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Abstract

We characterize polynomials having the same set of nonzero cyclic resultants. Generically, for a
polynomial f of degreed, there are xadly 24-1 distinct degreal polynomials with the same set
of cydic resultants asf. However, in he generic monic case, degréepolynomials are uniquely
determined by their cyclic resultants. Moreover, two reciprocal (“palindromic”) polynomials giving
rise to the same set of nonzero cyclic resultamésexjual. In the pross, we also prove a unique
factorization result in semigroup algebras involving products of binomials. Finally, we discuss how
our results yield algorithms for explicit reconstruction of polynomials from their cyclic resultants.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction
Them-th cyclic resultant of a univariate polynomiéle C[x] is
rm = Reg f,x™ —1).

We are primaily interested here in the fibers of the map: C[x] — CN given by
f = (rm)m_o- In particular, what are the conditions for two polynomials to give rise to
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the same set of cyclic resultants? For technical reasons, we will only consider polynomials
f that do not have a root of unity as a zero. With this restriction, a polynomial will map
to a set of all nonzero cyclic saltants. Our main result gdg a complete answer to this
guestion.

Theorem 1.1. Let f and g be polynomials it©[x]. Then, f and g generate the same
sequence of nonzero cyclic resultants if and only if there exjst & C[x] with degu)
even, U0) # 0, and nonnegative integers & |> (mod 2 suchthat

f(x) = x'1v(x)u(x~1)xdedw

g(x) = x2u(x)u(x).
Remark 1.2. All our results involvingC hold over any algebraically closed field of
characteristic zero.

Although the theorem statement appears somewhat technical, we present a natural
interpretation of the result. Suppose thik) = x2v(x)u(x) is a factorization as above
of a polynomialg with nonzero cyclic resultants. Then, another polynonfigiiving rise
to this same sequence of vdtsints is obtained from by multiplication with the reversal
u(xfl)xdeg“) of u and a factox't in whichl; € N has the same parity &s. In other
words, f (x) = x'tv(x)u(x~1)x99W  and al such f must arise in this manner.

Example 1.3. One can check that the polynomials
f(x) = x3 - 10x? + 31x — 30
g(x) = 15x° — 38x* + 17x3 — 2x?

both generate the same cyclic resulsafitis follows from the factorizations
f00 = (x—2) (15¢% - 8x+ 1)

g(x) = X3(x — 2) <x2 —8x + 15) . O

One notivation for the study of cyclic resultants comes from the theory of dynamical
systems. Sequees of the fornt, arise as the cardinalities of sets of periodic points for
toral endomorphisms. LeA be ad-by-d integer matrix and leX = T4 = RY/Z9 denote
the d-dimensional aditive torus. Then, the matriXA acts onX by multiplication mod 1;
that is, it defines a map : X — X given by

T(X) = AX mod 9.

Let Pep(T) = {x € T9 : T™(x) = x} be the set of points fixed under the map.
Under the ergodicity condition that no eigenvaluefofs a oot of unity, it follows (see
Everest and Wardl999 that

Irm(f) = [Pem(T)| = | det A™ — 1),

in which | is thed-by-d identity matrix, andf is the characteristic polynomial of. As a
consequence of our results, wieatacterize when the sequenPer,(T)| deternines the
spectrum of the linear map lifting T (seeCorollary 1.13.
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In connection with number theory, cyclic resultants were also studied by Pierce and
Lehmer Everest and WardL999 in the hope of using them to produce large primes. As
a simple @ample, the Mersenne numbekk, = 2™ — 1 arise as ogfic resultants of
the polynomial f (x) = x — 2. Indeed, the maj (x) = 2x mod 1 has preciselWn
points of periodn. Further motivation comes from knot theoi$tevens2000, Lagrangian
mechanicsGuillemin, 1996 lantchenko et al.2002, and, more recently, in the study of
amoebas of varietie®(rbhoq 20049 andquantum computing{edlaya 2004.

The principal result in the direction of our main characterization theorem was
disaovered byFried (1988 although certain implications of Fried’s result were known to
Stark Duistermaat and Guillemjri975. Our approach is a refinement and generalization
of the one found irFried (1988. Given a polynomialf = apx9 + a;x4~1 + ... + ag
of degreed, the reversal of f is the polynomial x4 f (1/x). Additionally, f is called
reciprocalif a = ag_j for0 <i < d (sometimes such a polynomialis callealindromig.
Alternatively, f is reciprocal if it is equal to its own reversal. Fried’s result may be stated
as follows. It will be a corollary offheorem 1.&elow ¢he real version oTheorem 1.1

Corollary 1.4 (Fried). Let p(x) = apX9 + - - + ag_1X + ag € R[x] be a real reciprocal
polynomial of even degree d witly & 0, and let f, be the m-thcyclic resultants of p.
Then,|rm| uniquely determine this polynomial of degree d as long asthere neverO.

The following is a direct corollary of our main theorem to the generic case.

Corollary 1.5. Let g be a generipolynomial inC[x] of degree d. Then, there are exactly
2d-1 degree d polynomials with the same set of cyclic resultants as g.

Proof. If gis generic, theng will not have a root of unity as a zero and nor vgli0) = 0.
Theorem 1.1therdore, implies that any other degréepolynomial f € C[x] giving rise

to the same set of cyclic resultants is determined by choosing an even cardinality subset
of the roots ofg. Such polynomials will be distinct sincg is generic. Since there aré'2
subsets of the roots @f and half of them have even cardinality, the theorem follows!.

Example 1.6. Letg(x) = (X — 2)(x — 3)(x — 5) = x3 — 10x% 4 31x — 30. Then, there
are 21 — 1 = 3 ather degree 3 polynomials with the same set of cyclic resultangs as
They are:

15x3 —38x% +17x — 2

10x3 - 37x% 4 22x — 3

6x3—35x?+26x — 5. O

If one is interested in the case of generic monic polynomials, ffeeorem 1.1also
implies the followng uniqueness result.

Corollary 1.7. The set of cyclic resultants determines g for generic monie @[x] of
degree d.

Proof. Again, sinceg is generic, it willnot have a root of unity as a zero and nor will
g(0) = 0. Theorem 1.iforces a constraint on the roots gffor there to be a different
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monic polynomialf with the same set of cyclic resultants g@sNamely, a subset of the
roots ofg has product 1, a non-generic situatiori]

As is to be expectedhere are analogs dfheorem 1.land Corollary 1.7 for the real
case involving absolute values.

Theorem 1.8. Let f and g be polynomials iR[x]. If f and g generate the same sequence
of nonzero cyclic resultant absotitalues, then there exist w € C[x] with u(0) £ 0and
nonnegative integergl> suchthat

f(x) = £ xTv)u(x—1xdedw
g(x) = X2u(x)u(x).

Corollary 1.9. The set of cyclic resultarbsolute values determines g for generic monic
g € R[x] of degree d.

The generic real case without the monic assumption is more subtle than that of
Corollay 1.5 The difficulty is that we are restricted to polynomialsikix]. However,
there is the following:

Corollary 1.10. Let g be a generipolynomial in the set of degree d element®pf] with
at most one real root. Then there are exa@l§/21*1 degree d polynomials iiR[x] with
the same set of cyclic resaiit absolute values as g.

Proof. If d is even, then the hypothesis implies that all of the rootgafre nonreal. In
particular, t follows from Theorem 1.8§and genericity) that any other degiepolynomial

f e R[x] giving rise to the same set of cyclic rdsunt absolute values is determined by
choosing a subset of thi' 2 pairs ofconjugate roots of and a sign. This gives us a count
of 24/2+1 distinct real polynomials. Whed is odd, g has exactly one real root, and a
similar counting aygument gives us/®/21+1 for the number of distinct real polynomials in
this case. This proves the corollary]

A surprising consequence of this result istttiee number of polynomials with equal sets
of cyclic resultant absolute values can be significantly smaller than the number predicted
by Corollay 1.5

Example 1.11. Letg(x) = (X —2)(X +i + 2)(Xx —i +2) = x3+2x% —3x — 10. Then,
there are /2141 — 1 = 7 other degree 3 real polynomials with the same set of cyclic
resutant absolute values &g They are:

—x3—2x%+3x+10, £(—2x3—7x?> —6X +5),
+5x3—6X2—7x—2), £(—10x3—3x%2+2x + 1).
It is important to realize that while
fX)=1-200+ 3 +2x)(Xx—i+2)
= (—4-2)x3— 10— X®+ 2+ 2i)x +2—i

has the same set of actual cyclic resultantsi(bgorem 1.}, it does not appear in the count
above since it is notifR[x]. O
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As an illustration of the usefulness dheorem 1.1 we provea uniqueness result
involving cyclic resultants of reciprocal polynomials. Fried’s result also follows in the same
way usingTheorem 1.8n place ofTheorem 1.1

Corollary 1.12. Let f and g be reciprocal polynomials with equal sets of nonzero cyclic
resulants. Then, f=g.

Proof. Let f and g be reciprocal polynomials having the same set of nonzero cyclic
resultants. Applying heorem 1.1it follows thatd = deg(f) = deg(@) and that

f(X) = U(X)u(xfl)xdegu)
g(x) = v(X)u(x)
(I1 =12 = 0sincef (0), g(0) # 0). But then,

-1
U deguy _ T
u(x) g(x)
~xdfxh
~ xdg(x1
— u) x—dequ)
u(x—1
In particular,u(x) = +u(x~Hx4eIW_If u(x) = u(x Hx9%9Y then f = g as desired.
In the other casdt follows that f = —g. But then Resf, x — 1) = Resf, x — 1) =
—Res(f, x — 1) is a contradiction td having all nonzero cyclic resultants. This completes
the poof. O

We now state the application to toral endomorphisms discussed in the introduction.

Corollary 1.13. Let T be an ergodic, toral endomorphism induced by a d-by-d integer
matrix A. If there is no subset of the eigenvalues of A with prodiuftthen he sequence
|Pem(T)| determines the spectrum of the linear map that defines T.

Proof. Suppose thafT’ is another toral endomorphism induced by an integiddy-d
matiix B suchthat

|Pem(T)| = [Pem(T)|.

Let f andg be the characteristic polynomialsAfandB, respectively. From the hypothesis
of the corollary and the statement Biieorem 1.8it follows that f andg must be equal.
In particular, the eigenvalues of the matric®andB coincide, completing the proof.[]

Remark 1.14. We note that a more complete charactation is possible using the results
of Theorem 1.8however, the sitement is more technical dnot very enlightening.

When a degred polynomialiis uniquely determined by its sequence of cyclic resultants,
it is natural to ask for an algorithm that perfosite reonstruction. In several applications,
moreover, expligt inversion using smathumbers of resultants is desired (see, for instance,
lantchenko et ali2002; Kedlaya(2004). In Section 5 we desribe a method that inverts
the mapr using the first 31 cydic resultants. Empirically, however, onti+ 1 resitants
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suffice, and a conjecture by Sturmfels and Zworski would imply that this is always the
case. As evidence for this conjecture, we prevégicit reconstructions for several small
exampes.

The rest of the paper is organized as followsSettion 2we male a digressiomto the
theory of sengroup algebras and binomial factorizations. The unique factorization result
discwssed thereTheorem 2.2 will form a crucial component in provingheorem 1.1
The subsequent section deals with algebraic properties of cyclic resultanSeetioh 5
concludes with proofs of our main cyclic resultant characterization theorems. Finally, in
the last section, wdiscuss algorithms for reconstruction.

2. Binomial factorizations

We now svitch to the £emingly unrelated topic of binomial factorizations in semigroup
algebras. The relationship with cyclic resultants will become clear lateAlbet a firitely
generated abelian group andéat . . ., a, be distinguished generators Af Let Q be the
semigoup generated bgy, ..., a,. Thesemigoup algebraC[Q] is the C-algelya with
vector space basis? : a € Q} and multiplication defined bg? - * = b Let L denote
the kernel of he homomorphisnZ" onto A. The lattice ideal associated with. is the
following ideal inS = C[xq, ..., Xnl:

IL=(xY—=x" : u,veN"withu—v e L)

It is well known thatC[Q] = S/IL (e.g. seeMiller and Sturmfels(2004). We are
primarily concerned here with certain kinds of factorization€fiQ].

Question 2.1. When is a product of binomials ifC[Q] equal to another product of
binomials?

The answer to this question turns out to be fundamental for the study of cyclic resultants.
Our main result in this direction is a certéiind of unique factorization of binomials in

CIQl.

Theorem 2.2. Leta € C and suppose that

§‘lj(sui— ) =o? (s )

are two factorization®f binomialsin the ring C[Q]. Furthermore, suppose that for each
i, the dfference y— v; (resp. x — y;) has infinite order as an element of A. Then: +1,

e = f, and up to permutation, for each i, there are elementdic € Q sud that
(S — ) = £ (85 — o).

Of course, when each side has a factor of zero, the theorem fails. There are other
obstructions, however, that make necessary the supplemental hypotheses concerning order.
For exampe, whenA = Z/27, we haveC[Q] = C[A] = Q[s]/(s® — 1), and itis easily
verified that

1—-5)(1—-5)=2(1-5).
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One might also wonder what happens when the binomials are not of thedbrs".
The following example exhibits some of the difficulty in formulating a general statement.

Example2.3. L = {(0,b) € Z2 : biseven, I = (s —1) C C[s,t], A= Z & Z/2Z,
Q=N@®Z/2Z. Then,

1—tH =1 -st)L+sh@L—isHy(L+ist) = (1 —st?)(L+std)
are three different binomial factorizations of the same semigroup algebra elemént.

We now are in a position to outline our strategy for characterizing those polynorhials
andg having the same set of nonzero cyclic resultants (this strategy is similar to the one
employed inFried (1988). Given a polynomialf and its sequence of,, we @nstruct

the generating functiok ¢ (z) = exp(— > ome1 rm%) This seris tums out to be rational

with coefficients depending explicitly on the roots 6f Since f andg are asumed to
have the ame set ofry, it follows that their corresponding rational functioks and
Ey are equal. LelG be the (multiplicative) group of units of. Then, the divsors of
these two rationalunctions are group ring elementsZiiG], and their equality forces a
certain binomial group ring factorization that is analyzed explicitly. The main results in the
introduction follow from this final analysis.

To prove our facorizaion result, we will pass to the full group algelit@A]. As above,
we represent elementse C[A] ast = Z;“:l ajs¥, in whichej € C andg; € A. The
following lemma is quite well known.

LemmaZ2.4. If 0 # a € C and g € A has infinite order, theld — as? € C[A] is not a
zero-divisor.

Proof. LetO#a € C,g € Aandr = Y ", o;s% # 0 be sub that
T = a9 = 0?97 = 37 = .. ..

Suppose thatr; # 0. Then, the element$t, %119, ht29  appear int with nonzero
coefficient, and since has infinite order, these elemsnare all difinct. It follows,
therefore, that cannot be a finite sum, and this contradiction finishes the praaf.

Since the proof of the main theorem involves multiple steps, we record several facts
that will be useful later. The first result is a verification of the factorization theorem for a
special case.

Lemma 2.5. Fix anabelian group C. LeC[C] be the group algebra witft-vector space
basis given by{s® : ¢ € C} and set R= C[C]][t, t—1. Suppose thaticd;,b € C, m, n;
are nonzero integers, g Z, and ze C are such that
e f

(1— ity = zsbtql_[ (1— it

1 i=1

holds in R. Then, e= f and after a permutation, for each i, eithefit™ = itn or
SitM =g g,
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Proof. Let sgn: Z \ {0} — {—1, 1} denote the standard sign map &un= n/|n| and set
y = zs°t9. Rewrite the left-hand side of the given equality as

ﬁ(l—scitmi)z 1‘[ _sCitmiﬁ(l_ggrtmocit\mu)

sgnm;)=-1 i=1
Similarly for the right-hand side, we have
f

[Ma-$o)= [ s [[(1-somen).

i=1 sgnnj)=—1 i=1

Next, set

n=y [] -s°ot™ ] -4t

sgn(m;)=—1 sgr(n;)=—1

so that our original equation may be written as

e f
I1 (1 - §gr(mi)cit|mi|) =[] (1_ Ssgr(nodit\nn)
i=1 i=1
Comparing the lowest degree term (with respedj ton both sides, it dllows thaty = 1.
It is enough, therefore, to prove the claim in the case when

e f

]‘[ (1— st™) =H(1—sdit”i) (2.1)

i=1 i=1
and them;, nj are positive. Without loss of generality, suppose the lowest degree
nonconstant term on both sides @ 1) is t™ with coefficient—s®* — ... — s® on the
left and—s% — ... — &% on the right. Herey (resp.v) corresponds to the number o
(resp.nj) with mj = my (resp.nj = my).

Since the set of distinct monomials® : ¢ € C} is aC-vector space basis for the ring
C[C], equdity of thet™ coefficients above implies that= v and that up to permutation,
i = & for j = 1,...,u (here is where we use that the characteristi€dé zero).
Lemma 2.4and induction complete the proof[]

Lemma2.6. Let P = (pjj) be a d-by-n integer matrix such that every row has at least
one nonzero integer. Then, there exists Z" suchthat the vector B does not contain a
zero entry.

Proof. Let P be ad-by-n integer matrix as in the hypothesis of the lemma, andifer Z,
let vi = (1, h,h2, ..., h"1HT. Assume, by way of entradiction, thatPv contains a
zero entry for allv € Z". Then, in particular, this is true for al, as above. By the
(infinite) pigeonhole principle, there exists an infinite sehaf Z such that (without loss
of generdlity) the first entry of Pvy, is zero. Bui then,

n
f(hy:=> puih~t=0

i=1
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for infinitely many values oh. It follows, therdore, that f (h) is the zero polynomial,
contradicting our hypothesis and completing the proail

Lemma 2.6will be useful in verifying the following fact.

Lemma 2.7. Let A be a finitelygenerate abelian group and @ . .., ag elements in A of
infinite order. Then, there exists a homomorphismA — Z suchthat¢ (aj) # Oforalli.

Proof. Write A = B & C, in whichC is a finitegroup andB is free of rankn. If n = 0,
then there are no elements of infinite ordérerefore, we may assume that the rank of
B is positive. Sinceay, . . ., aq have infinite order, their imagein thenatural prgection
7 : A — B are nonzero. It follows that we may assume tAas free anda; are nonzero
elements ofA.

Letes, ..., ey be a basis foA, andwrite

a = pri€1+ - + Pinén

for (unique) integergij € Z. To deermine a homomorphisgh: A — Z as in the lemma,
we must find integerg (e1), . . ., ¢ (e,) suchthat

0 # prip(€1) + - - + Pind(en)
(2.2)

0 # pgi¢(e1) + - - - + Pdnd (En).

This, of course, is precisely the consequencéahma 2.6applied to the matrix? =
(pij), finishing te proof. O

Recall that arivial unit in the gioup ringC[A] is an element of the forms? in which
0 # « € Canda € A. The main ontent ofTheorem 2.2s contained in the following
result. The technique of embeddifijA] into a Laurent polynomial ring is also used by
Fried inFried (1988.

Lemma 2.8. Let A be an abelian group. Two factorizations@jA],

lj(l—sgi)zn]j(l—é“i),

in whichn is a trivial unit and g, h; € A all have infinite order are equal if and only if
e = f and there is some nonnegative integer p such that, up to permutation,

(L) g =hifori=1,...,p
(2)gi=—hijfori=p+1,...,e
(3) n = (—1)% Pprat e,

Proof. The if-direction of the claim is a straightforward calculation. Therefore, suppose
that one has two factorizations as in the lemma. It is clear we may assum@ ibat
finitely generated. By.emma 2.7 there eists a honemorphism¢ : A — Z suchthat
¢(gi),o(hi) # 0 for alli. Thering C[A] may be embedded into the Laurent ring,
R = C[AI[t, t 1], by way of
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v (Xm:aisa‘) = Xm:otisa“t‘l’(a‘).
i=1 i=1

Write n = as°. Then, applying this homomorphism to the original factorization, we have

e f
— Sit¢@)) — Lo ® AU
i]l(l 0@ ) t I]:[1(1 t )

Lemma 2.5now applies to give us tha = f and there is an integgy such that, up to
permutation,

@) gi=hifori=1...,p
(2) g =—hjfori=p+1,...,e

We are therfore left with verifying stéement (3) ofhe lemma. Usingemma 2.4we may
cancel equal terms in our original factorization, leaving us with the following equation:

[Ta-=r[]a-so

i:p+1 i:p+1
e e
=n(=D*P [] s% J] @a-sh.
i=p+1 i=p+1
Finally, one more application diemma 2.4gives us thaty = (—1)® PgIp+1t+0 g
desired. This finishes the proof]

We may row prove Theorem 2.2

Proof of Theorem 2.2. Let

salj(s”i —g) =ocsb11(sxi — )

be two factorizéions in the ringC[Q]. View this expression inC[A] and factor each
element of the forngs” — s”) ass* (1 — s*~). By assunption, each such—u has infinite
order. Now, apphemma 2.8giving us thatr = +£1,e = f, and thaifter a permutation,
for eachi eithersVi~Y = &= org’i—4 = g&i—¥ |t easily follows from this that for each
i, there are lementsc;, di € Q suchthats® (s — s¥i) = +&% (s — g%). This mmpletes
the poof of the theorem. [

3. Cyclicresultantsand rational functions

We bagin with some préminaries concerning cyclic resultants. Létx) = apx? +
ayx9~—1 + ... 4+ a4 be a degree polynomial overC, and let he companion matrix fof
be given by
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00 0 —ad/ao
10--- 0 —ag-1/a0

A=|01 0 —ag-2/a0
0 : :

00.---1 —a/a
Also, let| denote theal-by-d identity matrix. Then, we may writeJQox et al, 1998 p.77)

rm = ag'det(A™ —1). (3.1)
This equation can also be expressed as
d
rm=2ag[](«" 1), (3.2)
i=1
in whichas, ..., ag are the roots off (x).
Letg (y1, ..., Yq) be the -th elementary spmmetic function in the variables;, . . ., yg4

(we seteg = 1). Then, we know thad; = (=1 age (a1, . . ., g) and that

Z( Dieg—i (¢ ..., af). (3.3)

We first record an auxiliary result.

Lemma3.1. Let F(2) = [Ty, «... i <d (1 — 0w, - - - @i, 2) with Fo(z) = 1— apz. Then,

o0 F/
Zag‘a((arln,...,ag‘)zmz —z. X,
m=1 Fk

in which K, denote%.

Proof. Fork = 0, the equation is edg verified. Whenk > 0, the calculation is still fairly
straghtforward:

o
ag'ex (ef, ... af) 2" Z Z aflol - aff - 2"

m=1 m=1 i;<---<ig

Z ZaoalT...O,iT.zm

i1<--<ik M=

Z aoall aikz
1—agej, - - - @i Z

i1 <<k

_Z.d%|: 1_[ (1—aocxi1...aik2)j|

i1 <<k

I1 (1— Ao, - - 'aikz)

i1 <-e<ig
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We are now ready to state and prove the rationality result mention8ddtion 2
Lemma3.2. Ri(2) = Y _m_,rmz™ is arational function in z.

Proof. We simply canpute that

00 oo d )
Z rmz™ = Z (-D'af'eg—i (o', ....ag) - 2"
m=1 m=1i=0
d o
=3 DY aleg i (@) 2"
i=0 m=1

- 1)i Fa_i 0
=-zZ- -1 - —.
i;)( e

Manipulating the expression foRs (z) occurring inLemma 3.2 we also have the
following fact.

Corollary 3.3. If d is even, let G = £2-&2%0 and if d is odd, let G = 4Tz L
Then,

[e¢) /

Z rmz™ = —zG—j.

m=1

In particular, t follows that

o0 Zm
exp(— > rm—> = Gq. (3.4)
m=1 m

Example3.4. Let f(x) = x> —5x 4+ 6 = (X — 2)(x — 3). Then,rpy = 2™ — 1)(3" — 1)
andFo(z2) =1—-2 F1(2) = (1 —-22)(1 — 32), F2(z) = 1 — 6z. Thus,
F, F R 6z 2z 3z z
Rf(Z)——Z(———+ > T 1-6z 1-2z 1-3z 1-z

P R R
and
>, " 1-62(1-2
eXp<_ )y r”‘ﬁ) T~ d-2»d-3
m=1
Following Fried (19898, we discuss how to deal with ablute values in the real case.
Let f € R[x] have degred such ttat ther,, as defined above are all nonzero. We examine
the sign ofr, using Eq. 8.2). First notice that a complex conjugate pair of roots afoes
not affect the sign of,,. A real roota of f contributes a sign factor efl if o > 1, —1
if -1 <o <1,and(—1)"if « < —1. Let E be the number of zeros dfin (-1, 1) and
let D be the number of zeros oo, —1). Also, sete = (—1)E ands = (—=1)P. Then, it
follows that
m _ .sm, (3.5)

T ml
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In particular,

d
Irml = €(3a0)™ [ (™ — 2). (3.6)
i=1
In other words, the sequence|of;| is obtained by multiplying each cyclic resultant of the
polynomial f .= §f = 5~a0xd + sa1x9~1 + ... + 5aq by €. Dending by G4 the rational
function determined byf as in @.3), it follows that

exp(— > |rm|%> = (Gq)°. (3.7)
m=1

4. Proofsof the main theorems

Let G be the multiplicative group generated by the nonzero regts.., ag of f.
Because of the multiplicative structure Gf we representector space basis elements of
the goup ringC[G] as[«], @ € G; multiplication is given byl«] - [8] = [¢B]. Thedivisor
(in C[G]) of the ratbnal functionGg4 defined byCorollary 3.3is

(—1)d+1(z > [(aoail...aik)*l]_ oy [(aoail...aik)l])

kodd iy <---<ik k evenij<---<ik

d
= [ag "1 ] ] (tes™1 = [2). (4.1)

i=1
Let us remark that for ease of presentation above, wherD, we have assigned

> [(aowi i) =135,

i1 <--<ik

which corresponds to the factor &%(z) = 1 — apz in Gq. With this computation in hand,
we now proveour maintheorems.

Proof of Theorem 1.1. Let f andg be polynomials as in the hypothesis, and suppose that
the multiplicity of 0 as a root of (resp.g) isl1 (respl2). Then, f (x) = x't(agx% +- - - +

ag,) andg(x) = x'2(bgx%2 + - .. + bg,) in whichag andbg are not 0. Letyy, ..., ag, and

B1, ..., Bd, be the nonzero roots df andg, resgectively, and leiG bethe multiplicative
group generated by these elements. Sificendg both generate the same sequence of
cydic resultants, it follows that the divisors (in the group riigG]) of their corresponding
rational functions (see3(4)) are equal. By above, such divisors factor, giving us that

d; d»
~0%1ag 1 [ (11— 1o741) = (- %2105 [ ] (111 - 1674)
=1 i=1

Since we lave asumed thaff andg generate a set of nonzero cyclic resultants, neither
of them can have a root of unity as a zero. Therefbemma 2.8applies to give us that
d := d; = dy and that, up to a permutation, there is a nonnegative infegechthat
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QD a=pgfori=1,...,p
() o =g tfori=p+1,...,d

(3) (—1)9P =1,a0by™ = Bps+1-- - Ba.

Setu(x) = (X — Bpy1) -+ (X — Bg), which has even degree, and letx) = bp(x —
B1) - -+ (X — Bp) (note that ifp = 0, thenv(x) = bp) so thatg(x) = x'2p(x)u(x). Now,

U XTI = (D)4 PBp g Ba(X — Bty - (X — B,
and thus

F () = x"agbg u(x)(x — Bty -+ (X — fg D)

= x'1p(x)u(x " 1yxdedw

It remains only to argue that = I, (mod 2. However from formula @.2) with m = 1,
it is easily seen that-1)"t = (—1)"2. The conerse is also straightforward fror8.¢), and
this completes the pof of the theorem. [

The proof ofTheorem 1.8s similar, employing Eq.3.7) in place of 8.4).

Proof of Theorem 1.8. Since multiplication of a real polynomial by a powenofloes not
change the absolute value of a cyclic resultant, we may assuge R[x] have nonzero
roots. The result now follows fron8(7) and the agygument used to prouwée if-direction of

Theorem 1.1 O

5. Reconstructing dynamical systems from their zeta functions

In this section, we describe how to explicitly reconstruct a polynomial from its cyclic
resultants. For an ergodic toral endomorphism as in the introduction, sequertes
correspond to cardinalities of sets of jpelic points. Inparticular, thezeta function

o0 m
Z(T,2) = exp(— 3 |PemT)|%),

m=1

of the dynamical system in question is simply another way of writing E).(

In many of the applicationduistermaat and Guillemjr1975 lantchenko et a] 2002
Kedlaya 2004 Stevens2000, the defining polynomial is reciprocal, and the techniques
discussed here restrict easily to this special case. Furthermore, since reciprocal polynomials
are uniquely determined without any genericity assumptionsgseallaries 1.4and1.12),
the computational organization is simpler.

Let f(x) = apx? + a1x4~1 + ... + aq be a degree polynomial with indeterminate
coefficientsa;. We dstinguish between two cases. In the first situation, the variaple
replaced by 1 so that is monic; while in the second, we sat = a4_; fori =1,...,d
so thatf is reciprocal.

Although the results mentioned in this paper only imply that the full sequence of
cydic resultants determind when it is (generic) monic roreciprocal, a finite number
of resultants is sufficient. Specifibg as detailed in forthcoming workHillar and Levineg
submitted for publicatio)y it is shown that 2t resultants are enough. Empirical evidence
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suggests that this is far from tight, and a conjecture of Sturmfels and Zworski asserts the
following.

Conjecture5.1. A gereric monic polynomial €x) € C[x] of degree d is determined by
its first d + 1 cyclic resultants. Moreover, if f is (non-monic) reciprocal of even degree d,
then the number of resultants needed for inversion is giveryBy+d2.

A straightforward algoritim for inverting N cydic resultants is as follows. Its
correctness wherN = 29+1 follows from Coxetal. (1999 and the esults of
Hillar and Levine(submitted for publicatioh

Algorithm 5.2. (Specific reconstruction of a polynomial from its cyclic resultants)
Input: Positive integed and a sequence of, ..., ry € C.
Output: The coefficients; (i =0, ..., d) corresponding tof .

(1) Compute a lexicographic Grobner bagifor the ideal
| = (1 —Regf,x—1),...,rn — Regf,xN —1)).
(2) Solve the resulting trizgular system of equations fay usng back-substitution. [J

If the data are given in terms of cyclic resultant absolute values (for the real case), then
more care must be taken in implementigorithm 5.2 Examning expression3.5), there
are two possible sequences of viahlethat come from a given s@ence of (generically
generated) cyclic restant absolute value$n|; they are{|rm|} and {—|rm|}. By the
uniqueness iorollaries 1.7and1.9, howeverpnly one of these sequences can come from
a nmonic polynomial. Therefore, the corresponding modification is toAlgorithm 5.2on
both these inputs. For one of these sequences, it will generate the Grobnéihasgisle
for the other, it will output the desired reconstruction.

Finding “universal” equations expressing the coefficiept® terms of the resultants
is also possible using a similar strategy.

Algorithm 5.3. (Formal reconstruction of a polynomial from its cyclic resultants)
Input: Positive integerd andN.
Output: Equations expressirgg (i = 0, ..., d) parameterized bys, ..., rn.

(1) Let R = Q[ag,...,aq4,r1,...,rn] and let< be any é&mination term order with
{ai} < A{rj}.
(2) Compute the reduced Grobner bagifor the ideal

| = (1 —Regf,x—1),...,rn — Regf,xN —1)).
(3) Output a triangular system of equationsdpin terms of the;. O

A few remaks concerningAlgorithm 5.3are in order. If theg; are indeterminates, a
monic polynomial with coefficients; will be generic. Therefore, the firdt = 20+1
cydic resultants off will determine it as a polynomial in over an algebiia closure of
Q(ay, ..., aq). It then Pllows from general theory (for inance, quantifier elimination for
ACF, algebraically closed fields) that eaghcan be expressed as a rational function in the
ri (i = 1,...,N). The same result holds for reciprocal polynomials with indeterminate



668 C.J. Hillar / Journal of Symbolic Computation 39 (2005) 653—669

coefficients. It is an interesting and difficult problem to determine these rational functions
for a givend. As motivaion for future work on this problem, we ugdgorithm 5.3to find
these expressions explicitly for several small cases.

When f = apx + a1 is linear, we need only two nonzero cyclic resultants to recover the
coefficientsag, a;. An inversionis given by the famulae:

2
I‘2 —I1 —I’l —TI2

2r1 a 2r1

In the quadratic case, a monfc = x? + a;x + a is also determined by two nonzero
resutants:

r2—rp r2—2r +rs
a; = , 2 = .
2r1 2r1

When f = x3 + a;x% + apx + a3 has degree three, four resultants suffice, and inversion is
given by

—12ror3 —12r9r2 + 3r3 —rorf — 8rorarz + 6rary
a =

2 9
24(2[‘1
—r2-2r1 412
apg=—= "<
2r1
—3r3 4 rorf + 8rorarg — 6réry
241’12I’2 '

Reconstruction fod = 4 is also possile using five resultants; however, the expressions
are too cumbersome to list here.

As a final ékample, we describe the reconstruction of a degree 6 monic, reciprocal
polynomial f = x® + a;x® + axx?* + asx® + ax? + ayx + 1 from its firstfour cyclic
resutants:

P = —540r1°rorg — 13824r1%ro + 11810 + 27r2%r12 + 9r1%r02 + 27r5°
—432r1%r5% — 648r112° — 72r1°r5 — 448r311%r2 + 192r3r1 152
+108r1%r4 + 1536r12ror3 4+ 2592r1%r4 + 1728r1%r > + 5184r12r52,

Q =r12(—16r3rp +9rary),

R = —648r1r2°% + 27155112 + 27r5% — 5761311122 4+ 2592r13r4 +r1°r5
—72r1%2 4+ 9r1%r2% + 1728r1%r5 — 432r1°%r52 + 320r3r1°%r>
— 324r1%4 — 13824r1%r5 + 5184r1r,2 + 1536r1%ror3 — 108r1%ra 14,

—A4r+r12+r;

1 1
a=—P ,dp= —————— =—R .
1= 192 F/Q & ar, & =5 R/Q
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