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Abstract. Two notion: which have been introduced with the aim of classifying NP-complete 
optimization problem!* are compared: the notion of strong NP-completeness, due to Garey and 
Johnson, and that of simple and rigid problems, due to Gti and Moran. In prrticular, we show 
under what conditions reductions preserve rigidity, sinplicity, strong simpliciy and p-simplicity 
and we show that under reasonable hypotheses, p-simple problems are solved by pseudo- 
polynomial algorithms and strong NP-complete problems are weakly rigid. 

1. Intzoduetion 

NP-complete optimization (NPCO) problems play a major role in discrete 

mathematics and operations research due to their relevance in many practical 
problems and thk consequent need to study their properties and to find efficient, 
exact or well approximate algorithms for them. 

Also in theoretical computer science NP-complete optimization problems have 
become an intertisting research area since when result,s by Garcy and Johnson, Sahni 
and others (see, for example, [3, la]) have shown differences among these problems 
with respect to their combinatorial structure and their properties of approximability 
and have, hence, suggested the need to classify WC0 problems. 

Here we compare two approachef; to the classification of NPCO problems: the 
approach of Paz and Moran [lo, 111 and the approach of Garey and Johnson [4]. 

Paz and Moran introduce a classificarion of NPk20 problems based on the fact that 
considering only those inputs of the problem whose optimal value is bounded by an 
integer, it is possible to divide all the problems n diRerent classes as regards their 
computational complexity (rigid, simple and p-simple problems). Furthermore these 
classes are then related to the approximability properties of the problem. 

* A first version of this work was presented at Frege Conference, Jena, 1979. 
** Present address: Universid dell’Aquilo, Istituto Matematico, L’Aquila, Italy 
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Under a different approach Garey and Johnson give another characterization 
which is based on the concept of strong NP-complete problem (a problem is strong 
NP-complete when limiting ourselves to those inputs, whose ‘value’ is bounded by a 
polynomial in the length of the input, we still obtain an NP-complete problem) and of 
pseudopolynomial algorithm (an algorithm which is polynomial in the length of the 
input and in the magnitude of the greatest number occurring in the instance). Also in 
this case interesting relations among these concepts and approximation properties 
are stateid. 

These papers, without any doubt, capture important concepts. Nevertheless, it 
seems that an attempt of organizing all these results in a unified framework as general 
as possible is lacking. Furthermore any effort of comparison among different 
approaches has not been sufficiently developed. 

The aim of our paper is therefore to make a first step in thi; direction. Starting from 
the observation that, intuitively, there is a similarity among some of the 
consequences of Paz and Moran, Garey and Johnson approaches, we have intro- 
duced a formal framework in which it is possible to establish clear connections among 
different concepts of the two approaches, at least under restricted but reasonable 
hypotheses. So, KY: have established under what conditions a p-simple problem is 
pseudo-polynom;al and a strong NP-complete problem is weakly rigid. Besides, our 
point of view allows to derive some new consequences both concerning the 
classification of problems and the characterization of reductions that exist among 
different problems. We have stated what conditions must be satisfied to have a 
polynomial reduction from a rigid problem to a simple problem, from a p-simple 
problem to a p-simple problem and so on. Finally it seems interesting to us that some 
of these results can be interpreted as a formalization of facts that are used in practice 
when studying the solution of a particular problem, such as, for example, the fact that 
a problem with polynomially bounded objective function cannot be fully approxi- 
mated. 

In particular, in Section 2 we give the basic terminology and notation. In Section 3 
we very briefly summarize the Paz and Moran approach with a slightly different 
formulation, giving new results such as those above stated concerning the charac- 
terization of reductions among problems belonging to different classes. In 
Section 4 after recalling the main definitions and results of Garey and Johnson 
approach, we establish under what conditions the results of these two approaches can 
be compared, eventually exhibiting some examples which s’how that violating the 
conditions, the two approaches lead to different conclusions in the classification of 
NP-complete problems. 

In order to establish a formal ground for the study of the properties of optirrization 
problems we first give an abstract notion of optimization problem which is broad 
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enough to include most common problems of this kind. Following the literature [7], 
we consider an NP-optimization problem to be characterized by a polynomially 
decidable set INPUT of instances, a polynomially der idable set OUTPUT of possible 
outcomes, a mapping SOL:INPUT+P(OUTPUT) which, given any instqnce x of 
the problem, in polynomial time nondetermini;tically provides the feasible solutions 
of x and a mapping GZ:OUTPUT+Z (where Z is the set of all integers) which in 
polynomial time provides the measure of a feasible solution (if A is a maximization 
problem) or its additive inverse (if A is a minimization problem). 

We will denote G(x) and m*(x) the worst and (respectively) the best solution of x 
with respect to the ordering of 2. In this paper we assume that the worst solution can 
be easily (in polynomial time) determined. This is what happens in most interesting 
cases in which the worst solution actually is a trivial solution, 

Since we are interested in studying those optimization problems which are 
‘associated’ to NP-complete recognition problems we restrict ourselves to consider- 
ing a particular class of NP-complete problems: 

Definition 1. Let A be an NP optimization problem. Tbc combinatorial problem 
associated to A is the set 

On the base of this definition we exclude from aur study those problems which are 
not directly related to optimization problems. * 

If A’ is NP-complete we say A is an NP-complete: optimization (NPCO) problem. 

Example. The problem MAX-CLIQUE is an_NPCO problem. It is characterized by 
- INPUT = set of all finite graphs, 
- OUTPUT = set of all finite complete graphs, 
- SOL(x) = set of all complete subgraphs of a graph x, 
- m (y ) = number of nodes of y. 

The associated combinatorial problem {(x, k) )x has a complete subgraph of at 
least k nodes} is a well-known NP-complete recognition problem. In this case 
G(x) = 1 is clearly the trivial solution of the optimization problem. 

A more adequate and broad presentation of NPCO problems with general 
motivations and examples is given in [l]. 

For this particular class of NP-complete recognition problems the concept of 
reduction [8] can be specialized and it can be extended to the associated optimization 
problems. 

’ In their paper Paz and Moran [ 1 l] suggest that any NP recognition problem can be represented as an 

optimization problem but #e prefer a more strzightforward and explicit definition. 
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Definition 2. Let A and B be two NPCO problems. We say that A is polynomially 
reducible to B(A: sP B) if there exist two poiyncrmially computable functions 

fl : INPUTA + INPU TB, f2:INPUTAxZ+Z 

such that 

(fi(x),f2(x, k))c: B' iff (x, k)eAC. 

Throughou.t this paper we will deal only with this kind of reductions. For simplicity 
we wiii sm q .Ai reducible I 3 B and we will drop the subscript p from c,. 

Since we arc interested in discussing the approximability of NPCO problems and 
re&rctions between problems with a different behaviour with respect to this prop- 
erty, we first give some basic definitions that introduce the concept of approximate 
algorithm, of approximable problem and of fully approximable problem [ 11,123. 

Definition 3. Let A be an NPCO problem. We say that 
(i) A,, is an approximate algorithm for A if given any x E INPUTA A,(x) is in 

SOL(x) and A, is computable in polynomial time; 
(il) i4, is an &-approximate algorithm for A if it is an approximate algorithm for A 

and for every x E INPUTA” 

F tx) m*W-m(A,W ME 
A,, = I I m*(X)-G(x) - l 

‘Ba 

De&&ion 4. Let A be an NPCO problem; we say tllat 
(i) A is approximable if given any e > 0 there exists an &-approximable 

algorithm; 
(ii) A is fully approximable if there exists a polynot,?ial AxAy[q(x, y )] such that for 

every E there exists an ~-approximate ‘algorithm A, that runs in time bounded by 

s(lxl, l/E). 

Many results in the recent literature are devoted to establishing whether a given 
problem is approximable or fully approximable or it cannot bk approximated. For 
example it is knowi that the MAX-SUBSET-SUM problem is fully approximable 
while MAX-CLIQUE is not fully approximable. A list of papers dealing with results 
in this area is provided by Garey and Johnson [3]. At present no natural charac- 
terization of the class of problems which are approximable or fully approximable is 
known. The results given by Paz and Moraa [ll] and Garey and Johnson [4] are 
nevertheless an important step forward in this direction. For this reason our aim has 

Note that we prefer to use an evaluation function different from the standard one, because we want to 
deal with maximization and minimization problems in a symmetrical way. On the other side, in [13,14) a 
study of evaluation functions is done, showing that some naiLI ~a! properties are not satisfied by the classical 
evaluation function. However, we stress that the results given in this paper still hold using the old 
evaluation function, provided the measure of the tsivial solution is always assumed to be equal to zero. 
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been to determine conditions for the comparison of these results and at the same time 
to develop this kind of research and to derive consequences which are useful for a 
better understanding of the properties of NP-complete optimization problems. 

3. Truncated combinatorial problems and their properties 

The first approach [ll] to the characterization of NP-complete optimization 
problems is based on the complexity of the recognition of an infinite sequence of 
bounded subsets of the associated combinatorial problem. 

Informally, if we consider the search space that has to be explored in order to find 
feasible solutions to an NP-optimization problem we may observe the following 
facts: 

(i) if the size of the search space is polynomially related to the size of the input, the 
problem itself is polynomially solvable; 

‘(ii) otherwise an a priori evaluation of the size of the search space shows that it 
grows exponentially. 

Let us suppose now to look for solutions whose measure does not exceed a certain 
bound k ; in many cases the size of the search space is polynomially related to the size 
of the input. 

A typical example of this kind of problems is the problem MAX-CLIQUE in 
which the complete subgraphs of size k in a graph of size n are at most (E), that is their 
number is polynomial in n. Since this does not happen in all cases it suggests the 
following definition. 

Definition 5. Let A be a NPCO problem; let A’ be the associated combinatorial 
problem. A truncated combinatorial pwblem of -4 is a set 

ACk={(x, k)cA’lksk}, 

where k is any nonnegative integer (k E N u (0) = N*). 

Note that the sequence {A’}” k kzO approximates the set A’ in a sense which is 
analogous to the definition of limit recursion approximation [SJ. 

Definition 6. A is simple if, for every k, Ai is polynomially decidable. A is jigid if it is 
not simple. 

Note that if A is rigid there exists an integer k such that Ai is P-complete that is Ai 
is in P if and only if P = NP. If P = NP no rigid problem can exist. Examples of simple 
NPCO problems, besides MAX-CLIQUE, are MAX-SATISFIABILITY, MIN- 
CHROMATIC NUMBER. 

Definition 5 and 6 are slightly mod.ified with respect to the corresponding 
definitions in [ 111. In fact we always start from the set AZ in which all pairs (x, vii (x)> 
are included and, as long as k increases, we go further and further from the worst 
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solution to the optimal solution. Due to this modification the class of simple problems 
is larger than the one defined by Paz and Moran [l I]* 

For example the problem MIN-CHROMATIC-NUMBER which is rigid accord- 
ing to the original definitions (see [ 1 l]), is simple in our case and this is because, given 
any h, the set of possible colourings of a graph of N nodes with N-h colours has size 
which is polynomial in N. 

On the other side, also in our terminology, the distinction between simple and rigid 
problems remains meaningful. Indeed MAX-WEIGHTED-SATISFIABILITY is 
rigid also according to our definitions. The definition of this problem and the proof of 
its rigidity is given by Ausiello et al. [2]. 

Note that if a problem is simple, then its worst solution is actually a trivial solution, 
that is it can be always found in polynomial time. 

The concept of simple problem can be strengthened In the following way: 

Definition 7. An NPCO problem A is p-simple if there is a polynomial 0 such that, 
for every k, Ai is recognizable in determistic time bounded by Q(lxl j .k>. 

Typical examples of p-simple problems are MAX-SUBSET-SUM, JOB- 
SEQUENCING-WITH-DEADLINES etc., while the above listed simple problems 
are not p-simple. 

Beside offering a first classification of NPCO problems, the concepts of simplicity 
and p-simplicity are relevant because it has been proven by Paz and Moran [ 111 that 
a necessary condition for a problem A to be approximable (fully-approximable) is 
that A is a simple (p-simple) NPCO problem and clearly these properties still hold 
under our definitions. So if we want to prove that a problem is not fully approximable 
it is sufficient to show that it is not p-simple, but in order to prove that a problem is 
not p-simple it is very hard to show that no algorithm which is polynomial in 1x1 and k 
can exist. Much easier is to use the following definitions. 

Definition 8. An NPCO problem A is strongly simple if, given any polynomial q, 
A;={(x, k)~A’)k s q()x I)} is decidable in polyno. ;lial time. A is weakly rigid if 
there exists a polynomial p such that As is NP-complete. 

Since a p-simple problem is strongly simple, to show that a problem is weskly rigid 
is a very easy method to prove that a problem is not p-simple and therefore not fully 
approximable. For example weakly rigid problem; are MAX-CLIQUE, MAX- 
SATISFIABILITY, MIN-CHRCbMATIC-NUMBER and the proof is based on the 
fact that, for all these problems, for q(n) increasing more rapidly than n, Ai = AC. 

This fact suggests an even easier condition :hat is sufficient for a problem not to be 
fully approximable. 

Let A be an NPCO problem. If there exists a polynomial p such that, for 
all x E INPUTA, m*(x) - fi (x) G p( 1.~ I), thev2 A is not fully approximable. 
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Proof. In fact in order to be fully approximable, A should satisfy the property that 
Ai+ is recognizable in polynomial time but, by hypothesis, we have that A’, = A” and, 
hence, Ai, is NP-complete. 

For some problems, like MAX-CLIQUE and MIN-CHROMATIC-NUMBER, 
Proposition 1 can be immediately applied. In fact in these cases p (Ix I) = Ix I. 

In some other case, in oriier to apply Proposition 1, we may prove a stronger result 
that is useful for showing that a problem is weakly rigid. 

Theorem 1. Let A and B be two NPCO problems ; if there exists a reduction f = (f 1, j$) 

from A to B such that f satisfies the following property: fz(x, k)sp()fi(x))) for some 
polynomial p and all x E INPUTA, k E N*, then B is not fully approximable. 

Proof. If B was fully approximable, then for every polynomial q we should have Bi 
recognizable in polynomial time. 

If we could recognize within polynomial time B”,, then we could also recognize A” 
in polynomial time. 

In fact, given a pair (x, k), we could compute in polynomial time fi(x) and fz(x, k) 

and since f2(x, k) q4lficx)l) we could use the decision procedure for Bi to check 
whether (fl(x), f2(x, k)) E Bs. 

Note that in Theorem 3 the condition on f2 may regard only a subset of B while in 
Proposition 1 all inputs must satisfy the hypothesis that (m*(x) - m(x)) ~p(lxl). 

Furthermore Theorem 1 p;l-tially characterizes the reductions between an arbi- 
trary problem and a weakly rigid one. For example if we consider the trivial reduction 
(inclusion) from SIMPLE-MAX-CUT to MAX-CUT, we see that the image of 
SIMPLE-MAX-CUT is a subset of MAX-CUT where the measure is bounded by 
the number of nodes of the graph and this fact is sufficient to deduct that MAX-CUT 
is not fully approximable. 

In the following we will continue the study of the characterization of reductions 
between problems belonging to different classes, and we will show how some of the 
considered properties can be inherited by polynomial reduction, under some natural 
hypothesis. 

Theorem 2. Let A and B be two NPCO problems such that A s B via the reduct!‘on 
f = ( fl, f2); if A is rigi$ and if there exists a monotone function g such that, for every 
x EINPUTA, k EN*, fz(x, k&g(k), then B is rigid. 

roof. If A is rigid there must be an integer k such that: 

Ai = {(x, k) ; (x, k) E A’ and k s 

is P-complete. By hypothesis, if we take E = g(k), then 

Bi ={(y, h)l(y, h)E B” and h <g(k)) 
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contains f(Ai) and, hence, if there was a polynomial algorithm for Bz it could be 
used to decide Ai in polynomial time. In fact in order to decide whether (x, k) 
belongs to Ai in the case k s k (otherwise we trivially know that (x, k) does not 
belong to A:), we may consider (fi, (x), f2(x, k)) and decide whether it belongs to Bi. 

Remark. Note that under the same conditions of Theorem 2 if A s B and B is simple 
A must be simple. This result shows that no polynomial reduction from a rigid 
problem to a simple problem is possible unless the function f2 is such that for no 
computable function g it is true that, for every x and every k, fz(x, k) s g(k). In other 
words f2(x, k) cannot be dependent only on k but must eventually increase with 
respect to X. 

Notice that Theorem 2 strengthens another result given in [ 1 I] where g is not an 
arbitrary monotone function but just a polynomial and the ody coa$dered case is 
when f&, k) is equal to g(k). :.. 

When we pass from simple problems to strongly simple problems we’*obtain the 
following result. a I 

*: 

Theorem 3. Let A and B by two NPCO problems and A s B via the red;;xtion 
f = ( fi, fz),, If there exists a polynomial t such that, for all x c INPUTA and k E .N*, 
f& k) G t(lxl, k), then B t s longly simple implies A strof: $y simple. 

Proof. If B is strongly simple, then for all polynomials p we krx~ that the set BC, 
must be polynomially recognizable. Now, let us consider any polynomial )* and the set 

A: = ((x, k)l(x, k) rz A” and k s r(lxl)} 

we shall show that A: is @ynomially decidable. In fnct, given (x, k), if k > r(lxl) we 
immediately know that (F, k) does not belong to AS. On the other side, if k s r&xl) let 
us consider the following set: 

f(X) = {(fdx), fdx, k)) 1 (x, k) E A” and k s r(lx 1% 

By hypothesis f(AF) is included in the set 

S = {(y, h)l( y, h) E B” and h s t(lx I, r(lx I))}. 

Since we know that if A’ and B’ are NP-complete sets and A” s 43’ via (fly f2), then 
we must have Ixi sq(lfl(x)l) f or every x and a polynomial 4, then there must exist a 
polynomial r’ such that 

BS = {(y, h)I( y, h) E B’ and h s r’(i y 1)) 2 S. 

So in order to decide whether (x, h)E A: we may use the reduction f and the 
polynomial algorithm that decides whether (fi (X ), f2(x, k)) belongs to ence A: 
is also polynomially decidable. 
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An interesting consequence of this fact is that, given a problem A wl& is not 
strongly simple and a problem B which is strongly simple any reduction from k% to 
B must violate the hypothesis. ’ 

This means that in a reduction between k. and B the measure aust increase 
exponentially. If we consider similar reductions given by Karp [S] (e.g. EXACT- 
COVER G KNAPSACK) we notice that this is the case and by Theorem 3 we may 
argue that no ‘easier’ reduction may be found, 

An analogous result holds in the case of p-simple problems. First of all we prove 
the following lemma: 

Lemma 1. Let A be an NPCO problem. If A is p-simple, then, for every polynomial p, 
Ai is recognizable in Q(lxl, &I)), where Q is a polynomial. 

Proof. Let /i be p-simple:. Given a polynomial p, we can decide (x, k) t Ai in 
Q(lxl, p(lxl)). In fact if k :*p(j.xl), it is obvious that (x, k) does not belong to Ai. 
Differently, we can use the following algorithmic procedure: 

(1) compute k =p(lxI), 
(2) decide if (x, k) E Ai in Q<lxi, k). 

The following theorem holds: 

Theorem 4. Under the same hypotheses of Theorem 3, B p-simple implies A p-simple. 

Proof. For every k we show that we can decide Ai in time polynomial in 1~ I and k. In 
fact, given (x, k), if k G k we consider f(Ai) which is included in the set S = 
{iyp h)\(y, h) E B’ and h s t(lxI, k)}. Furthermore if we consider the polynomial 
r(u, k)= t@(u), k), where t and 4 are as in Theorem 3, BF contains S and, by the 
lemma, b‘T _ is; decidable in time Q(jy 1, r(ly I, k)). Using the reduction f and l;he 
property of BF we may decide whether (x, k) E Ai within time 

Q(lfdx)l, t(q(llfdx)lL J4) =: ~(p<ixl), t(s(P(I-v!N9 k)j 

(due to the polynomiality of the reduction f, ;*?5at means that the decision time is 
bounded by a polynomial in 1x1 and k. 

Since no example is known of a problem which ia strongly simple and not p-simple 
no application of ‘Theorem 4 can be provided which is different from the application 
given at the end of Theorem 3. 

As a concluaid>r, of this paragraph we may observe that the results provided insofar 
have a twofold implication. On one side they can be used in order to characterize the 
computational complexity of one problem with respect to the given definitions, on 
the other side they establish cc:nditions on the type of reductions that can be found 
among problems belonging to difierent classes, such as those discussed at the end of 

eorem 2 and Theorem 3. As a further example we mrly observe that in the case of 
the reduction from KNAPSACK to MAX-CUT the existence of a much more 
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succinct reduction than the one given by Karp is ensured by noting that the first 
problem is strongly simple while the second one is weakly rigid. 

4. Strong NIP-completeness and its relation to rigidity 

In the preceding paragraph we have seen that in some cases the characterization of 
a problem B that is not fully approximable comes out of the fact that we can reduce 
an NP-complete combinatorial problem A” into a subset of B” in which the measure 
is bounded by a polynomial. Garey and Johnson give another way of considering 
subsets of the set INPUT of a problem to study the different characteristics of NPCO 
problems, Their paper [4] is an attempt to understand the different roles that 
numbers play in NPCO problems. Let us first consider, for example, the problem 
MAX-CUT that is a well-known NPCO problem. I’f we restrict to those graphs with 
unitary weights we obtain a seemingly easier problems SIMPLE-MAX-CUT, that, 
however, is still an NPCO problem. In the case oil the problem JOB-SEQUENC- 
ING-WITH-DEADLINES the situation is different: it is NP-complete but if we 
restrict to the case when all weights are unitary, then the problem is solvable in 
Q(n lg n). Moreover, if the weights are at most k the problem is solvable by an 
algorithm using a classical dynamic approach, whose complexity time is bounded by a 
polynomial in k and in y1 (the number of jobs). Note that this algorithm is not 
polynomial: in fact a polynomial algor,ithm should solve JOB-SEQUENCING- 
WITH-DE_‘iDLINES in time bounded 1:‘~ a fnlynomial in n and in lg k. 

In order to formalize these observation!: Garey and Johnson introduce another 
function of the input, MAX : INPUT-, N that captures the notion of the magnitude 
of the largest number occurring in the input. For example given a weighted graph G, 
MAX(G) can be defined as the value of the maximum weighted edge. 

The following definitions formalize these concepts. 

Definition 9. A pseudo-polynomial algorithm is an algorithm that on input x runs in 
time bounded by a polynomial in 1.~1 and in MAX(x). 

Definition 10. An NPCO problem is a pseudo-polynomial NPCOproblem if there is 
a pseudo-polynomial algorithm that solves it. 

Definition 11. Given a problem P let Pq derote the problem obtained by restricting 
P to only those instances x in INPUTp for which MAX(x) < q <ix I). An NPCO 
problem P is NP-complete in the strong sense if there exists a polynomial q such that 
P4 is NP-complete. 

According to the preceding obsf rvations an example of pseudo-polynomial 
NPCO problem is JOB-SEQUENCZNG-V/IT&DEA LINES [9] while 
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CUT is NP-complete in the strong sense (it is s&icient to consider the constant 
polynomial q(x) = 1 to obtain SIMPLE-MAX-CUT). 

The two classes of pseudopolynomial NPCO problems and of strong NP-complete 
problems are disjoin1 (obviously unless P = NP). The following proposition states the 
relationship between strong NP-completeness and full approximability. 

Proposition 2. If’P is NP-csmplete in the strong sense, then it is not fully approximable, 
provided that m*(x) - G(x) sp(lxl, MAX(x)). 

Garey and Johnson give another result that connects the two concepts of pseudo- 
polynomial and fully approximable NPCO problem; for clarity sake, we will give it 
later as an immediate consequence of Theorem 6. 

In many problema the optimal value of the solution and the MAX of the input are 
strictly related in the sense that it is possible to establish a polyr-~mial relation 
between them. This suggests the idea of comparing some of the difl’rssent concepts 
introduced in the preceding paragraphs and in this one. First of all we have the 
following results: 

Theorem 5. Let A be a pseudopoly,oomial optimization problem. Ij there exists a 
polynomial q such that, for every x E INPUTA, EVIAX(x) s q(( m “(x) - tit(x)), ]x I>, then 
A is p-simple. 

Proof. The hypotheses imply that there exists a polynomial p such that, given 
x, m*(x) is computable within time ~(1x1, MAX(x)) and, therefore, within time 

p(lxl, q((m*(x)- ii(x)), 1x1)). Given k we can decide whether (x, k) E .cli by applying 
the pseudopolynomial algorithm for p(lx I, q(k, /xl>) steps. If the algorithm stops we 
knowm*(x)andthereforewecandecideif m*(x)-fi(x)akorm*(x)-G(x)<k; 
otherwise m*(x) -6(x)) k and hence (x, k)~ A:. 

Theorem 6. Let A be a p-simple problem. If there exist‘s a polynomial q such that, for 
every x E INPUTA, m *(x > - Gi (x) s q (MAX(x), Ix I>, then A is a pseudopolyn~~mia! 
NPCO problem. 

Proof. By hypothesis, for each k, Ai is recognizable in time Q(lxl, k). To obtain 
m*(x) we can use the following algorithm: 

find 3(x) 
for k:= 1 to q(MAX(x), 1x1) 
repeat the following step: 
if(x,k)EAi;thenm*(x)=%(x)+k. 

There are no more than q(MAX(x), Ix I) iterations and as A” is p-si.mple, each 
iteration takes no more than (x), Ix\)). Therefore m*(x) is computable 

(x),1x I)) s,teps- 
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Corollary 1. [4]. Let A be a fully approximable NPCO problem. If there exists a 
polynomial q such that for every x E INPUTA (m*(x) - 6 (x)) s q(MAX(x), Ix I), then 
A is a pseudopolynomial NPCO problem. 

Proof. Immediate from the previous theorem and the fact that a fully approximable 
problem is p-simple. 

As the conditions of Theorem 5 and 6 are generally verified the two concepts of 
pseudopolynomial problem and p-simple problem coincide in many cases. 

A natural question arises at this point: when the conditions of the theorems are not 
verified which of the two approaches gives a better information about the complexity 
of approximate algorithms? 

Let us define: 

j=l 

W) 
I 

s.t. i aiyj=b; yj=O,l; Cj,aj>O; j=l,2,-**,n* 
j=l 

Since INPUTpi is ((al, cl), (az, cz), . . . , (a,, c,); b}, a natural definition of 
MAX(INPUTpl) can be the following MAX(x) = maxj(ci, aj) and it is not hard to 
prove that PI is pseudopolynomial (a classic dynamic approach solves it in 
O(n2MAX(x))); however, the problem to obtain a solution in the case that all cj are 
equal to 1 is an NP-complete problem [g] and therefore Pl is weakly rigid. Hence Pl 
is a pseudopolynomial NPCO problem that is weakly rigid and not fully approxim- 
able. 

Let us consider now: 

Max fi cj+ 

(P2) 
j=l 

s.t. )! ai’i 5s 26; yi=O, 1; Cj, CEj >O; j = 1,2, . . . , n. 
j=l 

In this case INPTJTp2 is ((al, cl), (az, c2), . . - , (an, c,); b); this problem is fully 
approximable and therefore p-simple; we conjecture that it is not a pseudo- 
polynomial problem because the classical method of deriving a pseudopolynomial 
algorithm from the dynamic programming approach does not work. . 

We have proven that the two approaches are equivalent under restricted but 
reasonable hypotheses and we have shown, in the previous examples, that, when 
m*(x) and MAX(x) are not polynomially related the approach formulated by Paz 
and Moran has a wider application to study approximation properties for NPCO 
problems. Furthermore, it seems to us that their approach is straightforward while, in 
some cases, the definition of the function MAX may be ambiguous as th.e above 
example shows. 
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Before finishing this paragraph we w;lnt to observe that, when there is a poly- 
nomial relation between the value of the optimal solution and the value of MAX, 
there is a strong connection between the two concepts of strong NP-complete and 
weakly rigid. 

Theorem 7. Let A be a strong NP-complete optimization problem. If the. - exists a 
polynomialpsuch that, foreveryx E INPUTA, (m*(x)- G(x)) sp(MAX(x), 1x11, then 
A is weakly rigid. 

Proof. If A is NP-complete in the strong sense there must exist a polynomial 9 such 
that the set Q = {(x, k) 1 (x, k) E A’, MAX(x)1 G 4(1x I)} is NP-complete. 

Let us consider now the set 

Q’ = {(x, k) 1 (x, k) E A’, MAX(x) s: 4(1x1;1, k s p(MAX(x), Ix I)}. 

As Q 2 Q’ in order to prove that Q = Q’ it is suficient to prove that 

Q-Q’={(x, k);(x, k)~A=,MAX(x)q(lxI), k=Bp(MAX(x), 1x1)) 

is the empty set. In fact given (x, k), vriith k 3 p(MAX(x), Ix I>, we have by hypothesis 
k >p(MAX(x), 1x1) 2 m* (x) - fi (x) and therefore (x, k) ti AC. Let us consider now 

Q”=h Mb, WA’, ksp(q(lxl), 1x1)). 

Since Q’ is NP-complete, clearly Q” is NP-complete and hence A is weakly rigid. 

S. Conclusions 

In this paper we have shown that there exist close relations among different 
approaches to the classification of NP-complete optimization problems, giving also 
new results on the type of possible reductions among problems belonging to different 
classes. On the other side, it was proven that, under natural conditions, various 
classifications of NP-complete optimization problems are actuahy equivalent and 
that violating these conditions this equivalence does not hold anymore. 

From a general point of view our paper and the others quoted in the preceding 
paragraphs strengthen our conviction that in order to provide meaningful charac- 
terizations of NPCO problems it is necessary to find the suitable level of abstraction 
because if a too general point of view is taken NPCO problems appear to be hardly 
distinguishable while if too many details are taken into consideration it is difficult to 
grasp similarities among different problems. 

The study that we started in this paper is an attempt in this direction. Along the 
same line we think that in order to establish connections among combinatorial 
structure, complexity and approximation properties of NPCO problems it may 
fruitful to find relationships with other results drawn from other approaches, at the 
same level of abstr; ction, such as the one developed in [I]. 
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