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Abstract--Various extremum problems are presented which lead to highly symmetric geometrical con- 
figurations. 

1. INTRODUCTION 

The word"  symmetry" evokes the amazing structure of the bees' honeycomb, the wall ornaments 
of ancient Egyptians and Moors, the Platonic solids, and other regular figures produced by man 
or nature which all incarnate perfection of symmetry. Due to their intrinsic beauty, and to their 
close connection with natural science and mathematics, regular figures attracted attention through 
the ages. 

An intelligent schoolboy, trying to construct cardboard models of solids with equal regular 
faces would hardly fail to rediscover the regular solids. He also would come across the trigonal 
and pentagonal dipyramids and the few further convex solids with regular triangular faces. But 
he certainly would realize the higher degree of symmetry of the five solids with equivalent 
vertices. This may have been the way the Greeks discovered the regular solids. 

Generally, a configuration is said to be regular if it consists of equivalent components. 
The trigonal dipyramid consists of equivalent faces but is not regular according to the traditional 
definition of regular solids. In the classical theory of regular figures we start with a definition 
of regularity, and try to give a complete enumeration of the respective figures. This theory, 
which may be called the systematology of regular figures, is contrasted by the genetics of regular 
figures which is based on the perception that certain economy postulates, il~ a sufficiently wide 
sense, imply regularity. Here regular figures are not defined but they come into being from 
irregular figures, and unordered chaotic sets in virtue of the ordering effect of an extremum 
requirement. In what follows we try to illustrate this theory by some examples. 

We shall use the Schl~ifli symbol {p, q} both for a regular polyhedron and a regular tiling 
with p-gonal faces and q-valent vertices. Polyhedra and tilings with regular faces and equivalent 
vertices are called uniform. They are denoted by a symbol (1, m . . . .  ) giving the number of 
sides of the faces around one vertex in their cyclic order. 

2. POLYHEDRA AND SPHERICAL CONFIGURATIONS 

The ancient legend about surrounding the site of Carthage by straps cut out of the skin of 
a steer suggests the problem of maximizing the area of an n-gon of given perimeter. The solution 
to this problem is known to be the regular n-gon. We phrase two analogous problems in space: 
Among the convex polyhedra of given surface-area having (i) a given number f of faces, (ii) 
a given number v of vertices find that one of maximal volume. It is known[9,11,15,21] that 
for f = 4, 6, and 12 the solutions are given by the respective regular solids ({3, 3}, {4, 3}, 
{5, 3}), and the same is conjectured to be true for v = 6, and 12 ({3, 4}, {3, 5}). 

J. Steiner (1796-1863) proved a weaker statement for the octahedron: Among all polyhedra 
of the topologic type of the regular octahedron the regular one is the best. All attempts to prove 
Steiner's conjecture about the same extremum property of the regular icosahedron failed so far. 
This shows the difficulties often involved in similar problems. 

However several inequalities are known which express extremum properties of all five 
Platonic solids[l l, 15, 20]. We recall the simplest one: Let R be the circumradius and r the 
inradius of a convex polyhedron with f faces, v vertices, and e (=  f + v - 2) edges. Let 
p = 2e / f  be the average number of sides of the faces, and q = 2e/v the average number of 
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edges meeting at the vertices. Then 
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R "i'i" "iT 
- -> t a n -  t a n -  
r p q 

and equality holds only for the five regular solids. This implies that among the convex polyhedra 
with either 4, 6 or 12 faces or 4, 6, or 12 vertices the respective regular solid approximates 
best the shape of the sphere in the sense of minimizing R/r. 

There are some extremum requirements posed on all convex polyhedra irrespective of the 
number of faces and vertices which is fulfilled by one or another Platonic solid. As an example 
we mention the following theorem: Among all convex polyhedra containing a ball, the circum- 
scribed cube has the least total edge-length[2]. 

On the pollen-grains of flowers there are small orifices. When the pollen-grain sticks to 
the stigma from an orifice near the point of adhesion a tube outgrows to the female nucleus 
enabling the process of fertilization. Some flowers have spherical pollen-grains on which the 
orifices are rather uniformly distributed. Trying to explain the peculiar arrangements of the 
orifices, the Dutch biologist Tammes made the hypothesis that on each grain nature tries to 
produce the maximal number n of orifices under the condition that no two orifices are allowed 
to get nearer to one another than a certain distance depending only on the species. Now the 
question arises about the smallest sphere which accommodates n orifices under the above 
condition. This problem is equivalent with the following: On the unit sphere distribute n points 
so as to maximize the least distance between pairs of them. This problem is often referred to 
as the problem of Tammes. 

The problem was investigated by several authors[5,8,26,29], and completely solved for 
n -< 12, and n = 24. We emphasize the cases of n = 3, 4, 5, and 12 points when the best 
arrangements are given by the vertices of {3, 2}, {3, 3}, {3, 4} and {3, 5}, and the cases of n = 
8, and 24 points which lead as solutions to the vertices of the uniform polyhedra (3, 3, 3, 4) 
and (3, 3, 3, 3, 4) (see Fig. 1). 

Q 
Let Pn be the convex hull of the extremal set of n points. The sequence P4, P5 . . . .  can 

be considered as a natural extension of the set of the trigonal Platonic solids. Polarity with 
respect to the sphere yields a similar extension of the set of the trihedral Platonic solids. However, 
there is a great variety of other extremum problems which provide essentially different 
"generalisations" of the notion of regular solids. 

The problem of Tammes can be reformulated as follows: On the sphere find the densest 
packing of n equal circles (spherical caps). The density of a set of domains lying on the sphere 
is defined by the total area of the domains divided by the surface-area of the sphere. If  no two 
domains overlap then they are said to form a packing. Thus the problem is to find the biggest 
circle whose n congruent replicas can be placed on the sphere without overlapping each other. 

Fig. 1. The uniform solid (3, 3, 3, 3, 4). 
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The following formulation of the problem suggests its connection with stereochemistry: What 
is the maximal number of non-overlapping equal balls of prescribed radius which can be brought 
in contact with a unit ball? 

Analogous problems arise in higher dimensions in information theory. For the efficient 
transmission of informations through a noisy channel we have to design a code. Suppose that 
we need n code words each consisting of a sequence of d pulses of discrete voltage levels. The 
code words can be represented in the d-dimensional space as points whose coordinates are the 
d voltage levels. The energy needed to transmit a pulse is proportional to the square of the 
voltage level. So the total power required to transmit one code word is proportional to the square 
of the distance between the origin and the point representing the code word. It is convenient 
to choose code words whose transmission requires the same energy. This means that we have 
to choose the n points on the boundary of a d-dimensional ball. Another requirement is to 
choose the code words so that they could be well distinguished from one another. Under the 
supposition of a background noise of constant intensity this requirement turns out to be equivalent 
with distributing the points so that no two should get closer to each other than a prescribed 
distance. Adding the last condition of minimizing the total energy which is needed to transmit 
an information, we have the problem of finding the smallest d-dimensional ball whose boundary 
can hold n points under the above condition. 

It is interesting to note that the problem of Tammes, as well as its d-dimensional analogue 
were brought up independently of their applications by pure geometric considerations, and were 
solved in some highly interesting cases by geometrical methods. Among others it turned out[3] 
that the extremal distribution of 120 points o n a  four-dimensional ball is given by the vertices 
of the regular 600-cell, one of the four-dimensional analogues of the Platonic solids discovered 
by L. Schl~ifli in the middle of the last century. But recently even more efficient methods were 
developed based on sophisticated considerations in analysis. We will return to some results 
obtained by this method later. 

We still recall a jocular interpretation of the problem of Tammes[23]: Over a planet n 
inimical dictators bear rule. How should the residences of these gentlemen be distributed so as 
to get as far from one another as possible? Our next problem is the problem of the allied 
dictators, who want to set up their residences so as to control the planet as well as possible. 
More exactly, on a sphere mark n points so as to minimize the greatest distance between a 
point of the sphere and the mark nearest to it. 

The solution is known f o r n - <  7 andn  = 10, 12 and 14. Forn  = 3, 4, 6and  12 we 
have the vertices of {3, 2}, {3, 3}, {3, 4} and {3, 6}, similarly as in the problem of the inimical 
dictators. The solution of the remaining cases can be summarized along with the cases when 
n = 6 and 12 as follows. For n = 5, 6 and 7 we have the vertices of a dipyramid, and for 
n = 10, 12 and 14 the vertices of an "antiprismatic dipyramid" (Fig. 2) with the respective 
number of vertices[6, 28]. 

It is not difficult to show that there are only finitely many numbers n such that the problems 
of n inimical and n allied dictators have identical solutions, and it is conjectured that the only 
such numbers are 2, 3, 4, 5, 6 and 1217]. 

Some dome structures and geometrical sculptures consist of spherical circle packings[30]. 
Here the problem arises of minimizing the total material of the circles simultaneously requiring 

Fig. 2. Antiprismatic dipyramids with 10, 12, and 14 vertices. 
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a prescribed stability of  the framework. The circles need not to be congruent but for practical 
reasons their size must be bounded from below. In order to formulate an exact problem we 
introduce a notion. 

On the unit sphere let P = {c~ . . . . .  cn} be a locally stable packing of circles defined 
by the property that each circle is fixed by the others so that no circle of  P can be moved alone 
without overlapping another circle of  P. On the boundary of ci let a be a greatest arc which is 
not touched by a circle c~, j # i. Let 2hl be the angle subtended by a at the center of  ci. We 
call hi the lability of ci, and define the lability h of P by h = max~_~, hi. Since the smallest 
circle is touched by at most five, and at least two circles, we have "rr/5 --- h ~ ~r/2. 

The problem we are interested in is to find among all locally stable packings of circles 
with lability not exceeding a prescribed bound h, and radii not less than a given value r that 
one of minimal density. For various particular values of h and r this problem leads to many 
regular configurations. We consider the locally stable packing consisting of equal circles centered 
at the vertices of  any of the following tilings: {4, 3}, {5, 3}, (3, 4, 4), (3, 6, 6), (3, 8, 8), (3, 
10, 10), (3, 4, 4, 4), (4, 6, 6), (5, 6, 6). Let h0 and r0 be the lability and radius of  the circles. 
Then for h = h0 and r = r0 the solution to the problem is the respective packing under 
consideration[18]. The packing generated by the "football  tiling" (5, 6, 6) is exhibited in 
Fig. 3. 

Before discussing our last problem about spherical arrangements we make a digression. 
In an Euclidean or non-Euclidean space let B be a ball. I called the maximal number of  congruent 
non-overlapping copies of  B which can touch B the Newton number of B [ 16]. This name refers 
to the controversy between Newton and D. Gregory about the Newton number of  an ordinary 
ball which, 180 years later, was proved to be twelve as claimed by Newton. In a non-Euclidean 
space the Newton number depends besides the dimension on the size of  the ball. 

In a packing of circles c~ . . . . .  c, of  radius r let ci be touched by ki circles. Our problem 
is to find the maximum of the average number of points of  contact: 

1 
M ( r )  = m a x - ( k ~  + . . .  + k . )  

n 

extended over  all packings of  circles of  radius r. 

Fig. 3. A locally stable packing of circles centered at the vertices of the tiling (5, 6, 6). 
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Fig. 4. The uniform solid (3, 3, 3, 3, 5). 

Among the varied extremal packings special attention is due to those in which each circle 
is touched by as many circles as its Newton number. We call such a packing maximal neighbour 
packing, in short m a x i m a l  p a c k i n g .  

A maximal packing of n equal circles exists only if n = 2, 3, 4, 6, 8, 9, 12, 24, 48, 60, 
or 120116,27]. For 4 <_ n <- 24 the circles constitute a densest packing, and the same is 
conjectured to be true for n = 48 and 120. For n = 60 the circles are centered at the vertices 
of (3, 3, 3, 3, 5) (Fig. 4). The maximal packings of 48 and 120 circles have the same symmetry 
groups as the maximal packings of 24 and 60 circles, notably the rotation groups of {3, 4} and 
{3, 5}, respectively. Accordingly, they exist in two enantiomorphous varieties. 

We still emphasize a further particular case: we have M('rr/6) = 4. The extremal packing 
is not unique. The centers of six circles are equally spaced on the equator, leaving room for 
three further circles on both hemispheres in two different ways: the packing is either symmetric 
with respect to the equator or with respect to the center of the sphere. The two configurations 
of unit balls which touch the central unit ball at the centers of these circles occur in nature in 
the crystal structure of some metals. 

3. ARRANGEMENTS IN THE PLANE 

We start with some fundamental concepts. Let e~, . . . , e d be vectors which span the d- 
dimensional Euclidean space. Applying the translations k~e~ + . . . + kded with all possible 
d-tuples of integers k~ . . . . .  ka to a body B, we obtain a lattice of translates of B. Lattice- 
translations are fundamental symmetry operations of all regular arrangements which extend 
through the whole space. 

The dens i t y  of an infinite set of bodies scattered through the whole space is defined by a 
limiting value. Instead of the exact definition we confine ourselves to the vivid interpretation 
of the density as the total volume of the bodies divided by the volume of the whole space. 

After these general remarks we consider arrangements in the ordinary plane. 
Let D be an arbitrary centro-symmetric convex disc. Among all possible regular or com- 

pletely irregular packings of congruent copies of D we want to find a packing of maximal 
density. The answer is given by the following theorem[10,11,15]: The density of a packing 
of equal centro-symmetric convex discs never exceeds the density of the densest lattice-packing. 
Vividly expressed this means that at the command to fill the greatest possible part of the plane 
the disorderly lying discs will get into parallel position, and align in a lattice. 

It must be noted that this interpretation is rough because the requirement of maximal density 
does not determine the packing uniquely. The regularity of the packing can be disturbed by 
"breaking lines" and other kinds of irregularities without changing the density in the whole 
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plane. In addition there are special discs which allow a regular non-lattice-packing having the 
same density as the densest lattice-packing. 

For general convex discs a similar theorem holds only for packings of translates of the 
disc[25]. 

In the 1930s German scientists studied the problem of drawing up the plan of economic 
human settlements laying the foundation of the so called location theory. Among others they 
raised the following problem. In a uniformly populated big country we want to plant a certain 
number n of factories which produce the same kinds of goods. Each point of the country is 
provided by the factory nearest to it. How should the factories be distributed so as to minimize 
the total haulage? 

We try to formulate the problem exactly. Let D be a domain, P a point, and f(x) a strictly 
increasing function defined for x ~ 0. We consider the moment of D with respect to P defined 
by M(D, P) = fof(PA)da, where da is the area element at the point A. Let P1 . . . . .  P, be 
n points. Let Di be the Dirichlet cell of Pi consisting of those points of D which are nearer to 
Pi than to any other point Pj. The problem is to distribute the points P1 . . . . .  P, so as to 
minimize the sum 2~,"=~ M(Di, p,). 

It was conjectured that for great values of n we obtain the best distribution by putting the 
points in the vertices of a tiling {3, 6}. Prompted by purely geometrical considerations, the 
problem was raised and studied again confirming the correctness of the above conjec- 
ture[9,11]. 

J. Nigli gave a complete survey over the infinite connected regular circle-packings enum- 
erating 31 types of such packings. Four of these packings are solutions to the problem of 
minimizing the density of an artibrary packing of circles under the condition that the lability 
of the packing (defined as on the sphere) should not exceed a prescribed value[ 15]. The respective 
packings consist of equal circles centered at the vertices of the tilings (3, 12, 12), (4, 8, 8), 
{6, 3} and {4, 4} (Fig. 5). 

We call a circle-packing in which each circle is touched by at least k circles k-neighbour 
packing. Two consecutive rows in the densest lattice-packing of circles form a 4-neighbour 
packing with zero density. But any 5-neighbour packing of equal circles has positive density. 
What is the thinnest 5-neighbour packing of equal circles? The solution is another of the packings 
enumerated by Nigli[17] in which the circles are centered at the vertices of the tiling (3, 3, 3, 
3, 6) (Fig. 6). 

The regular shape of the honeycomb fascinated man ever and again. According to a widely 
spread (but questionable[ 14]) hypothesis, the bees aim at using the minimum amount of wax 
per cell. Since the bee-cells are deep as compared with the diameter of their openings, the 
problem of constructing not necessarily congruent "bee-cells" of given volume so as to minimize 
the total area of the cell-walls can be approximated by the problem of decomposing a plane 
region into a great but given number of convex polygons of equal area having minimal total 
perimeter. This problem leads to the tiling {6, 3}, in accordance with the shape of the honey- 
comb[ 13]. 

Similar problems are suggested by succulent vegetable tissues in which the cells are 
crammed tightly together in a part of space without filling it completely. Suppose that: (1) 
under the condition of equal constant surface-area the cells try to expand so as to maximize 
their total volume and (2) under the condition of equal constant volume the cell-walls try to 
contract so as to minimize their total surface-area. What shape and arrangement will the cells 
assume under these conditions'? 

In the stem of plants the cells are largely elongated in the axial direction. This propounds 
the two-dimensional analogues of the above problems in which the part of volume and surface- 
area are played by area and perimeter. In both problems we have an array of extremal packings 
depending on the prescribed perimeter p and area a of the cells which we consider as plastic 
convex discs packed into a domain. For a great number of cells the asymptotic behaviour of 
the two arrays are similar[12,15,19]. For small values of p and a the cells are equal small 
circles packed anyhow. Along with p and a the circles will increase, and at certain values of 
p and a will get into the densest packing forming the incircles of the faces of a tiling {6, 3}. 
Increasing forth p and a, the discs will turn into smooth hexagons which arise from the faces 
of {6, 3} by rounding off their corners with equal circular arcs. Finally these arcs will shrink 
to points so that the cells will fill the whole available room. 
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Fig. 5. Locally stable packings of circles centered at the vertices of (3, 12, 12), (4, 8, 8), ~'6, 3}, and {4, 4~,. 

Fig. 6. Thinnest 5-neighbour packing of equal circles. 
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Observe the general conditions in the above problems: The congruences of the discs, their 
regular shape and regular arrangement are all induced by one simple and natural extremum 
requirement. 

The configuration of smooth hexagons can be observed in microscopic sections of the stem 
of some plants. 

4. A R R A N G E M E N T S  IN THE SPACE 

Little is known about the three-dimensional analogues of the problems considered in the 
plane. The difficulties inherent in these problems are demonstrated by the fact that even the 
problem of the densest packing of unit balls is a long-standing unsolved problem. 

According to a well-founded conjecture among the solutions there are two regular packings 
of different types. Both are built up of hexagonal layers consisting of balls centered at the 
vertices of a tiling {3, 6} of edge-length two. The regular packings in question arise by putting 
the layers together so as to form a packing in which each ball is touched by twelve others in 
one of the two configurations described at the end of Sec. 2. 

The layers can be put together also by letting the two configurations alternate from layer 
to layer in any order. Since the Newton number of a ball is twelve all these packings are 
maximal packings. It is conjectured that in three-dimensional Euclidean space all maximal 
packings consist of hexagonal layers[16]. 

Still the proof of this conjecture seems to be difficult. On the other hand, the method we 
referred to in connection with higher dimensional analogues of the problem of Tammes brought 
some surprising results. 

Let Nd denote the Newton number of a d-dimensional ball. Obviously, we have N~ = 2 
and N2 = 6, and we mentioned that N 3 = 12. These were the only values of Nd known until 
quite recently. A remarkable achievement of late years was the determination of the Newton 
number of the 8- and 24-dimensional ba11122,24]: N8 = 240 and N24 =- 196560. For no other 
values of d > 3 is the value of Nd known. 

It turned out that the configurations of 240 and 196560 balls touching a central ball are 
unique[l]. Each one occurs in a particular lattice-packing which in 8-dimensional space is 
proved, and in 24-dimensional space is conjectured to be the densest lattice-packing. So these 
lattices are the unique maximal packings in the respective dimensions. In other dimensions 
higher than three we do not know whether a maximal packing exists at all or not. 

In spite of the difficulties there is a hope of elaborating the genetics of three- and more- 
dimensional regular distributions. To conclude we present an encouraging result. 

In our ordinary space let P be a packing of unit balls. Let r be the least upper bound of 
the radii of all balls disjoint to the balls of P. We call 1/r closeness of P. We want to find 
among all possible packings of unit balls the closest one, i.e. that one for which r assumes the 
least possible value. The solution to this problem is a lattice-packing. The centers of the balls 
form a so called body-centered cubic lattice which consists of the centers and the vertices of 
cubes constituting a face to face tiling of the spacel4]. 
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