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Abstract

We characterize polynomials having the same set of nonzero cyclic resultants. Generically, for a
polynomial f of degreed, there are exactly 2d−1 distinct degreed polynomials with the same set
of cyclic resultants asf . However, in the generic monic case, degreed polynomials are uniquely
determined by their cyclic resultants. Moreover, two reciprocal (“palindromic”) polynomials giving
rise to the same set of nonzero cyclic resultants are equal. In the process, we also prove a unique
factorization result in semigroup algebras involving products of binomials. Finally, we discuss how
our results yield algorithms for explicit reconstruction of polynomials from their cyclic resultants.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Them-th cyclic resultant of a univariate polynomialf ∈ C[x] is

rm = Res( f, xm − 1).

We are primarily interested here in the fibers of the mapr : C[x] → CN given by
f �→ (rm)

∞
m=0. In particular, what are the conditions for two polynomials to give rise to
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the same set of cyclic resultants? For technical reasons, we will only consider polynomials
f that do not have a root of unity as a zero. With this restriction, a polynomial will map
to a set of all nonzero cyclic resultants. Our main result gives a complete answer to this
question.

Theorem 1.1. Let f and g be polynomials inC[x]. Then, f and g generate the same
sequence of nonzero cyclic resultants if and only if there exist u, v ∈ C[x] with deg(u)
even, u(0) �= 0, and nonnegative integers l1 ≡ l2 (mod 2) suchthat

f (x) = xl1v(x)u(x−1)xdeg(u)

g(x) = xl2v(x)u(x).

Remark 1.2. All our results involvingC hold over any algebraically closed field of
characteristic zero.

Although the theorem statement appears somewhat technical, we present a natural
interpretation of the result. Suppose thatg(x) = xl2v(x)u(x) is a factorization as above
of a polynomialg with nonzero cyclic resultants. Then, another polynomialf giving rise
to this same sequence of resultants is obtained fromv by multiplication with the reversal
u(x−1)xdeg(u) of u and a factorxl1 in which l1 ∈ N has the same parity asl2. In other
words, f (x) = xl1v(x)u(x−1)xdeg(u), and all such f must arise in this manner.

Example 1.3. Onecan check that the polynomials

f (x) = x3 − 10x2 + 31x − 30

g(x) = 15x5 − 38x4 + 17x3 − 2 x2

both generate the same cyclic resultants. This follows from the factorizations

f (x) = (x − 2)
(
15x2 − 8x + 1

)
g(x) = x2(x − 2)

(
x2 − 8x + 15

)
. �

One motivation for the study of cyclic resultants comes from the theory of dynamical
systems. Sequences of the formrm arise as the cardinalities of sets of periodic points for
toral endomorphisms. LetA be ad-by-d integer matrix and letX = Td = Rd/Zd denote
thed-dimensional additive torus. Then, the matrixA acts onX by multiplication mod 1;
that is, it defines a mapT : X → X given by

T(x) = Ax mod Zd.

Let Perm(T) = {x ∈ Td : Tm(x) = x} be the set of points fixed under the mapTm.
Under the ergodicity condition that no eigenvalue ofA is a root of unity, it follows (see
Everest and Ward, 1999) that

|rm( f )| = |Perm(T)| = | det(Am − I )|,
in which I is thed-by-d identity matrix, andf is the characteristic polynomial ofA. As a
consequence of our results, we characterize when the sequence|Perm(T)| determines the
spectrum of the linear mapA lifting T (seeCorollary 1.13).
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In connection with number theory, cyclic resultants were also studied by Pierce and
Lehmer (Everest and Ward, 1999) in the hope of using them to produce large primes. As
a simple example, the Mersenne numbersMm = 2m − 1 arise as cyclic resultants of
the polynomial f (x) = x − 2. Indeed, the mapT(x) = 2x mod 1 has preciselyMm

points of periodm. Further motivation comes from knot theory (Stevens, 2000), Lagrangian
mechanics (Guillemin, 1996; Iantchenko et al., 2002), and, more recently, in the study of
amoebas of varieties (Purbhoo, 2004) andquantum computing (Kedlaya, 2004).

The principal result in the direction of our main characterization theorem was
discovered byFried(1988) although certain implications of Fried’s result were known to
Stark (Duistermaat and Guillemin, 1975). Our approach is a refinement and generalization
of the one found inFried (1988). Given a polynomialf = a0xd + a1xd−1 + · · · + ad

of degreed, the reversal of f is the polynomial xd f (1/x). Additionally, f is called
reciprocalif ai = ad−i for 0 ≤ i ≤ d (sometimes such a polynomial is calledpalindromic).
Alternatively, f is reciprocal if it is equal to its own reversal. Fried’s result may be stated
as follows. It will be a corollary ofTheorem 1.8below (the real version ofTheorem 1.1).

Corollary 1.4 (Fried). Let p(x) = a0xd + · · · + ad−1x + ad ∈ R[x] be a real reciprocal
polynomial of even degree d with a0 > 0, and let rm be the m-thcyclic resultants of p.
Then,|rm| uniquely determine this polynomial of degree d as long as the rm are never0.

The following is a direct corollary of our main theorem to the generic case.

Corollary 1.5. Let g be a genericpolynomial inC[x] of degree d. Then, there are exactly
2d−1 degree d polynomials with the same set of cyclic resultants as g.

Proof. If g is generic, theng will not have a root of unity as a zero and nor willg(0) = 0.
Theorem 1.1, therefore, implies that any other degreed polynomial f ∈ C[x] giving rise
to the same set of cyclic resultants is determined by choosing an even cardinality subset
of the roots ofg. Such polynomials will be distinct sinceg is generic. Since there are 2d

subsets of the roots ofg and half of them have even cardinality, the theorem follows.�

Example 1.6. Let g(x) = (x − 2)(x − 3)(x − 5) = x3 − 10x2 + 31x − 30. Then, there
are 23−1 − 1 = 3 other degree 3 polynomials with the same set of cyclic resultants asg.
They are:

15x3 − 38x2 + 17x − 2

10x3 − 37x2 + 22x − 3

6 x3 − 35x2 + 26x − 5. �

If one is interested in the case of generic monic polynomials, thenTheorem 1.1also
implies the following uniqueness result.

Corollary 1.7. The set of cyclic resultants determines g for generic monic g∈ C[x] of
degree d.

Proof. Again, sinceg is generic, it will not have a root of unity as a zero and nor will
g(0) = 0. Theorem 1.1forces a constraint on the roots ofg for there to be a different
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monic polynomial f with the same set of cyclic resultants asg. Namely, a subset of the
roots ofg has product 1, a non-generic situation.�

As is to be expected, there are analogs ofTheorem 1.1andCorollary 1.7 for the real
case involving absolute values.

Theorem 1.8. Let f and g be polynomials inR[x]. If f and g generate the same sequence
of nonzero cyclic resultant absolute values, then there exist u, v ∈ C[x] with u(0) �= 0 and
nonnegative integers l1, l2 suchthat

f (x) = ± xl1v(x)u(x−1)xdeg(u)

g(x) = xl2v(x)u(x).

Corollary 1.9. The set of cyclic resultantabsolute values determines g for generic monic
g ∈ R[x] of degree d.

The generic real case without the monic assumption is more subtle than that of
Corollary 1.5. The difficulty is that we are restricted to polynomials inR[x]. However,
there is the following:

Corollary 1.10. Let g be a genericpolynomial in the set of degree d elements ofR[x] with
at most one real root. Then there are exactly2	d/2
+1 degree d polynomials inR[x] with
the same set of cyclic resultant absolute values as g.

Proof. If d is even, then the hypothesis implies that all of the roots ofg are nonreal. In
particular, it follows fromTheorem 1.8(and genericity) that any other degreed polynomial
f ∈ R[x] giving rise to the same set of cyclic resultant absolute values is determined by
choosing a subset of thed/2 pairs ofconjugate roots ofg and a sign. This gives us a count
of 2d/2+1 distinct real polynomials. Whend is odd, g has exactly one real root, and a
similar counting argument gives us 2	d/2
+1 for the number of distinct real polynomials in
this case. This proves the corollary.�

A surprising consequence of this result is that the number of polynomials with equal sets
of cyclic resultant absolute values can be significantly smaller than the number predicted
by Corollary 1.5.

Example 1.11. Let g(x) = (x − 2)(x + i + 2)(x − i + 2) = x3 + 2 x2 − 3 x − 10. Then,
there are 2	3/2
+1 − 1 = 7 other degree 3 real polynomials with the same set of cyclic
resultant absolute values asg. They are:

−x3 − 2 x2 + 3 x + 10, ±(−2 x3 − 7 x2 − 6 x + 5),

±(5 x3 − 6 x2 − 7 x − 2), ±(−10x3 − 3 x2 + 2 x + 1).

It is important to realize that while

f (x) = (1 − 2x)(1 + (i + 2)x)(x − i + 2)

= (−4 − 2 i ) x3 − (10− i ) x2 + (2 + 2 i ) x + 2 − i

has the same set of actual cyclic resultants (byTheorem 1.1), it does not appear in the count
above since it is not inR[x]. �
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As an illustration of the usefulness ofTheorem 1.1, we provea uniqueness result
involving cyclic resultants of reciprocal polynomials. Fried’s result also follows in the same
way usingTheorem 1.8in place ofTheorem 1.1.

Corollary 1.12. Let f and g be reciprocal polynomials with equal sets of nonzero cyclic
resultants. Then, f= g.

Proof. Let f and g be reciprocal polynomials having the same set of nonzero cyclic
resultants. ApplyingTheorem 1.1, it follows thatd = deg(f ) = deg(g) and that

f (x) = v(x)u(x−1)xdeg(u)

g(x) = v(x)u(x)

(l1 = l2 = 0 since f (0), g(0) �= 0). But then,

u(x−1)

u(x)
xdeg(u) = f (x)

g(x)

= xd f (x−1)

xdg(x−1)

= u(x)

u(x−1)
x−deg(u).

In particular,u(x) = ±u(x−1)xdeg(u). If u(x) = u(x−1)xdeg(u), then f = g as desired.
In the other case,it follows that f = −g. But then Res(f , x − 1) = Res(g, x − 1) =
−Res(f , x −1) is a contradiction tof having all nonzero cyclic resultants. This completes
the proof. �

We now state the application to toral endomorphisms discussed in the introduction.

Corollary 1.13. Let T be an ergodic, toral endomorphism induced by a d-by-d integer
matrix A. If there is no subset of the eigenvalues of A with product±1, then the sequence
|Perm(T)| determines the spectrum of the linear map that defines T .

Proof. Suppose thatT ′ is another toral endomorphism induced by an integrald-by-d
matrix B suchthat

|Perm(T)| = |Perm(T ′)|.
Let f andg be the characteristic polynomials ofA andB, respectively. From the hypothesis
of the corollary and the statement ofTheorem 1.8, it follows that f andg must be equal.
In particular, the eigenvalues of the matricesA andB coincide, completing the proof.�

Remark 1.14. We note that a more complete characterization is possible using the results
of Theorem 1.8; however, the statement is more technical and not very enlightening.

When a degreed polynomial is uniquely determined by its sequence of cyclic resultants,
it is natural to ask for an algorithm that performs the reconstruction. In several applications,
moreover, explicit inversion using smallnumbers of resultants is desired (see, for instance,
Iantchenko et al.(2002); Kedlaya(2004)). In Section 5, we describe a method that inverts
the mapr using the first 2d+1 cyclic resultants. Empirically, however, onlyd +1 resultants
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suffice, and a conjecture by Sturmfels and Zworski would imply that this is always the
case. As evidence for this conjecture, we provide explicit reconstructions for several small
examples.

The rest of the paper is organized as follows. InSection 2, we make a digressioninto the
theory of semigroup algebras and binomial factorizations. The unique factorization result
discussed there (Theorem 2.2) will form a crucial component in provingTheorem 1.1.
The subsequent section deals with algebraic properties of cyclic resultants, andSection 5
concludes with proofs of our main cyclic resultant characterization theorems. Finally, in
the last section, wediscuss algorithms for reconstruction.

2. Binomial factorizations

We now switch to the seemingly unrelated topic of binomial factorizations in semigroup
algebras. The relationship with cyclic resultants will become clear later. LetA be a finitely
generated abelian group and leta1, . . . ,an be distinguished generators ofA. Let Q be the
semigroup generated bya1, . . . ,an. Thesemigroup algebraC[Q] is theC-algebra with
vector space basis{sa : a ∈ Q} and multiplication defined bysa · sb = sa+b. Let L denote
the kernel of the homomorphismZn onto A. The lattice idealassociated withL is the
following ideal inS = C[x1, . . . , xn]:

I L = 〈xu − xv : u, v ∈ Nn with u − v ∈ L〉.
It is well known that C[Q] ∼= S/I L (e.g. seeMiller and Sturmfels(2004)). We are

primarily concerned here with certain kinds of factorizations inC[Q].
Question 2.1. When is a product of binomials inC[Q] equal to another product of
binomials?

The answer to this question turns out to be fundamental for the study of cyclic resultants.
Our main result in this direction is a certainkind of unique factorization of binomials in
C[Q].
Theorem 2.2. Letα ∈ C and suppose that

sa
e∏

i=1

(
sui − svi

) = αsb
f∏

i=1

(
sxi − syi

)
are two factorizationsof binomialsin the ringC[Q]. Furthermore, suppose that for each
i , the difference ui −vi (resp. xi − yi ) has infinite order as an element of A. Then,α = ±1,
e = f , and up to permutation, for each i , there are elements ci ,di ∈ Q such that
sci (sui − svi ) = ±sdi (sxi − syi ).

Of course, when each side has a factor of zero, the theorem fails. There are other
obstructions, however, that make necessary the supplemental hypotheses concerning order.
For example, whenA = Z/2Z, we haveC[Q] = C[A] ∼= Q[s]/〈s2 − 1〉, and it is easily
verified that

(1 − s)(1 − s) = 2(1 − s).
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One might also wonder what happens when the binomials are not of the formsu − sv .
The following example exhibits some of the difficulty in formulating a general statement.

Example 2.3. L = {(0,b) ∈ Z2 : b is even}, I L = 〈s2 − 1〉 ⊆ C[s, t], A = Z ⊕ Z/2Z,
Q = N ⊕ Z/2Z. Then,

(1 − t4) = (1 − st)(1 + st)(1 − ist)(1 + ist) = (1 − st2)(1 + st2)

are three different binomial factorizations of the same semigroup algebra element.�

We now are in a position to outline our strategy for characterizing those polynomialsf
andg having the same set of nonzero cyclic resultants (this strategy is similar to the one
employed inFried (1988)). Given a polynomialf and its sequence ofrm, we construct

the generating functionE f (z) = exp
(
−∑

m≥1 rm
zm

m

)
. This series turns out to be rational

with coefficients depending explicitly on the roots off . Since f and g are assumed to
have the same set ofrm, it follows that their corresponding rational functionsE f and
Eg are equal. LetG be the (multiplicative) group of units ofC. Then, the divisors of
these two rational functions are group ring elements inZ[G], and their equality forces a
certain binomial group ring factorization that is analyzed explicitly. The main results in the
introduction follow from this final analysis.

To prove our factorization result, we will pass to the full group algebraC[A]. As above,
we represent elementsτ ∈ C[A] asτ = ∑m

i=1 αi sgi , in whichαi ∈ C andgi ∈ A. The
following lemma is quite well known.

Lemma 2.4. If 0 �= α ∈ C and g ∈ A has infinite order, then1 − αsg ∈ C[A] is not a
zero-divisor.

Proof. Let 0 �= α ∈ C, g ∈ A andτ = ∑m
i=1 αi sgi �= 0 be such that

τ = αsgτ = α2s2gτ = α3s3gτ = · · ·.
Suppose thatα1 �= 0. Then, the elementssg1, sg1+g, sg1+2g, . . . appear inτ with nonzero
coefficient, and sinceg has infinite order, these elements are all distinct. It follows,
therefore, thatτ cannot be a finite sum, and this contradiction finishes the proof.�

Since the proof of the main theorem involves multiple steps, we record several facts
that will be useful later. The first result is a verification of the factorization theorem for a
special case.

Lemma 2.5. Fix an abelian group C. LetC[C] be the group algebra withC-vector space
basis given by{sc : c ∈ C} and set R= C[C][t, t−1]. Suppose that ci ,di ,b ∈ C, mi ,ni

are nonzero integers, q∈ Z, and z∈ C are such that

e∏
i=1

(1 − sci tmi ) = zsbtq
f∏

i=1

(1 − sdi tni )

holds in R. Then, e= f and after a permutation, for each i , eithersci tmi = sdi tni or
sci tmi = s−di t−ni .
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Proof. Let sgn: Z \ {0} → {−1,1} denote the standard sign map sgn(n) = n/|n| and set
γ = zsbtq. Rewrite the left-hand side of the given equality as

e∏
i=1

(1 − sci tmi ) =
∏

sgn(mi )=−1

−sci tmi

e∏
i=1

(
1 − ssgn(mi )ci t |mi |

)
.

Similarly for the right-hand side, we have

f∏
i=1

(
1 − sdi tni

)
=

∏
sgn(ni )=−1

−sdi tni

f∏
i=1

(
1 − ssgn(ni )di t |ni |

)
.

Next, set

η = γ
∏

sgn(mi )=−1

−s−ci t−mi
∏

sgn(ni )=−1

−sdi tni

so that our original equation may be written as

e∏
i=1

(
1 − ssgn(mi )ci t |mi |

)
= η

f∏
i=1

(
1 − ssgn(ni )di t |ni |

)
.

Comparing the lowest degree term (with respect tot) on both sides, it follows thatη = 1.
It is enough, therefore, to prove the claim in the case when

e∏
i=1

(
1 − sci tmi

) =
f∏

i=1

(
1 − sdi tni

)
(2.1)

and the mi ,ni are positive. Without loss of generality, suppose the lowest degree
nonconstant term on both sides of (2.1) is tm1 with coefficient−sc1 − · · · − scu on the
left and−sd1 − · · · − sdv on the right. Here,u (resp.v) corresponds to the number ofmi

(resp.ni ) with mi = m1 (resp.ni = m1).
Since the set of distinct monomials{sc : c ∈ C} is aC-vector space basis for the ring

C[C], equality of the tm1 coefficients above implies thatu = v and that up to permutation,
scj = sdj for j = 1, . . . ,u (here is where we use that the characteristic ofC is zero).
Lemma 2.4and induction complete the proof.�

Lemma 2.6. Let P = (pi j ) be a d-by-n integer matrix such that every row has at least
one nonzero integer. Then, there existsv ∈ Zn such that the vector Pv does not contain a
zero entry.

Proof. Let P be ad-by-n integer matrix as in the hypothesis of the lemma, and forh ∈ Z,
let vh = (1,h,h2, . . . ,hn−1)T. Assume, by way of contradiction, thatPv contains a
zero entry for allv ∈ Zn. Then, in particular, this is true for allvh as above. By the
(infinite) pigeonhole principle, there exists an infinite set ofh ∈ Z such that (without loss
of generality) the first entry ofPvh is zero. But then,

f (h) :=
n∑

i=1

p1i h
i−1 = 0
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for infinitely many values ofh. It follows, therefore, that f (h) is the zero polynomial,
contradicting our hypothesis and completing the proof.�

Lemma 2.6will be useful in verifying the following fact.

Lemma 2.7. Let A be a finitelygenerated abelian group and a1, . . . ,ad elements in A of
infiniteorder. Then, there exists a homomorphismφ : A → Z suchthatφ(ai ) �= 0 for all i .

Proof. Write A = B ⊕ C, in whichC is a finitegroup andB is free of rankn. If n = 0,
then there are no elements of infinite order;therefore, we may assume that the rank of
B is positive. Sincea1, . . . ,ad have infinite order, their images in thenatural projection
π : A → B are nonzero. It follows that we may assume thatA is free andai are nonzero
elements ofA.

Let e1, . . . ,en be a basis forA, andwrite

at = pt1e1 + · · · + ptnen

for (unique) integerspi j ∈ Z. To determine a homomorphismφ : A → Z as in the lemma,
we must find integersφ(e1), . . . , φ(en) suchthat

0 �= p11φ(e1)+ · · · + p1nφ(en)

· · ·
0 �= pd1φ(e1)+ · · · + pdnφ(en).

(2.2)

This, of course, is precisely the consequence ofLemma 2.6applied to the matrixP =
(pi j ), finishing the proof. �

Recall that atrivial unit in the group ringC[A] is an element of the formαsa in which
0 �= α ∈ C anda ∈ A. The main content ofTheorem 2.2is contained in the following
result. The technique of embeddingC[A] into a Laurent polynomial ring is also used by
Fried inFried(1988).

Lemma 2.8. Let A be an abelian group. Two factorizations inC[A],
e∏

i=1

(
1 − sgi

) = η

f∏
i=1

(
1 − shi

)
,

in whichη is a trivial unit and gi ,hi ∈ A all have infinite order are equal if and only if
e = f and there is some nonnegative integer p such that, up to permutation,

(1) gi = hi for i = 1, . . . , p
(2) gi = −hi for i = p + 1, . . . ,e
(3) η = (−1)e−psgp+1+···+ge.

Proof. The if-direction of the claim is a straightforward calculation. Therefore, suppose
that one has two factorizations as in the lemma. It is clear we may assume thatA is
finitely generated. ByLemma 2.7, there exists a homomorphismφ : A → Z suchthat
φ(gi ), φ(hi ) �= 0 for all i . The ring C[A] may be embedded into the Laurent ring,
R = C[A][t, t−1], by way of
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ψ

(
m∑

i=1

αi sai

)
=

m∑
i=1

αi sai tφ(ai ).

Write η = αsb. Then, applying this homomorphism to the original factorization, we have

e∏
i=1

(
1 − sgi tφ(gi )

)
= αsbtφ(b)

f∏
i=1

(
1 − shi tφ(hi )

)
.

Lemma 2.5now applies to give us thate = f and there is an integerp such that, up to
permutation,

(1) gi = hi for i = 1, . . . , p

(2) gi = −hi for i = p + 1, . . . ,e.

We are therefore left with verifying statement (3) of the lemma. UsingLemma 2.4, we may
cancel equal terms in our original factorization, leaving us with the following equation:

e∏
i=p+1

(1 − sgi ) = η

e∏
i=p+1

(1 − s−gi )

= η(−1)e−p
e∏

i=p+1

s−gi

e∏
i=p+1

(1 − sgi ).

Finally, one more application ofLemma 2.4gives us thatη = (−1)e−psgp+1+···+ge as
desired. This finishes the proof.�

We may now proveTheorem 2.2.

Proof of Theorem 2.2. Let

sa
e∏

i=1

(
sui − svi

) = αsb
f∏

i=1

(
sxi − syi

)
be two factorizations in the ringC[Q]. View this expression inC[A] and factor each
element of the form(su − sv) assu

(
1 − sv−u

)
. By assumption, each suchv−u has infinite

order. Now, applyLemma 2.8, giving us thatα = ±1, e = f , and thatafter a permutation,
for eachi eithersvi −ui = syi −xi or svi −ui = sxi −yi . It easily follows from this that for each
i , there are elementsci ,di ∈ Q suchthatsci (sui − svi ) = ±sdi (sxi − syi ). This completes
the proof of the theorem. �

3. Cyclic resultants and rational functions

We begin with some preliminaries concerning cyclic resultants. Letf (x) = a0xd +
a1xd−1 + · · · + ad be a degreed polynomial overC, and let the companion matrix forf
be given by
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A =


0 0 · · · 0 −ad/a0
1 0 · · · 0 −ad−1/a0
0 1 · · · 0 −ad−2/a0

0
...
. . .

...
...

0 0 · · · 1 −a1/a0

 .
Also, let I denote thed-by-d identity matrix. Then, we may write (Cox et al., 1998, p.77)

rm = am
0 det

(
Am − I

)
. (3.1)

This equation can also be expressed as

rm = am
0

d∏
i=1

(
αm

i − 1
)
, (3.2)

in whichα1, . . . , αd are the roots off (x).
Letei (y1, . . . , yd) be thei -th elementary symmetric function in the variablesy1, . . . , yd

(we sete0 = 1). Then, we know thatai = (−1)i a0ei (α1, . . . , αd) and that

rm = am
0

d∑
i=0

(−1)i ed−i
(
αm

1 , . . . , α
m
d

)
. (3.3)

We first record an auxiliary result.

Lemma 3.1. Let Fk(z) = ∏
1≤i1<···<ik≤d

(
1 − a0αi1 · · ·αik z

)
with F0(z) = 1− a0z. Then,

∞∑
m=1

am
0 ek

(
αm

1 , . . . , α
m
d

)
zm = −z · F ′

k

Fk
,

in which F′
k denotesdFk

dz .

Proof. Fork = 0, the equation is easily verified. Whenk > 0, the calculation is still fairly
straightforward:

∞∑
m=1

am
0 ek

(
αm

1 , . . . , α
m
d

)
zm =

∞∑
m=1

∑
i1<···<ik

am
0 α

m
i1

· · ·αm
ik · zm

=
∑

i1<···<ik

∞∑
m=1

am
0 α

m
i1

· · ·αm
ik · zm

=
∑

i1<···<ik

a0αi1 · · ·αik z

1 − a0αi1 · · ·αik z

=
−z · d

dz

[ ∏
i1<···<ik

(
1 − a0αi1 · · ·αik z

)]
∏

i1<···<ik

(
1 − a0αi1 · · ·αik z

)
= −z · F ′

k

Fk
. �
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We are now ready to state and prove the rationality result mentioned inSection 2.

Lemma 3.2. Rf (z) = ∑∞
m=1 rmzm is a rational function in z.

Proof. We simply compute that

∞∑
m=1

rmzm =
∞∑

m=1

d∑
i=0

(−1)i am
0 ed−i

(
αm

1 , . . . , α
m
d

) · zm

=
d∑

i=0

(−1)i
∞∑

m=1

am
0 ed−i

(
αm

1 , . . . , α
m
d

) · zm

= −z ·
d∑

i=0

(−1)i · F ′
d−i

Fd−i
. �

Manipulating the expression forRf (z) occurring in Lemma 3.2, we also have the
following fact.

Corollary 3.3. If d is even, let Gd = Fd Fd−2···F0
Fd−1Fd−3···F1

and if d is odd, let Gd = Fd Fd−2···F1
Fd−1Fd−3···F0

.
Then,

∞∑
m=1

rmzm = −z
G′

d

Gd
.

In particular, it follows that

exp

(
−

∞∑
m=1

rm
zm

m

)
= Gd. (3.4)

Example 3.4. Let f (x) = x2 − 5x + 6 = (x − 2)(x − 3). Then, rm = (2m − 1)(3m − 1)
andF0(z) = 1 − z, F1(z) = (1 − 2z)(1 − 3z), F2(z) = 1 − 6z. Thus,

Rf (z) = −z

(
F ′

2

F2
− F ′

1

F1
+ F ′

0

F0

)
= 6z

1 − 6z
− 2z

1 − 2z
− 3z

1 − 3z
+ z

1 − z

and

exp

(
−

∞∑
m=1

rm
zm

m

)
= (1 − 6z)(1 − z)

(1 − 2z)(1 − 3z)
. �

Following Fried (1988), we discuss how to deal with absolute values in the real case.
Let f ∈ R[x] have degreed such that therm as defined above are all nonzero. We examine
the sign ofrm using Eq. (3.2). First notice that a complex conjugate pair of roots off does
not affect the sign ofrm. A real rootα of f contributes a sign factor of+1 if α > 1, −1
if −1 < α < 1, and(−1)m if α < −1. Let E be the number of zeros off in (−1,1) and
let D be the number of zeros in(−∞,−1). Also, setε = (−1)E andδ = (−1)D. Then, it
follows that

rm

|rm| = ε · δm. (3.5)
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In particular,

|rm| = ε(δa0)
m

d∏
i=1

(
αm

i − 1
)
. (3.6)

In other words, the sequence of|rm| is obtained by multiplying each cyclic resultant of the
polynomial f̃ := δ f = δa0xd + δa1xd−1 + · · · + δad by ε. Denoting by G̃d the rational
function determined bỹf as in (3.3), it follows that

exp

(
−

∞∑
m=1

|rm|z
m

m

)
= (

G̃d
)ε
. (3.7)

4. Proofs of the main theorems

Let G be the multiplicative group generated by the nonzero rootsα1, . . . , αd of f .
Because of the multiplicative structure ofG, we represent vector space basis elements of
the group ringC[G] as[α], α ∈ G; multiplication is given by[α] · [β] = [αβ]. Thedivisor
(in C[G]) of the rational functionGd defined byCorollary 3.3is

(−1)d+1

(∑
k odd

∑
i1<···<ik

[(
a0αi1 · · ·αik

)−1
]

−
∑

k even

∑
i1<···<ik

[(
a0αi1 · · ·αik

)−1
])

= [a−1
0 ]

d∏
i=1

([α−1
i ] − [1]). (4.1)

Let us remark that for ease of presentation above, whenk = 0, we have assigned∑
i1<···<ik

[(
a0αi1 · · ·αik

)−1
]

= [a−1
0 ],

which corresponds to the factor ofF0(z) = 1 − a0z in Gd. With this computation in hand,
we now proveour maintheorems.

Proof of Theorem 1.1. Let f andg be polynomials as in the hypothesis, and suppose that
the multiplicity of 0 as a root off (resp.g) is l1 (resp.l2). Then, f (x) = xl1(a0xd1 +· · ·+
ad1) andg(x) = xl2(b0xd2 + · · · + bd2) in whicha0 andb0 are not 0. Letα1, . . . , αd1 and
β1, . . . , βd2 be the nonzero roots off andg, respectively, and letG bethe multiplicative
group generated by these elements. Sincef and g both generate the same sequence of
cyclic resultants, it follows that the divisors (in the group ringC[G]) of their corresponding
rational functions (see (3.4)) are equal. By above, such divisors factor, giving us that

(−1)d1[a−1
0 ]

d1∏
i=1

(
[1] − [α−1

i ]
)

= (−1)d2[b−1
0 ]

d2∏
i=1

(
[1] − [β−1

i ]
)
.

Since we have assumed thatf andg generate a set of nonzero cyclic resultants, neither
of them can have a root of unity as a zero. Therefore,Lemma 2.8applies to give us that
d := d1 = d2 and that, up to a permutation, there is a nonnegative integerp suchthat
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(1) αi = βi for i = 1, . . . , p
(2) αi = β−1

i for i = p + 1, . . . ,d
(3) (−1)d−p = 1, a0b−1

0 = βp+1 · · ·βd.

Set u(x) = (x − βp+1) · · · (x − βd), which has even degree, and letv(x) = b0(x −
β1) · · · (x − βp) (note that ifp = 0, thenv(x) = b0) so thatg(x) = xl2v(x)u(x). Now,

u(x−1)xdeg(u) = (−1)d−pβp+1 · · ·βd(x − β−1
p+1) · · · (x − β−1

d ),

and thus

f (x) = xl1a0b−1
0 v(x)(x − β−1

p+1) · · · (x − β−1
d )

= xl1v(x)u(x−1)xdeg(u).

It remains only to argue thatl1 ≡ l2 (mod 2). However, from formula (3.2) with m = 1,
it is easily seen that(−1)l1 = (−1)l2. The converse is also straightforward from (3.2), and
this completes the proof of the theorem. �

The proof ofTheorem 1.8is similar, employing Eq. (3.7) in place of (3.4).

Proof of Theorem 1.8. Since multiplication of a real polynomial by a power ofx does not
change the absolute value of a cyclic resultant, we may assumef, g ∈ R[x] have nonzero
roots. The result now follows from (3.7) and the argument used to provethe if-direction of
Theorem 1.1. �

5. Reconstructing dynamical systems from their zeta functions

In this section, we describe how to explicitly reconstruct a polynomial from its cyclic
resultants. For an ergodic toral endomorphism as in the introduction, sequences|rm|
correspond to cardinalities of sets of periodic points. Inparticular, thezeta function,

Z(T, z) = exp

(
−

∞∑
m=1

|Perm(T)|z
m

m

)
,

of the dynamical system in question is simply another way of writing Eq. (3.7).
In many of the applications (Duistermaat and Guillemin, 1975; Iantchenko et al., 2002;

Kedlaya, 2004; Stevens, 2000), the defining polynomial is reciprocal, and the techniques
discussed here restrict easily to this special case. Furthermore, since reciprocal polynomials
are uniquely determined without any genericity assumptions (seeCorollaries 1.4and1.12),
the computational organization is simpler.

Let f (x) = a0xd + a1xd−1 + · · · + ad be a degreed polynomial with indeterminate
coefficientsai . We distinguish between two cases. In the first situation, the variablea0 is
replaced by 1 so thatf is monic; while in the second, we setai = ad−i for i = 1, . . . ,d
so that f is reciprocal.

Although the results mentioned in this paper only imply that the full sequence of
cyclic resultants determinef when it is (generic) monic or reciprocal, a finite number
of resultants is sufficient. Specifically, as detailed in forthcoming work (Hillar and Levine,
submitted for publication), it is shown that 2d+1 resultants are enough. Empirical evidence



C.J. Hillar / Journal of Symbolic Computation 39 (2005) 653–669 667

suggests that this is far from tight, and a conjecture of Sturmfels and Zworski asserts the
following.

Conjecture 5.1. A generic monic polynomial f(x) ∈ C[x] of degree d is determined by
its first d+ 1 cyclic resultants. Moreover, if f is (non-monic) reciprocal of even degree d,
then the number of resultants needed for inversion is given by d/2 + 2.

A straightforward algorithm for inverting N cyclic resultants is as follows. Its
correctness whenN = 2d+1 follows from Cox et al. (1998) and the results of
Hillar and Levine(submitted for publication).

Algorithm 5.2. (Specific reconstruction of a polynomial from its cyclic resultants)
Input: Positive integerd and a sequence ofr1, . . . , r N ∈ C.
Output: The coefficientsai (i = 0, . . . ,d) corresponding tof .

(1) Compute a lexicographic Gröbner basisG for the ideal

I = 〈r1 − Res( f, x − 1), . . . , r N − Res( f, xN − 1)〉.
(2) Solve the resulting triangular system of equations forai using back-substitution. �

If the data are given in terms of cyclic resultant absolute values (for the real case), then
more care must be taken in implementingAlgorithm 5.2. Examining expression (3.5), there
are two possible sequences of viablerm that come from a given sequence of (generically
generated) cyclic resultant absolute values|rm|; they are{|rm|} and {−|rm|}. By the
uniqueness inCorollaries 1.7and1.9, however,only one of these sequences can come from
a monic polynomial. Therefore, the corresponding modification is to runAlgorithm 5.2on
both these inputs. For one of these sequences, it will generate the Gröbner basis〈1〉; while
for the other, it will output the desired reconstruction.

Finding “universal” equations expressing the coefficientsai in terms of the resultantsr i

is also possible using a similar strategy.

Algorithm 5.3. (Formal reconstruction of a polynomial from its cyclic resultants)
Input: Positive integersd andN.
Output: Equations expressingai (i = 0, . . . ,d) parameterized byr1, . . . , r N .

(1) Let R = Q[a0, . . . ,ad, r1, . . . , r N ] and let≺ be any elimination term order with
{ai } ≺ {r j }.

(2) Compute the reduced Gröbner basisG for the ideal

I = 〈r1 − Res( f, x − 1), . . . , r N − Res( f, xN − 1)〉.
(3) Output a triangular system of equations forai in terms of ther i . �

A few remarks concerningAlgorithm 5.3are in order. If theai are indeterminates, a
monic polynomial with coefficientsai will be generic. Therefore, the firstN = 2d+1

cyclic resultants off will determine it as a polynomial inx over an algebraic closure of
Q(a1, . . . ,ad). It then follows from general theory (for instance, quantifier elimination for
ACF, algebraically closed fields) that eachai can be expressed as a rational function in the
r i (i = 1, . . . , N). The same result holds for reciprocal polynomials with indeterminate
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coefficients. It is an interesting and difficult problem to determine these rational functions
for a givend. As motivation for future work on this problem, we useAlgorithm 5.3to find
these expressions explicitly for several small cases.

When f = a0x + a1 is linear, we need only two nonzero cyclic resultants to recover the
coefficientsa0,a1. An inversionis given by the formulae:

a0 = r 2
2 − r1

2r1
, a1 = −r 2

1 − r2

2r1
.

In the quadratic case, a monicf = x2 + a1x + a2 is also determined by two nonzero
resultants:

a1 = r 2
1 − r2

2r1
, a2 = r 2

1 − 2r1 + r2

2r1
.

When f = x3 + a1x2 + a2x + a3 has degree three, four resultants suffice, and inversion is
given by

a1 = −12r2r 3
1 − 12r1r 2

2 + 3r 3
2 − r2r 4

1 − 8r2r1r3 + 6r 2
1r4

24r2r 2
1

,

a2 = −r 2
1 − 2r1 + r2

2r1
,

a3 = −3r 3
2 + r2r 4

1 + 8r2r1r3 − 6r 2
1r4

24r 2
1r2

.

Reconstruction ford = 4 is also possible using five resultants; however, the expressions
are too cumbersome to list here.

As a final example, we describe the reconstruction of a degree 6 monic, reciprocal
polynomial f = x6 + a1x5 + a2x4 + a3x3 + a2x2 + a1x + 1 from its first four cyclic
resultants:

P = −540r1
2r2 r4 − 13824r1

3r2 + r1
6r2 + 27r2

3r1
2 + 9r1

4r2
2 + 27r2

4

− 432r1
3r2

2 − 648r1 r2
3 − 72r1

5r2 − 448r3 r1
3r2 + 192r3 r1 r2

2

+ 108r1
4r4 + 1536r1

2r2 r3 + 2592r1
3r4 + 1728r1

4r2 + 5184r1
2r2

2,

Q = r1
2 (−16r3 r2 + 9r4 r1) ,

R = −648r1 r2
3 + 27r2

3r1
2 + 27r2

4 − 576r3 r1 r2
2 + 2592r1

3r4 + r1
6r2

− 72r1
5r2 + 9r1

4r2
2 + 1728r1

4r2 − 432r1
3r2

2 + 320r3 r1
3r2

− 324r1
4r4 − 13824r1

3r2 + 5184r1
2r2

2 + 1536r1
2r2 r3 − 108r1

2r2 r4,

a1 = 1

192
P/Q, a2 = −4r1 + r1

2 + r2

4r1
, a3 = −1

96
R/Q.
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