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Abstract

Hae!iger has shown that a smooth embedding of the (4k − 1)-sphere in the 6k-sphere can be knotted in
the smooth sense. In this paper, we give a formula with which we can detect the isotopy class of such a
Hae!iger knot. The formula is expressed in terms of the geometric characteristics of an extension, analogous
to a Seifert surface, of the given embedding. In particular, the Hopf invariant associated to the extension plays
a crucial role. This leads us to a new characterisation of Hae!iger knots.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Let Cq
n be the group of C∞-isotopy classes of smooth embeddings of the oriented n-sphere Sn

in the oriented (n+ q)-sphere Sn+q (q¿ 1). Hae!iger has shown in [8,9] that C2k+1
4k−1 is isomorphic

to Z for k¿ 1. This is quite in contrast with Zeeman’s result [26] which claims that any n-sphere
is unknotted in the combinatorial sense in the (n + q)-sphere if q¿ 2 (see Stallings [19] for the
topological cases).
Hae!iger has actually given an isomorphism � :C2k+1

4k−1 → Z and an explicit embedding representing
a generator of C2k+1

4k−1 (see [8], and [9, 5.16 and Corollary 8.14]). This isomorphism assigns to an
embedding S4k−1 ,→ S6k half the square of a certain 2k-dimensional cohomology class of a normally
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framed 4k-submanifold (V 4k ; @V 4k) ⊂ (D6k+1; S6k) with signature zero, which extends the given
embedding.
In this paper, we give a new formula for the Hae!iger invariant � :C2k+1

4k−1 → Z. We extend an
embedding S4k−1 ,→ S6k to an immersion (or an embedding) of an oriented 4k-manifold in S6k ,
similar to a Seifert surface in the codimension two case. Then our formula is expressed in terms
of the geometric characteristics of such an extension. From this point of view, our formula can be
considered as an analogue of the geometric formulae for the Smale invariant given in [13,4] (see
also [17,22]).
As in [4], we make use of a formula (see Theorem 2.3) for generic maps, due to Szűcs [21]

and to Ekholm–Szűcs [5,4]. In our study, however, the linking of the map (see DeInition 2.2) is
interpreted in terms of the Hopf invariant associated to the extension of the given embedding, and
this interpretation will be a crucial step in our argument.
The following is our Irst formula. Note that for an embedding F : S4k−1 ,→ S6k , by taking an

orientation-preserving di6eomorphism S6k\F(S4k−1) ∼= IntD4k × S2k , we obtain a homotopy equiva-
lence S6k\F(S4k−1) � S2k and hence H2k(S6k\F(S4k−1)) = H2k(S2k) = Z.

Theorem 4.6. For any embedding F : S4k−1 ,→ S6k , there exists a self-transversal immersion F̃ :
V 4k # S6k of a compact oriented 4k-manifold V 4k with @V 4k = S4k−1 such that F̃ |@V 4k = F and
F̃(Int V 4k) ∩ F(S4k−1) = ∅. Furthermore, the following is an isomorphism:

� : C2k+1
4k−1 −→ Z

F �−→ − 1
24 (− Lpk[V̂ 4k] + 3t(F̃) + 3[�F̃ ] + 3HF̃);

where Lpk[V̂ 4k] is the normal Pontrjagin number of the closed manifold V̂ 4k obtained by capping o8
V 4k with a disc, t(F̃) is the algebraic number of triple points of F̃(V 4k), [�F̃ ]∈H2k(S6k\F(S4k−1))=
Z is the homology class represented by the set �F̃ ⊂ F̃(V 4k) of double points of F̃ , and HF̃ ∈Z
is the Hopf invariant of the map from S4k−1 into S6k\F(S4k−1) � S2k , determined by the outward
normal 9eld of F(S4k−1) ⊂ F̃(V 4k).

Naturally, the Hopf invariants in the theorem above can be considered for oriented 4k-manifolds
with spherical boundaries embedded in S6k . In such a context, we can relate the Hopf invariants
to the normal Euler classes of the embedded 4k-manifolds (Theorem 5.1), and are thus led to the
following characterisation of Hae!iger knots.

Corollary 6.2. Let Ẽa;b : S2k × S2k\IntD4k ,→ S6k be an embedding of the punctured S2k × S2k with
normal Euler class (2a; 2b)∈H 2k(S2k × S2k\IntD4k) = H 2k(S2k × S2k) ≈ Z⊕ Z. Then,

Ea;b := Ẽa;b|@(S2k×S2k\Int D4k) : S4k−1 ,→ S6k

represents −ab∈C2k+1
4k−1 = Z. In particular, E±1;∓1 : S4k−1 ,→ S6k represents the generator of C2k+1

4k−1.

This theorem implies that the immersion F̃ :V 4k # S6k in Theorem 4.6 can actually be chosen to
be an embedding. Thus we obtain the following simpler formulae.
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Corollary 6.3. (a) For an arbitrary embedding F : S4k−1 ,→ S6k , there exists an embedding F̃ :
V 4k ,→ S6k of a compact oriented 4k-manifold V 4k with @V 4k = S4k−1 such that F̃ |@V 4k = F .
Furthermore,

�(F) =− 1
24 (− Lpk[V̂ 4k] + 3HF̃)

=− 1
24 (− Lpk[V̂ 4k] + 3eF̃ ‘ eF̃)

gives an isomorphism � :C2k+1
4k−1 → Z, where eF̃ ∈H 2k(V 4k) = H 2k(V̂ 4k) is the normal Euler class

for F̃ and eF̃ ‘ eF̃ ∈H 4k(V̂ 4k) = Z is the cup product.
(b) Actually, we can extend any embedding F : S4k−1 ,→ S6k to an embedding F̃ : S2k × S2k\

IntD4k ,→ S6k and then

� : C2k+1
4k−1 −→ Z

F �−→ − 1
8 HF̃

is an isomorphism.

In the particular case C3
3 (k =1), where − Lp1[V̂ 4]=p1[V̂ 4]= 3�(V 4), we can rewrite our formula

in terms of the signature of V 4 (Corollary 6.5).
In the last section, we notice the similarity between our formulae and the formula by Hughes

and Melvin [13] in the codimension two case, and determine the image of the map C2
4k−1 → C2k+1

4k−1
induced by the inclusion (Theorem 7.1).
Throughout this paper, we work in the smooth category; all manifolds, embeddings and immersions

considered are supposed to be di6erentiable of class C∞, unless otherwise explicitly stated. We use
the symbol ‘≈’ for a group isomorphism and ‘∼=’ for a di6eomorphism between manifolds; the
symbol ‘�’ means a homotopy equivalence between two topological spaces. The homology and
cohomology theories are supposed to be with integer coeNcients unless otherwise explicitly noted.
We will suppose the spheres are oriented. If M is an oriented manifold with boundary, then for

the induced orientation of @M we adopt the outward vector 9rst convention: we say an ordered
basis of Tp(@M) (p∈ @M) is positively oriented if an outward vector followed by the basis is a
positively oriented basis of TpM .
The author would like to thank Osamu Saeki for many helpful comments including several im-

portant ideas. He also thanks Keiichi Suzuoka for many useful conversations and Takashi Nishimura
for his constant encouragement.

2. Preliminaries

2.1. Basic conventions

We brie!y review the cup and cap products, the intersection pairing, etc. Most of the materials
here are based on Greenberg’s book [6] and are rather elementary, but we need to review them in
order to establish the sign conventions, which will be particularly important later.
For a topological space X , let C∗(X ) be the singular cochain complex and H ∗(X ) the singular

cohomology ring. If f :Y → X is a continuous map between topological spaces, let f] :C∗(X ) →
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C∗(Y ) and f∗ :H ∗(X ) → H ∗(Y )) be the induced homomorphisms. We similarly deIne C∗(X ),
H∗(X ), f] and f∗.
Let �p :�p → �p+q be the inclusion of the singular p-simplex �p on the “front” p-face of the

singular (p+ q)-simplex �p+q. Similarly let �q :�q → �p+q be the inclusion on the “back” q-face.
For c∈Cp(X ) and d∈Cq(X ) the cup product c ‘ d is characterised by

〈�; c ‘ d〉= 〈��p; c〉〈��q; d〉
for a singular (p+ q)-simplex �, where we denote by 〈z; c〉 the value of the cochain c on the chain
z. The cup product gives rise to a product operation on the cohomology.
For c∈Cp(X ) and z ∈Cp+q(X ), the cap product z ˙ c is deIned to be the unique q-chain

satisfying

〈z ˙ c; d〉= 〈z; c ‘ d〉
for all q-cochains d∈Cq(X ). Then, with respect to the boundary and coboundary operators, we have

@(z ˙ c) = (−1)p((@z) ˙ c − z ˙ #c):

We also have the following properties of cup and cap products:

f](w ˙ f]c) = f]w ˙ c;

w ˙ (c ‘ d) = (w ˙ c) ˙ d

for chains and cochains in appropriate dimensions. The cap product induces a bilinear pairing

˙ :Hp+q(X )× Hp(X ) → Hq(X ):

For an oriented manifold Mn, we denote the fundamental homology class [Mn; @Mn] by &Mn . In
what follows, although we write down only the case @Mn=∅, the similar argument also holds when
Mn has non-empty boundary. We consider the Poincar>e–Lefschetz duality to be the isomorphism

&Mn ˙ :Hp(Mn) → Hn−p(Mn);

whose inverse we denote by D. Namely &Mn ˙ D(a) = a for a∈H ∗(Mn). The following properties
will be used later:

@([Mn] ˙ cp) = (−1)p+1[Mn] ˙ #cp for cp ∈Cp(Mn): (1)

For a; b∈H∗(Mn), the intersection pairing a · b is deIned by
a · b=D−1(D(a) ‘ D(b))

= a ˙ D(b):

If a and b are represented by submanifolds V and W of Mn, respectively, then a · b is represented
by the intersection V ∩ W .
For a = [a′]∈Hp(Mn) (the homology class represented by the cycle a′) and b = [b′]∈Hq(Mn)

where p+ q= n − 1, the linking number lk(a; b) is deIned by

lk(a; b) = [A ∩ b′]∈H0(Mn) = Z;
where A is a (p+ 1)-chain such that @A= a′, intersecting b′ transversally. Then we can check the
following property which will often be used:

lk(a; b) = (−1)pq+1lk(b; a):
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2.2. The Hopf invariant and the Steenrod functional cup product

Here we review the Steenrod functional cup product [20], according to the deInition and the
notation given in [23, p. 368] (see also [25, Chapter XI]).
Let f :Y → X be a continuous map between topological spaces and u = [u′]∈Hp(X ) (the

cohomology class represented by the cocycle u′) and v = [v′]∈Hq(X ) be cohomology classes
satisfying

u ‘ v= 0 and f∗u= 0:

Then there exists a cochain a∈Cp+q−1(X ) such that #a= u′ ‘ v′ and a cochain b∈Cp−1(Y ) such
that #b= f]u′. Furthermore the cochain

z′ = f]a − b ‘ f]v′ (2)

is actually a cocycle, whose cohomology class we denote by z = [z′]∈Hp+q−1(Y ). Thus the left
functional cup product Lf(u; v)∈Hp+q−1(Y ) is deIned to be the coset of z in

Hp+q−1(Y )=(f∗Hp+q−1(X ) + Hp−1(Y ) ‘ f∗v):

Similarly for u∈Hp(X ) and v∈Hq(X ) with u ‘ v=0 and f∗v=0, the right functional cup product
Rf(u; v)∈Hp+q−1(Y ) is deIned in

Hp+q−1(Y )=(f∗Hp+q−1(X ) + f∗u ‘ Hp−1(Y )):

The functional cup products Lf(u; v) and Rf(u; v) are invariant under homotopy of f :Y → X .
In a sense, the functional cup product is a generalisation of the Hopf invariant. Let f : S4k−1 →

S2k be a continuous map. Since we have supposed that S4k−1 and S2k are oriented, we can choose
Ixed generators .∈H 4k−1(S4k−1) and !∈H 2k(S2k). Then, since f∗! = 0 and ! ‘ ! = 0, we
can consider the functional cup product Rf(!;!)=Lf(!;!)∈H 4k−1(S4k−1) (with no indeterminacy
since H 2k−1(S4k−1)=H 4k−1(S2k)=0). Actually in this case, the functional cup product is nothing but
the Hopf invariant. More precisely, there exists an integer hf such that Rf(!;!)=Lf(!;!)=−hf ·.
for the Ixed generator .. The integer hf is equal to the Hopf invariant of f (see [20, Section 17]
and also [12, p. 379, Theorem 9.5.6]). Note that the minus sign here is for coincidence with the
usual deInition of the Hopf invariant as the linking between the inverse images of two regular points
in S2k . Note also that the choice of the generator !∈H 2k(S2k) does not a6ect the Hopf invariant,
while that of .∈H 4k−1(S4k−1) changes the sign.

2.3. Triple points and Szűcs’ linking

For a (self-transversal) immersion of a manifold in a euclidian space, the relation between its
normal characteristic classes and the homology classes of its multiple points has been extensively
studied. For example, the following theorem is well known ([24], see also [11, p. xiii, Corollary 6]).

Theorem 2.1. Let G :W 4k # R6k be a self-transversal immersion of a closed oriented 4k-manifold
in 6k-space. Then three times the algebraic number t(G) of triple points of G is equal to Lpk[W 4k],
where Lpk[W 4k] denotes the kth normal Pontrjagin class of W 4k evaluated on the fundamental class.
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In [21], Szűcs has introduced the notion of linking of singular maps to generalise this formula
to the case of generic maps W 4k → R6k . Roughly speaking, Szűcs’ linking measures the linking
between the image of the map and the singularities (pushed out of the image), and turns out to be
very useful (see [4,5,17] for example).

De�nition 2.2 (Szűcs’ linking). Let G :W 4k → R6k be a generic map of an oriented 4k-manifold.
Then the closure of the set �G of double points of G is an immersed 2k-manifold of R6k , whose
boundary the image of the set SG of singular points of G lies in. Since the codimension of G is
even, there is an induced orientation on �G and hence on SG. Let S ′

G be a copy of SG shifted slightly
along the outward vector Ield of SG in �G. Note that S ′

G ∩ G(W 4k) = ∅. DeIne the linking number
l(G) of G to be the linking number of G(W 4k) and S ′

G in R6k .

Then we have (see Ekholm and Szűcs [4, Lemma 5.3] for a precise proof):

Theorem 2.3 (Lemma 5.3 in Ekholm and Szűcs [4]). Let G :W 4k → R6k be a generic map of a
closed oriented 4k-manifold. Then

− Lpk[W 4k] + 3t(G)− 3l(G) = 0;

where t(G) is the algebraic number of triple points of G.

3. Embeddings of the (4k − 1)-sphere in the 6k-sphere

We study several speciIc situations of embeddings of S4k−1 into S6k and give some deInitions
which will be used later. Also, we look into the explicit generator of C2k+1

4k−1 given by Hae!iger
and compute the Hopf invariant associated to its extension (see DeInition 3.2) using the Steenrod
functional cup product.

3.1. Seifert immersions

The following is an analogue of the notion of Seifert surface in the codimension two case.

De�nition 3.1 (Seifert immersion): Let F : S4k−1 ,→ S6k be an embedding. Consider an immersion
F̃ :V 4k # S6k of a compact oriented 4k-manifold V 4k with @V 4k = S4k−1 such that

(1) F̃ |@V 4k = F : S4k−1 ,→ S6k and
(2) F̃(Int V 4k) ∩ F(S4k−1) = ∅.
Assume furthermore that F̃ is self-transversal and is an embedding on a collar neighbourhood of
S4k−1 = @V 4k ⊂ V 4k . We call such an immersion F̃ :V 4k # S6k a Seifert immersion for F .

The existence of such immersions will be ensured in Section 3.3, where we show that an explicit
generator of C2k+1

4k−1 ≈ Z has a Seifert immersion.
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Every embedding F : S4k−1 ,→ S6k has trivial normal bundle (see [14]). Let N be a tubular
neighbourhood of F(S4k−1) ⊂ S6k . Then N is di6eomorphic to S4k−1 × D2k+1 and the exterior
X := S6k\IntN is di6eomorphic to D4k × S2k (see [18, Theorem 5.2]). Let  :X → D4k × S2k be an
orientation-preserving di6eomorphism.

De�nition 3.2 (the Hopf invariant for a Seifert immersion). Let F̃ :V 4k # S6k be a Seifert immer-
sion for an embedding F : S4k−1 ,→ S6k . Then, the outward normal Ield of F(S4k−1) ⊂ F̃(V 4k) de-
termines the map 5F̃ : S

4k−1 → X , whose homotopy class [5F̃ ] we consider to be lying in 64k−1(X )=
64k−1(S2k), via the homotopy equivalence p ◦  :X

∼=→D4k × S2k 
→S2k , where p is the projection. We
deIne the Hopf invariant HF̃ for F̃ to be the Hopf invariant of [5F̃ ].

Remark 3.3. From now on, we will always consider that the exterior space X is homotopy equivalent
to S2k as in DeInition 3.2. Furthermore, we consider H2k(X ) isomorphic to Z by assigning to
[z2k]∈H2k(X ) the linking number lk(z2k ; F(S4k−1)) in S6k .

We further consider the following integer, associated to a Seifert immersion.

De�nition 3.4. Let F̃ :V 4k # S6k be a Seifert immersion for an embedding F : S4k−1 ,→ S6k . Then,
the set �F̃ ⊂ F̃(V 4k) of double (including triple) points of F̃ is a 2k-dimensional immersed manifold
lying in X . We denote its homology class by [�F̃ ]∈H2k(X ) = Z.

3.2. HaeCiger’s construction of the generator E

In [8] and [9, Section 5.16], Hae!iger has given an explicit generator of C2k+1
4k−1. First we recall

Hae!iger’s construction of the generator E : S4k−1 ,→ S6k of C2k+1
4k−1 described in [8, Section 4]. Here

we consider S6k as R6k ∪ {∞}.
Consider the following three embedded (4k − 1)-spheres in

R6k = {(x; y; z) = (x1; : : : ; x2k ; y1; : : : ; y2k ; z1; : : : ; z2k)} :

S1: x = 0;
y2

92
+

z2

:2
= 1 ⊂ R4k1 := {x = 0};

S2: y = 0;
z2

92
+

x2

:2
= 1 ⊂ R4k2 := {y = 0};

S3: z = 0;
x2

92
+

y2

:2
= 1 ⊂ R4k3 := {z = 0};

where 9 and : are real numbers with 9¿:¿ 0 and x2 means x21+· · ·+x22k . We obtain an embedded
(4k − 1)-sphere S after joining S1 to S2 and S2 to S3 orientation-preservingly by thin tubes T1 and
T2 (we take these tubes so that they do not cross the inside of Si ⊂ R4ki ) (see Fig. 1). Then (the
isotopy class of) the embedding E : S4k−1 ,→ S6k whose image is S generates the group C2k+1

4k−1 ≈ Z
(see [8, Section 4] and [9, Section 5.16]).
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Fig. 1.

3.3. The Seifert immersion Ẽ for the generator

For the embedding E : S4k−1 ,→ S6k with E(S4k−1) = S, representing the generator of C2k+1
4k−1 = Z,

we can construct a Seifert immersion Ẽ :V 4k
E # S6k as follows.

First by using the three 4k-discs:

D1: x = 0;
y2

92
+

z2

:2
6 1;

D2: y = 0;
z2

92
+

x2

:2
6 1;

D3: z = 0;
x2

92
+

y2

:2
6 1

and two 4k-discs Illing the tubes T1 and T2, we can easily construct an immersed 4k-disc DE

bounded by S=E(S4k−1). But IntDE is not immersed in the exterior R6k\S, i.e. it has double points
which are intersections of the boundary and the interior of the 4k-disc. Therefore DE is not the
image of a Seifert immersion for E as it is. We perform a “surgery” on DE so that it becomes the
image of some Seifert immersion for E in the following way.
The set of double points of DE is

{x = y = 0; z26 :2} ∪ {y = z = 0; x26 :2} ∪ {z = x = 0; y26 :2};
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Fig. 2.

in which the “unfavourable” double points—the intersection points of the boundary and the interior
of the 4k-disc—consist of the three (2k − 1)-spheres:

C1 := @D1 ∩ D2 = {x = y = 0; z2 = :2};
C2 := @D2 ∩ D3 = {y = z = 0; x2 = :2};
C3 := @D3 ∩ D1 = {z = x = 0; y2 = :2}:

Consider the three 2k-discs bounded by Ci (i = 1; 2; 3):

d1: {x = 0; y1 = · · ·= y2k−1 = 0; y2k ¿ 0} ∩ S1;

d2: {y = 0; z1 = · · ·= z2k−1 = 0; z2k ¿ 0} ∩ S2;

d3: {z = 0; x1 = · · ·= x2k−1 = 0; x2k ¿ 0} ∩ S3:

Note that each di is bounded in @Di = Si by Ci.
Let Ki be the total space of the normal disc (with small radius =) bundle of Ci ⊂ Dj, where

(i; j)=(1; 2); (2; 3); (3; 1); each Ki is di6eomorphic to S2k−1×D2k+1. Let N be the normal disc (with
radius =) bundle of S ⊂ R6k ; the total space of N is di6eomorphic to S4k−1 × D2k+1.
Then, near the “unfavourable” double points of DE , we operate a surgery (see Fig. 2). Namely

we put Li := @(the total space of N |di) and consider

V :=

(
DE\

⋃
i=1;2;3

Ki

)
∪
⋃

i=1;2;3

Li:
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Note that each Li is di6eomorphic to D2k ×S2k . Then, after a suitable smoothing process, V becomes
the image of some immersion Ẽ :V 4k

E # S6k of a compact oriented 4k-manifold V 4k
E .

Thus the immersion Ẽ is a Seifert immersion for the generator E, and consequently we see that
an arbitrary embedding S4k−1 ,→ S6k has a Seifert immersion.

3.4. The Hopf invariant for Ẽ

Let S be the embedded (4k−1)-sphere constructed in Section 3.2 by connecting the three embedded
(4k − 1)-spheres S1, S2 and S3. Since each Si is standardly embedded and bounds a 4k-disc Di in
R4ki ⊂ R6k , we can consider the outward normal Ield of Si ⊂ Di. Denote by S′ the embedded
(4k − 1)-sphere obtained from S slightly shifted along this normal Ield (extended on the connecting
tubes Ti outward of the boundary of the 4k-discs Illing them).

Proposition 3.5. The Hopf invariant of the element represented by S′ ⊂ S6k\S in 64k−1(S6k\S) =
64k−1(S2k) is equal to −6. In other words, HẼ =−6 for the Seifert immersion Ẽ.

Proof. We imitate the calculation of the Massey triple product given in [15, Sections 4 and 6].
Namely we Irst consider the Hopf invariant to be (minus) a functional cup product for the inclusion
S′ → S6k\S and then we calculate this functional cup product by translating the cup product operation
on cohomology into the intersection theory on homology using the duality theorems.
Let ? : S′ ,→ S6k\S be the inclusion. Let

!∈H 2k(S6k\S) = H 2k(D4k × S2k) = H 2k(S2k)

denote the generator. Then we have to calculate the functional cup product

R?(!;!) = L?(!;!)∈H 4k−1(S′) = Z:

Let N , N ′ be suNciently small (i.e. N ∩ N ′ = ∅) tubular neighbourhoods of S, S′, respectively,
and put X := S6k\IntN . Then, consider the following diagram:

H ∗(S6k\S) ?∗−−−−−→ H ∗(S′)

≈

�
� ≈

H ∗(X ) @∗−−−−−→ H ∗(N ′);

where all homomorphisms are induced by the inclusion maps and the vertical arrows are isomor-
phisms. By this diagram, it follows that we have only to calculate

R@(!;!) = L@(!;!)∈H 4k−1(N ′) = Z

with respect to the inclusion @ :N ′ ,→ X , instead of R?(!;!) = L?(!;!)∈H 4k−1(S′) =Z, where we
identify ! with its image (also denoted by !) under the isomorphism H 2k(S6k\S) → H 2k(X ).
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Furthermore, by the duality and the excision theorems, we have the following:

Hi(X )
@∗−−−−−→ Hi(N ′)

≈

�
� ≈

H6k−i(X; @X )
@!−−−−−→ H6k−i(N ′; @N ′)

≈

�
H6k−i(S6k ; S);

where all vertical arrows are isomorphisms.
Now we calculate the desired functional cup product in terms of intersections. Let w′ be the

relative 4k-chain realised by the immersed 4-disc DE (see Section 3.3). Perturb DE slightly in
the direction (−1; : : : ;−1)∈R6k ; denote this perturbed copy of DE by D̃E . If the perturbation is
suNciently small, we can take the relative 4k-chain w′′ ∈H4k(X; @X ) ≈ H4k(S6k ; S) realised by D̃E∩X .
Denote by !′ and !′′ the dual 2k-cochains of w′ and w′′, respectively. Then, the homology class
[w′] = [w′′]∈H4k(X; @X ) ≈ H4k(S6k ; S) is dual to [!′] = [!′′] = !∈H 2k(X ).
First we compute the second term of (2) in Section 2.2—the equation deIning the functional cup

product. The relative 4k-chain dual to @]!′ is represented by the intersection I of N ′ and DE , which
consists of the three components Ii =Di ∩N ′ (i=1; 2; 3). We see that each Ii is a relative boundary
of D2k × D2k+1 lying in

(the northern hemisphere of Si)× D2k+1 ⊂ S4k−1 × D2k+1 ∼= N ′

and that this D2k × D2k+1 does not intersect Ĩ := D̃E ∩ N ′. Hence the term corresponding to the
second term of (2) in Section 2.2 vanishes.
Next we compute the Irst term of (2) in Section 2.2. The relative 2k-chain dual to !′ ‘ !′′

is represented by the intersection of DE and D̃E , which essentially consists of two copies of the
self-intersection of the relative 4k-chain DE , homologous to the union L of the three embedded
2k-discs described as the bold lines in Fig. 3 (if the connecting tubes Ti are appropriately placed).
Thus, by property (1) in Section 2.1, we see that the dual chain of the cochain a cobounded by
!′ ‘ !′′ is homologous to ((−1)4k−1+1 time) the relative (2k + 1)-chain represented by two copies
of the union of the three embedded (2k + 1)-discs M =M1 � M2 � M3 shadowed in Fig. 3, where
each Mi lies in the northern half of Di (i = 1; 2; 3).
Finally, the image @]a itself should be a cocycle and its cohomology class [@]a]∈H 4k−1(N ′) is

equal to the functional cup product L@(!;!). If we denote by j : S′ ,→ N ′ and put @′ := j◦@ : S′ ,→ X ,
then, to determine [@]a]∈H 4k−1(N ′), we have only to compute its image @′∗(&S′ ˙ j∗[@]a])∈H0(X )
under the composition of the isomorphisms:

@′
∗ ◦ (&S′ ˙) ◦ j∗ :H 4k−1(N ′) → H 4k−1(S′) → H0(S′) → H0(X ):

Since we see that

@′
∗(&S′ ˙ j∗[@]a]) = @′

∗(&S′ ˙ [@′]a])

= [@′
](S

′ ˙ @′]a)]
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Fig. 3.

= [@′
]S

′ ˙ a]

= [@′
]S

′ ∩ 2M ]
= @′

∗[S
′ ∩ 2M ];

we need only to compute twice the intersection of S′ and M as a 0-cycle of S′. Furthermore, if the
shift in obtaining S′ is suNciently small, this is the same as twice the intersection of S and IntM ,
which consists of the three points seen in Fig. 3. To Ind the signs of these intersection points, we
have only to check the intersection of S1 and

M2:
{

y = 0; z1 = · · ·= z2k−1 = 0; z2k ¿ 0;
z22k
92
+

x2

:2
6 1

}
for example. We can easily check that at p∈ S1 ∩ M2, the 6k-frame:〈(

− @
@y1

; : : : ;
@

@y2k
;

@
@z1

; : : : ;
@

@z2k−1

)
;
(

− @
@z2k

;
@
@x1

; : : : ;
@

@x2k

)〉
p

;

where the Irst 4k−1 vectors belong to Tp(S1) and the rest to Tp(M2), has the same orientation as the
standard frame. Namely the intersection points of S and M have positive signs: [S∩2M ]=6∈H0(S).
Therefore, L?(!;!) = L@(!;!) = 6; hence HẼ =−L?(!;!) =−6.

Remark 3.6. In [6, p. 420], Hae!iger has stated that for k = 1 the above HẼ is equal to 6 up to
sign.
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4. A geometric formula

In this section, we give a formula for Hae!iger knots, with which we can read o6 the isotopy
class of an embedding S4k−1 ,→ S6k , via the geometric characteristics of its Seifert immersion.
First we want to deIne a homomorphism B :C2k+1

4k−1 → Z.

De�nition 4.1. Let F : S4k−1 ,→ S6k (k¿ 1) be an embedding and F̃ :V 4k # S6k be a Seifert
immersion for F . Then, deIne

B(F) := − Lpk[V̂ 4k] + 3t(F̃) + 3[�F̃ ] + 3HF̃ ∈Z;
where Lpk[V̂ 4k] is the normal Pontrjagin number of the closed manifold V̂ 4k obtained by capping
o6 V 4k with a disc, t(F̃) is the algebraic number of triple points of F̃(V 4k), [�F̃ ]∈H2k(X ) = Z is
the homology class represented by the set �F̃ ⊂ X of double points of F̃ (see DeInition 3.4), and
HF̃ ∈Z is the Hopf invariant for F̃ (see DeInition 3.2).

Actually B gives a well-deIned homomorphism C2k+1
4k−1 → Z. To show this, we need the following

lemma.

Lemma 4.2. Let 9̃ : S4k−1 → S4k−1 × S2k be a continuous map such that p1 ◦ 9̃ : S4k−1 → S4k−1 ×
S2k → S4k−1 is a degree one map, where pi is the projection to the ith factor for i = 1; 2. Let
B : S4k−1 × S2k → S2k be a continuous map such that B|{∗}×S2k : S2k → S2k is a degree one map.
Then,

[B ◦ 9̃] = [:] + [9]∈ 64k−1(S2k);

where 9= p2 ◦ 9̃ : S4k−1 → S2k and : = B|S4k−1×{∗} : S4k−1 → S2k .

Proof. Consider the induced homomorphisms

64k−1(S4k−1)−−−−−→
9̃∗

64k−1(S4k−1 × S2k) −−−−−→
B∗

64k−1(S2k)

≈

� p1∗⊕p2∗

64k−1(S4k−1)⊕ 64k−1(S2k):

Take the generator [id]∈ 64k−1(S4k−1), then under the isomorphism p1∗ ⊕ p2∗, we have

[B ◦ 9̃] =B∗ ◦ 9̃∗([id])

=B∗([id]⊕ [9])

= [:] + [9]:

This completes the proof.

Proposition 4.3. B(F) is well-de9ned on the isotopy class of F .
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Proof. Take two Seifert immersions F̃i :V 4k
i # S6k (i = 0; 1) for F : S4k−1 ,→ S6k . Denote by

W 4k := V 4k
1 ∪ (−V 4k

0 ) the closed oriented 4k-manifold obtained by pasting V 4k
0 and V 4k

1 together
along their boundaries. Then, after a suitable smoothing process, we can obtain a smooth generic
map

G := F̃1 ∪ (−F̃0) :W 4k → S6k :

We want to apply Theorem 2.3 to the map G, and show that B(F) does not depend on the choice
of the Seifert immersion.
The map G may have new triple points other than those of each F̃i, and furthermore, new singu-

larities may appear in pasting V 4k
i along S4k−1 ⊂ V 4k

1 ∪ (−V 4k
0 ).

First, the new triple points consist of

F̃1(Int V 4k
1 ) ∩ �F̃0

− F̃0(Int V 4k
0 ) ∩ �F̃1

;

since F(S4k−1) does not intersect F̃i(Int V 4k
i ) (i=0; 1). Furthermore, the algebraic number of points

in F̃i(Int V 4k
i ) ∩ �F̃j

is nothing but the linking number

lk(F(S4k−1); �F̃j
) =−lk(�F̃j

; F(S4k−1))

((i; j)=(0; 1); (1; 0)) and hence is equal to −[�F̃j
]∈H2k(X )=Z (see Remark 3.3). Thus we see that

the algebraic number of “new” triple points is equal to

[�F̃1
]− [�F̃0

]∈H2k(X ) = Z:

Next, we look into the newly appeared singularities. We can assume that, in the (oriented) tubular
neighbourhood N ⊂ S6k , each F̃i(V 4k

i )∩N is an embedded image of collar neighbourhoods S4k−1 ×
[ − 1; 0] ⊂ V 4k

0 and S4k−1 × [0; 1] ⊂ V 4k
i . If we take a trivialisation N ∼= S4k−1 × D2k+1, then the

inward normal Ields of F(S4k−1) ⊂ F̃i(V 4k
i ) determine the maps 5i : S

4k−1 → @N ∼= S4k−1×S2k → S2k

(i = 0; 1).
Let NH and SH be the northern and the southern hemispheres (including the equator) of S4k−1,

respectively. Denote the antipodal points of q0 and q1 ∈ S2k by −q0 and −q1 ∈ S2k , respectively. We
may assume that

(1) 50(x) = q0 (x∈ NH),
(2) 51(x) = q1 (x∈ SH),
(3) q1 and −q1 are regular values of 50 and
(4) q0 and −q0 are regular values of 51.

Note that, each homotopy class [5i]∈ 64k−1(S2k) may possibly be di6erent from [5F̃i
]∈ 64k−1(X )=

64k−1(S2k), but the di6erence [51]− [50] is equal to [5F̃1 ]− [5F̃0 ] by Lemma 4.2 (see DeInition 3.2
for the term 5F̃i

, which was independent of the trivialisation of N ).
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Fig. 4.

Then, on the collar neighbourhoods restricted to the northern part NH×[−1; 0] ⊂ S4k−1×[−1; 0] ⊂
V 4k
0 and to NH × [0; 1] ⊂ S4k−1 × [0; 1] ⊂ V 4k

1 , F̃0 and F̃1 can be written as follows:

F̃0 : NH × [− 1; 0) → S4k−1 × D2k+1 ⊂ S6k

(x; t) �→ (F(x); (q0;−t));

F̃1 : NH × (0; 1] → S4k−1 × D2k+1 ⊂ S6k

(x; t) �→ (F(x); (51(x); t));

F̃0(x; 0) = F̃1(x; 0) = F(x) for (x; 0)∈ NH × [0; 1];

where we consider D2k+1 as S2k × (0; 1] ∪ {0} on the right-hand side. On the southern part the
situation is similar by alternating the indices (Fig. 4 describes the situation on the northern part).
Hence, in S4k−1 × D2k+1 ⊂ S6k , we see the end-part of the set �G of double points of G

F(5−1
1 (q0))× ({q0} × (0; 1]) ∪ −F(5−1

0 (q1))× ({q1} × (0; 1]):

Note that the orientation on 5−1
1 (q0) (resp. on 5−1

0 (q1)), induced by 51 (resp. by 50) from the
orientation on S2k = @D2k+1 ⊂ {∗} × D2k+1 ⊂ S4k−1 × D2k+1, together with the positive direc-
tion of the interval [0; 1] (resp. [ − 1; 0]), is coherent with the orientation on �G (see DeInition
2.2). Therefore, we see that the (2k − 1)-dimensional set SG of singular (Whitney umbrella) points
of G is

SG = F(5−1
1 (q0))× {0} ∪ −F(5−1

0 (q1))× {0} ⊂ S4k−1 × D2k+1:

Now we compute Szűcs’ linking l(G) of G. The linking l(G) is equal to the linking number of
G(W 4k) and the union of each F(5−1

j (qi))×{0} shifted slightly in the direction antipodal to qi ∈ S2k

for (i; j) = (0; 1); (1; 0). Namely l(G) is equal to

lk(G(W 4k); F(5−1
1 (q0))× {(−q0; =)} ∪ −F(5−1

0 (q1))× {(−q1; =)})

=lk(G(W 4k); F(5−1
1 (q0))× {(−q0; =)})− lk(G(W 4k); F(5−1

0 (q1))× {(−q1; =)});
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where =∈ (0; 1) is a small number. If we take a 2k-chain D2k1 in S4k−1 bounded by 5−1
1 (q0), then

we see that

lk(G(W 4k); F(5−1
1 (q0))× {(−q0; =)})

=− lk(F(5−1
1 (q0))× {(−q0; =)}; G(W 4k))

=− [F(D2k1 )× {(−q0; =)} ∩ F̃1(S4k−1 × (0; 1])] (∈H0(F(S4k−1)× D2k+1))

=− [F(D2k1 )× {(−q0; =)} ∩ F(5−1
1 (−q0))× {(−q0; =)}] (∈H0(F(S4k−1)

×{(−q0; =)}))
=− [F(D2k1 ) ∩ F(5−1

1 (−q0))] (∈H0(F(S4k−1)))

=− [D2k1 ∩ 5−1
1 (−q0)] (∈H0(S4k−1))

=− the linking number of 5−1
1 (q0) and 5−1

1 (−q0) in S4k−1;

which is nothing but the Hopf invariant of 51. Since we have a similar argument on the southern
part, we have

−l(G) = the Hopf invariant of 51 − the Hopf invariant of 50

=HF̃1
− HF̃0

:

Thus we have

Lpk[W 4k] = Lpk[V̂ 4k
1 ]− Lpk[V̂ 4k

0 ];

t(G) = t(F̃1)− t(F̃0) + [�F̃1
]− [�F̃0

];

−l(G) = HF̃1
− HF̃0

:

By applying Theorem 2.3 to G, we have

− Lpk[W 4k] + 3t(G)− 3l(G) = 0:

Therefore, we see that

− Lpk[V̂ 4k
1 ] + 3t(F̃1) + 3[�F̃1

] + 3HF̃1
=− Lpk[V̂ 4k

0 ] + 3t(F̃0) + 3[�F̃0
] + 3HF̃0

:

This implies that the value B(F) does not depend on the choice of a Seifert immersion for F . Thus
the map B is well-deIned for the map F and clearly for the isotopy class of F .

Remark 4.4. Each term of B is additive with respect to the connected sum of embeddings S4k−1 ,→
S6k and the boundary connected sum of their Seifert immersions. Therefore, we have actually the
homomorphism B :C2k+1

4k−1 → Z.

The following proposition implies that B :C2k+1
4k−1 → Z is a non-trivial homomorphism.

Proposition 4.5. B(E) =−24 for the generator E of C2k+1
4k−1 in Section 3.2.
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Proof. We compute each term of B(E) with respect to the Seifert immersion Ẽ :V 4k
E # S6k con-

structed in Section 3.3. We use the notation in Section 3.3.

(a) The 4k-manifold V 4k
E is obtained by attaching to D4k three 2k-handles with trivial framings.

Therefore we see that Lpk[V̂ 4k
E ] = 0.

(b) Clearly Ẽ :V 4k
E # S6k has one triple point with positive sign at the origin of R6k ; hence t(Ẽ)=1.

(c) The set of double points of Ẽ is⋃
(i; j)=(1;2);(2;3);(3;1)

[(Li ∩ Di) ∪ ((Dj\Ki) ∩ Di)];

(see Section 3.3 and Fig. 2). For (i; j) = (1; 2); (2; 3); (3; 1), put

Ji := (Li ∩ Di) ∪ ((Dj\Ki) ∩ Di):

Then each J1, J2 and J3 bounds (2k + 1)-discs in the exterior R6k\S

M1:
{

x = 0; y1 = · · ·= y2k−1 = 0; y2k ¿ 0;
y22k
92
+

z2

:2
6 (1− =)2

}
;

M2:
{

y = 0; z1 = · · ·= z2k−1 = 0; z2k ¿ 0;
z22k
92
+

x2

:2
6 (1− =)2

}
;

M3:
{

z = 0; x1 = · · ·= x2k−1 = 0; x2k ¿ 0;
x22k
92
+

y2

:2
6 (1− =)2

}
;

where = is the radius of a Ibre of the normal disc bundle N of S ⊂ R6k .
Therefore, to compute [�Ẽ]∈H 2(S6k\S), we have to consider the intersection of ⋃i Mi and S.

The situation is very similar to the last step of the computation of the Hopf invariant for Ẽ (see the
end of the proof of Proposition 3.5 and Fig. 3), but the orders of the considered intersections are
opposite and this changes the signs of the intersection points. We can check that each intersection
point in Mi ∩ S has negative sign and hence that [�Ẽ] =−3.
(d) By Proposition 3.5, HẼ =−6.
(e) Finally we have

B(E) =− Lpk[V̂ 4k] + 3t(Ẽ) + 3[�Ẽ] + 3HẼ

=0 + 3× 1− 3× 3− 3× 6

=−24:
This completes the proof.

Since we already know that C2k+1
4k−1 is isomorphic to Z by the result of Hae!iger, as an easy

consequence of Propositions 4.3 and 4.5, we have:

Theorem 4.6. The following is an isomorphism:

� :C2k+1
4k−1 → Z;

F �→ − 1
24 (− Lpk[V̂ 4k] + 3t(F̃) + 3[�F̃ ] + 3HF̃);

where F̃ :V 4k # S6k is a Seifert immersion for F .
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As a corollary, we obtain the following observation on Hae!iger’s generator.

Corollary 4.7. In the construction of the generator E of C2k+1
4k−1 given in Section 3.2, if we change

one of the two tubes joining S1, S2, S3 into the orientation-reversing one, then the resulting em-
bedding E′ represents −1∈C2k+1

4k−1 = Z.

Proof. We can construct a Seifert immersion Ẽ′ for E′ in the same way as in Section 3.3. In the
computations in Propositions 3.5 and 4.5, we can check that, with respect to this Seifert immersion
Ẽ′, all the terms of �, except the normal Pontrjagin number, have the opposite signs of those for
Ẽ. Thus we have �(E′) =−1.

5. The Hopf invariants for punctured 4k-manifolds embedded in 6k-space

It is clear that the Hopf invariant in our formula can be considered for oriented 4k-manifolds
with spherical boundaries embedded in S6k . In this section, for such an embedded 4k-manifold, we
develop a method to compute its Hopf invariant by means of the normal Euler class. The purpose
of this section is to show the following theorem.

Theorem 5.1. Let V̂ 4k be a closed oriented 4k-manifold and put V 4k := V̂ 4k\IntD4k . Let F̃ :V 4k ,→
S6k be an embedding with normal Euler class eF̃ ∈H 2k(V 4k)=H 2k(V̂ 4k). Then, the Hopf invariant
HF̃ (along the boundary) is equal to eF̃ ‘ eF̃ ∈H 4k(V̂ 4k) = Z.

Theorem 5.1 is obtained from the following two Lemmas 5.2 and 5.3. Put F := F̃ |@V 4k : S4k−1 ,→
S6k , whose exterior space (as in the proof of Proposition 3.5) we denote by X . Let D2k be a
2k-cycle lying in Int V 4k such that [D2k]∈H2k(V 4k)=H2k(V̂ 4k) is the integral dual to eF̃ ∈H 2k(V̂ 4k);
eF̃ = D([D2k]).

Lemma 5.2. HF̃ is equal to −[F̃(D2k)]∈H2k(X ) = Z.

Proof. The argument here is similar to the one in the proof of Proposition 3.5; we use the same
symbols and diagrams.
The corresponding dual in H 4k(X; @X ) ≈ H 4k(S6k ; F(S4k−1)) to the generator !∈H 2k(X ) is rep-

resented by F̃(V 4k). Take the inward normal Ield of F(S4k−1) ⊂ F̃(V 4k) and extend to a (not
necessarily non-zero) vector Ield on F̃(V 4k). Perturb V := F̃(V 4k) to V′ along this Ield. Then
F̃−1(V ∩ V′) ⊂ V 4k , which we can assume to be lying in Int V 4k , represents the integral dual to eF̃ .
Hence, we can put D2k = F̃−1(V ∩ V′).
First, since a suNciently small tubular neighbourhood of @V′ ⊂ S6k does not intersect V, we see

that the term corresponding to @]!′ and hence the second term of (2) in Section 2.2 vanish.
Next we check the Irst term of (2) in Section 2.2. Again by the same argument as in the proof

of Proposition 3.5, the desired term is represented by the intersection of F(S4k−1) and a relative
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(2k + 1)-chain bounded by V ∩ V′ = F̃(D2k), which is further equal to

−lk(F̃(D2k); F(S4k−1)) =−[F̃(D2k)]∈H2k(X ) = Z:

Thus, we have HF̃ =−[F̃(D2k)].

Lemma 5.3. −[F̃(D2k)]∈H2k(X ) = Z is equal to eF̃ ‘ eF̃ ∈H 4k(V̂ 4k) = Z.

Proof. Take two copies V′ and V′′ of V := F̃(V 4k) perturbed in appropriate manners, and put
D := V ∩ V′ and D′ := V ∩ V′′. Then, we see that

−[F̃(D2k)] =−[D] =− [D′] (∈H2k(X ) = Z)

=− lk(D′; F(S4k−1)) (∈H0(S6k) = Z)

=lk(F(S4k−1); D′)

=[V ∩ D′]

=[V ∩ V′ ∩ V′′]

=[D ∩ D′] (∈H0(F̃(V 4k)) = Z)

=[D2k] · [D2k] (∈H0(V 4k) = Z)

=D−1(eF̃ ‘ eF̃) :

This completes the proof.

6. Punctured S2k × S2ks embedded in S6k

In this section, we apply the result of the previous section to the punctured S2k × S2k . As a
consequence, we show that any (isotopy class of) embedding of S4k−1 in S6k can be seen as the
boundary of the punctured S2k × S2k embedded in S6k with suitable normal bundle, and hence that
every embedding F : S4k−1 ,→ S6k extends to an embedding of a compact oriented 4k-manifold in
S6k .
Throughout this section, we denote the punctured S2k × S2k by M 4k := S2k × S2k\IntD4k . Note

that M 4k is stably parallelisable and hence parallelisable.

Proposition 6.1. The normal Euler class of an immersion M 4k # R6k is of the form 2c2k for
some c2k ∈H 2k(M 4k). Furthermore, for an arbitrary c2k ∈H 2k(M 4k), there exists an embedding
M 4k ,→ R6k with normal Euler class 2c2k .

Proof. Since M 4k is parallelisable, by taking a trivialisation TM 4k ∼= M 4k × R4k , we can associate
to each immersion f :M 4k # R6k the map df :M 4k → V6k;4k (the Stiefel manifold of all 4k-frames
in 6k-space), naturally determined by the di6erential df. This, by the Smale–Hirsch classiIcation
theorem, gives a bijective correspondence between the set of regular homotopy classes of immersions
M 4k # R6k and the set of homotopy classes of maps M 4k → V6k;4k .
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Consider the canonical S2k−1-bundle 6 :V6k;4k+1 → V6k;4k . Since we can compute H 1(V6k;4k) = 0,
H 2k(V6k;4k) ≈ Z, H 2k−1(V6k;4k+1) = 0 and H 2k(V6k;4k+1) ≈ Z2, by the Gysin exact sequence

0 → H 0(V6k;4k)
‘e6→H 2k(V6k;4k) → Z2 → 0;

we see that the Euler class e6 of 6 is equal to 2� for a generator �∈H 2k(V6k;4k) ≈ Z. This proves
the Irst part of the theorem, since the normal bundle of any immersion f :M 4k # R6k is induced
from 6 by the associated map df.
Denote by ? : S2k → V6k;4k a map representing a generator of 62k(V6k;4k) ≈ Z. Then for any

c2k ∈H 2k(M 4k) we can construct a map g :M 4k → V6k;4k such that g∗� = c2k , by using the map ?.
Again the Smale–Hirsch h-principle implies that there exists an immersion f :M 4k # R6k such that
the associated map df :M 4k → V6k;4k is homotopic to the map g; the normal Euler class of f is
equal to g∗e6 = 2g∗� = 2c2k .
Finally, by Hae!iger and Hirsch [10, Theorem 3.1(a)], the immersion f is regularly homotopic to

an embedding because S2k × S2k is (2k − 1)-connected. Since a regular homotopy does not change
the normal bundle, the second part of the theorem is proved.

The following shows that every embedding S4k−1 ,→ S6k extends to an embedding of M 4k with
suitable normal bundle, whose Euler class retains complete information on the isotopy class of the
given embedding.

Corollary 6.2. Let Ẽa;b :M 4k ,→ S6k be an embedding with normal Euler class (2a; 2b)∈H 2k(M 4k)=
H 2k(S2k × S2k) ≈ Z ⊕ Z. Then Ea;b := Ẽa;b|@M 4k : S4k−1 ,→ S6k represents −ab∈C2k+1

4k−1 = Z. In
particular, E±1;∓1 : S4k−1 ,→ S6k represents the generator of C2k+1

4k−1.

Proof. By Theorem 5.1, we have

�(Ea;b) =− 1
24 (0 + 0 + 0 + 3HẼa; b

)

=− 1
24 · 3[(2a; 2b) ‘ (2a; 2b)]∈H 4k(S2k × S2k) = Z

=− 1
24 · 3 · 8ab=−ab∈Z:

Thus Ea;b : S4k−1 ,→ S6k is a representative of −ab∈C2k+1
4k−1 = Z.

This corollary implies that the Seifert immersion F̃ :V 4k # S6k in Theorem 4.6 can actually be
chosen to be an embedding. The following is an immediate corollary of Theorems 4.6, 5.1 and
Corollary 6.2.

Corollary 6.3. (a) For an arbitrary embedding F : S4k−1 ,→ S6k , there exists an embedding F̃ :V 4k ,→
S6k of a compact oriented 4k-manifold V 4k with @V 4k = S4k−1 such that F̃ |@V 4k = F . Furthermore,

�(F) =− 1
24 (− Lpk[V̂ 4k] + 3HF̃)

=− 1
24 (− Lpk[V̂ 4k] + 3eF̃ ‘ eF̃)

gives an isomorphism � :C2k+1
4k−1 → Z, where eF̃ ∈H 2k(V 4k) = H 2k(V̂ 4k) is the normal Euler class

for F̃ and eF̃ ‘ eF̃ ∈H 4k(V̂ 4k) = Z is the cup product.
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(b) Actually, we can extend any embedding F : S4k−1 ,→ S6k to an embedding F̃ : S2k × S2k\
IntD4k ,→ S6k and then

� : C2k+1
4k−1 −→ Z

F �−→ − 1
8 HF̃

is an isomorphism.

Remark 6.4 (see also Section 7): In proving the existence of an “embedded” Seifert immersion for
an arbitrary embedding S4k−1 ,→ S6k , we cannot count on the same method as the construction of
a usual Seifert surface in the codimension two case. The usual construction gives rise to a normally
framed submanifold, but if F(S4k−1) indeed bounds a normally framed V 4k ⊂ S6k we have the
constraints that Lpk[V̂ 4k] should be divisible by jkak(2k − 1)! (Milnor and Kervaire [16], for jk and
ak see Theorem 7.1) and that HF̃ = 0 (Theorem 5.1) and hence the invariant �(F) is divisible by
jkak(2k − 1)!=24.

In the case C3
3 (k = 1), by the Hirzebruch index theorem, we have − Lp1[V̂ 4] = p1[V̂ 4] = 3�(V 4)

where �(V 4) is the signature of V 4. Hence, we can rewrite Corollary 6.3 as follows.

Corollary 6.5. Every embedding S3 ,→ S6 extends to an embedding F̃ :V 4 ,→ S6 of a compact
oriented 4-manifold V 4, and

�(F) =− 1
8 (�(V

4) + HF̃)

=− 1
8 (�(V

4) + eF̃ ‘ eF̃)

gives an isomorphism � :C3
3 −→ Z.

7. The suspension of the usual knot theory

Corollary 6.3 reminds us of the similar formula for embeddings in codimension two (up to regular
homotopy) given in [13]. In fact, we obtain the following observation in connection with the usual
knot theory.

Theorem 7.1. The image of the map i∗ :C2
4k−1 → C2k+1

4k−1 induced by the inclusion i : S4k+1 ,→ S6k

corresponds to

jkak(2k − 1)!
24

Z ⊂ Z ≈ C2k+1
4k−1;

where jk denotes the order of the image of the Hopf–Whitehead J -homomorphism J : 64k−1(SO(4k+
1)) → 68k(S4k+1), and ak = 2 if k is odd, ak = 1 if k is even.

Proof. Let f : S4k−1 ,→ S4k+1 be an embedding and f̃ :V 4k ,→ S4k+1 a (usual) Seifert surface
for f. Then, by Hughes and Melvin [13], we see that Lpk[V̂ 4k] is invariant up to regular homo-
topy and hence up to isotopy. Furthermore, V̂ 4k is always almost parallelisable and we have the
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epimorphism [13]:

�′ : C2
4k−1 −→ Z

f �−→ 1
jkak (2k−1)! Lpk[V̂ 4k]:

On the other hand, i ◦ f̃ :V 4k ,→ S6k is a Seifert immersion for the embedding i ◦f : S4k−1 ,→ S6k ,
where i : S4k+1 ,→ S6k is the inclusion. Then, by a certain naturality property of the functional cup
product (see e.g. [25, p. 498]), we see that the Hopf invariant Hi◦f̃ for i ◦ f̃ vanishes, since the
map 5i◦f̃ : S

4k−1 → S6k\f(S4k−1) is factorised by the map to the space S4k+1\f(S4k−1), which has
the homology type of S1. Hence we have �(i ◦ f) = 1

24 Lpk[V̂ 4k].
Therefore, we obtain the following commutative diagram:

C2
4k−1

�′−−−−−→
epi:

Z

i∗

�
� × jkak (2k−1)!

24

C2k+1
4k−1

�−−−−−→
iso:

Z;

which implies that the image of the map i∗ :C2
4k−1 → C2k+1

4k−1 corresponds to (jkak(2k − 1)!=24)Z ⊂
Z= C2k+1

4k−1.

Remark 7.2. It is well known [1] that jk is equal to the denominator of |Bk |=4k, where Bk is (the
reduced expression of) the kth Bernoulli number. Furthermore, as a consequence of the theorem by
Clausen and von Staudt, the denominator of Bk is divisible by 6. Therefore, we see that jkak(2k−1)!
is always divisible by 24.

Remark 7.3. According to Hae!iger [9, Corollary 6.7], Cq
n is Inite except that Cq

4k−1 has a Z-
component for 2¡q6 2k + 1, and i∗ :C3

4k−1 ⊗Q → C2k+1
4k−1 ⊗Q is an isomorphism.

Remark 7.4. In the case k = 1, the theorem above implies that the image of the map C2
3 → C3

3
induced by the inclusion S5 ,→ S6 corresponds to 2Z ⊂ Z ≈ C3

3 . This is stated in Hae!iger [9,
Theorem 5.17].

Remark 7.5. The proof of the theorem above implies that two embeddings f and g : S4k−1 ,→ S4k+1

are regularly homotopic if and only if their compositions with the inclusion i◦f and i◦g : S4k−1 ,→ S6k

are isotopic.

Addendum. BoXechat [2] and BoXechat–Hae!iger [3] have related the group C2k+1
4k−1 to the obstruction to

smoothing a “semi-di6erentiable” embedding of a closed connected oriented 4k-dimensional manifold
in Rs6k+1. It seems that Corollaries 6.2, 6.3 and 6.5 can be deduced from their results, combined
with Proposition 6.1 (see also [7, p. 95] for the case k = 1). Also, the computation HẼ = −6 in
Proposition 3.5 has been carried out in [2].
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[5] T. Ekholm, A. Szűcs, On the triple points of singular maps, Comment. Math. Helv. 77 (2002) 408–414.
[6] M.J. Greenberg, Lectures on Algebraic Topology, W. A. Benjamin, Inc., New York, Amsterdam, 1967.
[7] L. Guillou, A. Marin, Commentaires sur les quatre articles prXecXedents de V.A. Rohlin, in: L. Guillou, A. Marin

(Eds.), YA la recherche de la topologie perdue, Progress in Mathematics, Vol. 62, Birkh[auser Boston, Boston, MA,
1986, pp. 25–95.

[8] A. Hae!iger, Knotted (4k − 1)-spheres in 6k-space, Ann. Math. 75 (1962) 452–466.
[9] A. Hae!iger, Di6erential embeddings of Sn in Sn+q for q¿ 2, Ann. Math. 83 (1966) 402–436.
[10] A. Hae!iger, M.W. Hirsch, On the existence and classiIcation of di6erentiable embeddings, Topology 2 (1963)

129–135.
[11] R.J. Herbert, Homology Classes of Immersed Manifolds, in: Memoirs of the American Mathematical Society, Vol.

34, American Mathematical Society, Providence, RI, 1984.
[12] P.J. Hilton, S. Wylie, Homology Theory: An Introduction to Algebraic Topology, Cambridge University Press, New

York, 1962.
[13] J. Hughes, P. Melvin, The Smale invariant of a knot, Comment. Math. Helv. 60 (1985) 615–627.
[14] M.A. Kervaire, Sur l’invariant de Smale d’un plongement, Comment. Math. Helv. 34 (1960) 127–139.
[15] W.S. Massey, Higher order linking numbers, Conference on Algebraic Topology (University of Illinois, Chicago

Circle, IL, 1968), University of Illinois, Chicago Circle, IL, 1969, pp. 174–205; reprinted in J. Knot Theory
RamiIcations 7 (1998) 393–414.

[16] J.W. Milnor, M.A. Kervaire, Bernoulli numbers, homotopy groups, and a theorem of Rohlin, Proceedings of the
International Congress of Mathematics, Edinburgh, 1958, pp. 454–458.
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