 2lx.a . 

d2 = w1 + wf + 2~0, = 301, f 601~ + 8~~ + 4.x, . 

$ = $(wl + wp + w3 + 3w,) = 201, + 4a2 + 61, + 3aa. 

dG = ws = cc1 + 2a, + 301, + 2~~. 

Invariant metric: (wi I wj) = 6,. 

(i) The representation with highest weight g = 0011. In table 1 one sees 
that for any weight a + g in this representation, 

(a, a f 2~) $ (g, g f 2pj mod 2, 

hence the multiplicities in characteristic 2 are the same as in characteristic 0 
by Theorem 4.2 of [lo]. This result also follows from [ll] since 0011 induces 
on G, the representation whose dimension equals the order of a Syiow 
2-subgroup of G, . 

(ii) The representation with highest weight g = 0001. Let 0 have multi- 
plicity vz in this representation. From the table of multiplicities in charac- 
teristic 0 it follows that nz < 2. Choose a highest weight-vector ‘L’, . Write 

where 
g = 011 + 2a, + 3a, + 2!x* = Lu + 9 

Set 

OL = or, + 201s + 3ar, + No and p = %a are roots. 

Vl = x~,x+-vg ) 

vo = X-,X-,a, . 

v1 and va are vectors of weight 0. xow 

&43v, = x;u_,xL?x-,v, 

= HzHBv, since XNv, = XBcs = 0 and 
[X., , X-J = H,, for any root yI 

= (2~)(2##)% 
= va . 

Similar computations yield: 

x,x,v, = 0 

XBX,el = 0 

X,X$, = vg . 

Hence v, and z’s are linearly independent, which implies that m = 2. 
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(iii) The representation with highest weight g = 0010. From the multi- 
plicities in characteristic 0 it follows that the dominant weights are 1000, 
0001 and 0000 with multiplicities m 1 < 2, m, < 5 and m3 < 9, respectively. 
The conjugates of g under the Weyl group are easily seen to be 

S(bJi zt wj zk Wk f 34, fwi It wj f wk 9 

with i, j, K and 2 distinct, all combinations of signs being permitted (see [2], 
p. 19-10). The conjugates of dl are all possible 

ztwi & q , i +j. 

(a) Computation of m, . dl + % + CQ = $(wl - we + wQ + 3wJ is 
conjugate to g under W, i.e. extreme. Consider the following vectors of 
weight dl . 

where for any extreme weight d, vd denotes the element in Vd obtained 
from a Chevalley basis which we assume chosen once and for all in part (iii). 

By similar computations as in (ii), using Lemma (2.3, we find 

So q and z;s are independent, hence m, = 2. 

(b) Computation of ma . d4 + 01~ + 201, + 201, = -wl + 2w, is not 
a weight, since it is neither conjugate to g = d, nor to dr under the Weyl 

group. 4 + a1 , 4 + “z , d4 + 01~ and da + CQ, + 2as are extreme weights, 
and d4 + % = ws -+ w4 = rprldl , where ri E W denotes the reflection 
in the hyperplane orthogonal to CQ . Let wi be the (unique) realization of 
Ye in G,z , the Chevalley group over F, . From Lemma (2.5) it follows that Vd 
is generated by the vectors 

with vI and ~1~ as under (a). 
Since d4 + ol, f 201, + 2a, is not a weight, 

xorztPrr3+fapXi = 0, i = l,..., 6. 
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The action of the root vectors .& , a = cxr , 01~ , xa , N& or aa f 201, , on X~ is 
given in the following table. 

be any linear relation. From the action of X, , c1 = c+ ,zi? ~ 01~ : aJ and 
SD f 2313 > on this equation we deduce 

c.2 $ cg = 0, Cl + cj = 0, c, + cs = 0, c, = 0, 

cs + cq + cg = 0, Cl + c3 f cj = 0, 

respectively. Hence 

vi c3 = 0, Cl = cj , c2 = cq = cg . 

Consider, conversely, any ‘u’ = Cf=, cixi with cr ,.,., c, satisfying (*). Then 
X,-J = 0 for 01 E r = {zl , aa , cxa , ol, , U.~ + 2x, , (11~ f 2xa + 2x4>, hence 

z = 0 by Lemma (2.5). It follows that the subspace Ir$& , which is generated 
by x1 ,..., x6 , has dimension 4, i.e., BZ~ = 4. 

Now we shall give proofs for the above table of X,x, , OL = 01; , ala , 3~~ , CQ I 
lY.2 + 201, . 

by Lemma (2.2), 

= -L2Xapd4+a* > since a1 - ‘12 is not a root, 

= L&,+,+ci, 3 by Lemma (2.3), 

= c. “d*+q 3 by Lemma (2.3). 
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In a similar way one obtains by application of Lemma (2.3), Xol,x6 , Xazxl , 

x x cd4 6 3 XL$+na,% 9 x+a3% * 

-&p, = xz&-Jirvdl+3;4 = L.&pdl+r& = 0 

by Lemma (2.2). In the same way we get 
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We still have to show that 

We know that, in the Z-module for G,, , 

By action of the Weyl group on this equation we get 

(see [12], p. 41, 1 ine 3) from which the result follows. This completes the 
proof for the case XESx,. A similar line of reasoning works for X,,xs and XE3x6. 

Finally, consider Xz3x* and Xa8x5 . For these cases, we argue as follows. 

since rqzlcj has weight wa + wg and 2((wa + 0~~ , asjj(oig , ff3j) = 2. 

(c) Computation of ma . From the representation 0001, which we have 
determined in (ii), we can compute the symmetric part of (0001) 8 (0001) 
in characteristic 2; for this we find the following table of multiplicities 3~ 
of the dominant weights d. 

I I I 
I d 1 0000 0001 1000 j 0010 / 0002 

I 
i ml 15 

i- 

1 6 i 3 ( 1 ( l j 
! 
I 
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In the Grothendieck group of rational representations of G we have 

[(OOOl) @ (OOOl)] = [0002] + [OOlO] + a[lOOO] + b[OOOl] + c[0000]. 

On the representation space of 0001 there exists one nondegenerate bilinear 
form (unique up to scalar multiples) which is invariant under G; hence c = 1. 
This is so because - 1 belongs to the Weyl group of F4 , hence any represen- 
tation is equivalent to its contragredient representation. Comparing multi- 
plicities we find 

15=3+m,+2a+26 

6=m,+b 

3=m,+a 

It follows that 
m3 = 2(m, + wz.J - 6 = 6. 

Thus the representation 0010 in characteristic 2 is completely determined. 

In this way we have obtained the set W of basic, irreducible representations 
in characteristic 2 from which one can obtain all other irreducible represen- 
tations. In table 2 we have listed those with highest weight g such that 

(g,g+2p),((go,g,$2p)forg,=0011. 

TABLE II 

Multiplicities in Characteristic 2 for the Group of Type F4 

--pQ- 
0000 
0001 
1000 
0010 
0002 
1001 
0100 
0011 

0000 

1 
2 
2 
6 
2 
4 
6 

64 

0001 1000 0010 0002 1001 0100 0011 dim 

1 
0 
4 
0 
8 
0 

40 

1 
26 

1 26 
2 1 246 
0 0 1 26 
2 3 0 1 616 
4 0 2 0 1 246 

24 14 8 4 2 1 4096 

3. From table 2 one can compute the 2-modular characters of G,, , 
the Ree group of type F4 parametrized by F, . For general information about 
modular characters we refer to [5]. First we have to determine a representative 
for each of the conjugacy classes of 2-regular elements of G, . We recall that 
an element x is called 2-regular if its order is not divisible by 2; x is 2-regular 
if and only if it is semisimple. The semisimple conjugacy classes can be 
determined with the aid of lemma 3.9 of [12]. This lemma holds for any 
endomorphism a such that G, is finite; the restriction on u in [12], 3.9, was 
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used in step (1) of the proof only, but that step holds in general as follows 
from j13], ‘rheorem 10.1; this is also implicit in the proof of [13], 
Theorem 14.8. 

Denote an arbitrary element of the maximal torus T of G by 
(tl , t, , t3 , t4 , s)? ti E k*, s2 = tlt2t3t4. Each semisimple conjugacy class 
of G contains a t E T satisfying crt = wt for some w E IV, the Weyl group of G. 
Let 

Wl ,***, wq form a basis for V = X(T) @ R. The simple roots are acted on 
by &+ as follows. 

From this it follows that 

dhJ1 = -wl + w4 ) u*wz = wz -!- w3 ) 

&w3 = w, - wg ) cr*w* = Wl + WC. 

Since (Ot)“: = to*“‘:, we obtain from the above 

o(tl , t, , t, , t, , sj = (t-5 : 1 4 , v3 , f&l, t,t, , t,t,j* 

The Weyl group IV, acting on T, contains the transfer-mations 

r any permutation, l i = &l (in all possible combinationsj, and also 

(t: , t, , t, , t, , s) b-+ (t;lt;ls, t;lt;ls, tl --lt,ls, s, t*) 

(see [2], p. 19-10). 
G has order 21a335213 and contains 4 semisimple (=2-regular) conjugaq 

classes by 1131, hence these must be C, , Cs , C, , C,, , where the elements of 
Ci have order i. It is easily verified that the following elements in T satis@ 
the equation ot = zet for some ZQ E W. 

w-here .=j denotes a primitive j-th root of unity in k. 
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Let q be the isomorphism of the group of 3.5.13-th roots of unity in k* 
into C* defined by 

v(en) = e2rilrl, n = 3,5, 13. 

The 2-modular (Brauer) characters can now be computed from table 2. 
We omit the tedious but straightforward calculations. In this way one 
obtains table 3, where ~,,r,+~~ denotes the 2-modular character of the 
representatron n,n,n,n, . Notice that these characters turn out to be integral, 
hence they do not depend on the isomorphism qa from the group of 3.5.13-th 
roots of unity in k* onto the analoguous group in C*. 

TABLE III 

2-Modular Characters of the Ree Group of Type F4 over Fz 

class 

c- cl es c, cl3 

$1 = x0000 1 1 1 1 
44 = Xaaa1 26 -1 1 0 
43 = x0010 246 3 -4 -1 
41 = x0011 4096 -8 -4 1 

We shall, finally, determine the Cartan matrix C = (cij) which expresses 
the principal indecomposable characters of G, in the irreducible ones [l, 51. 
& is the only character in its block, as follows from [ll], Theorem 4, and [l], 
Theorem 1, or [5], Theorem (86.3), hence 

c~,=c,,=c,,=o, c,=l. 

Moreover, C is known to be symmetric. Let C-l = (&), then 

&=&=&=O, z&&=1. 

Let n denote the order of G, , n, that of the class Cr (I = 1, 3, 5, 13). Let g, 
be a representative of Cr . The following character relations are known 

Since for i = 4 the & are known, we can compute the numbers n, , keeping 
in mind that g;’ E C, in this case. 

n, = 1 
n3 = 166 400 = 2V13 
n5 = 359 424 = 2103313 

nl, = 2 764 800 = 2123352 
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The character relations (3.1) then yield C-l, from which C is easily computed. 
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