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a b s t r a c t

Making use of a linear operator, which is defined here by means of the Hadamard product
(or convolution), involving the generalized hypergeometric function, we introduce two
novel subclassesΩp,q,s(α1; A, B, λ) andΩ+p,q,s(α1; A, B, λ) of meromorphically multivalent
functions of order λ (0 ≤ λ < p) in the punctured disc U∗. In this paper we investigate the
various important properties and characteristics of these subclasses of meromorphically
multivalent functions. We extend the familiar concept of neighborhoods of analytic
functions to these subclasses of meromorphically multivalent functions. We also derive
many interesting results for the Hadamard products of functions belonging to the class
Ω+p,q,s(α1; A, B, λ).

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Let
∑
p denote the class of functions of the form:

f (z) = z−p +
∞∑
k=1

akzk−p (p ∈ N = {1, 2, . . .}), (1.1)

which are analytic and p-valent in the punctured disc

U∗ = {z : z ∈ C and 0 < |z| < 1} = U \ {0}.

For functions f (z) ∈
∑
p given by (1.1), and g(z) ∈

∑
p given by

g(z) = z−p +
∞∑
k=1

bkzk−p (p ∈ N), (1.2)

we define the Hadamard product (or convolution) of f (z) and g(z) by

(f ∗ g)(z) = z−p +
∞∑
k=1

akbkzk−p. (1.3)

For complex parameters

α1, . . . , αq and β1, . . . , βs (βj 6∈ Z−0 = {0,−1,−2, . . .}; j = 1, 2, . . . , s),

∗ Corresponding author.
E-mail addresses:mkaouf127@yahoo.com (M.K. Aouf), mansour66eg@yahoo.com (M.F. Yassen).

0898-1221/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2009.04.013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82483884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:mkaouf127@yahoo.com
mailto:mansour66eg@yahoo.com
http://dx.doi.org/10.1016/j.camwa.2009.04.013


450 M.K. Aouf, M.F. Yassen / Computers and Mathematics with Applications 58 (2009) 449–463

we now define the generalized hypergeometric function qFs(α1, . . . , αq;β1, . . . , βs; z) by

qFs(α1, . . . , αq;β1, . . . , βs; z) =
∞∑
k=0

(α1)k · · · (αq)k

(β1)k · · · (βs)k
.
zk

k!
(q ≤ s+ 1; q, s ∈ N0 = N ∪ {0}; z ∈ U), (1.4)

where (θ)ν is the Pochhammer symbol defined, in terms of the Gamma function 0, by

(θ)ν =
0(θ + ν)

0(θ)
=

{
1, (ν = 0; θ ∈ C \ {0}),
θ(θ + 1) · · · (θ + ν − 1), (ν ∈ N; θ ∈ C). (1.5)

Corresponding to the function hp(α1, . . . , αq;β1, . . . , βs; z), defined by

hp(α1, . . . , αq;β1, . . . , βs; z) = z−p qFs(α1, . . . , αq;β1, . . . , βs; z),

Liu and Srivastava [1] (see, for details, [2] and [3]) introduced a linear operator:

Hp(α1, . . . , αq;β1, . . . , βs) : Σp → Σp,

which is defined by the following Hadamard product (or convolution):

Hp(α1, . . . , αq;β1, . . . , βs)f (z) = hp(α1, . . . , αq;β1, . . . , βs; z) ∗ f (z). (1.6)

We observe that, for a function f (z) of the form (1.1), we have

Hp(α1, . . . , αq;β1, . . . , βs)f (z) = z−p +
∞∑
k=1

(α1)k . . . (αq)k

(β1)k . . . (βs)k
.
ak
k!
zk−p. (1.7)

If, for convenience, we write

Hp,q,s(α1) = Hp(α1, . . . αq;β1, . . . , βs),
Hp,q,s(α1 + 1) = Hp(α1 + 1, . . . , αq;β1, . . . , βs),

(1.8)

where α2, . . . , αq, β1, . . . , βs ∈ C remain fixed, then one can easily verify from the definition (1.6) that

z(Hp,q,s(α1)f (z))′ = α1Hp,q,s(α1 + 1)f (z)− (α1 + p)Hp,q,s(α1)f (z). (1.9)

Some interesting subclasses of analytic functions, associated with the generalized hypergeometric function, were
considered recently by (for example) Gangadharan et al. [4] and Liu [5].
Let f (z) and g(z) be analytic in U . Then we say that the function g(z) is subordinate to f (z) if there exists an analytic

functionw(z) in U such thatw(0) = 0,

|w(z)| < 1(z ∈ U) and g(z) = f (w(z)).

For this subordination, the symbol g(z) ≺ f (z) is used. In case f (z) is univalent in U , the subordination g(z) ≺ f (z) is
equivalent to

g(0) = f (0) and g(U) ⊂ f (U).

In this paper we generalize the classesΩp,q,s(α1; A, B) andΩ
+
p,q,s(α1; A, B) studied by Liu and Srivastava [1] as follows:

Making use of the operator Hp,q,s(α1),we say that a function f (z) ∈
∑
p is in the classΩp,q,s(α1; A, B, λ) if it satisfies the

following subordination condition:

1
p− λ

(
(Hp,q,s(α1 + 1)f (z))′

(Hp,q,s(α1)f (z))′
− 1

)
≺ −

(A− B)z
α1(1+ Bz)

,

(z ∈ U;−1 ≤ B < A ≤ 1;α1 ∈ C \ {0}; p, q, s ∈ N; 0 ≤ λ < p), (1.10)

or, equivalently, by using (1.9), if∣∣∣∣∣∣
1+ z(Hp,q,s(α1)f (z))′′

(Hp,q,s(α1)f (z))′
+ p

B
(
1+ z(Hp,q,s(α1)f (z))′′

(Hp,q,s(α1)f (z))′

)
+ [pB+ (A− B)(p− λ)]

∣∣∣∣∣∣ < 1. (1.11)

Furthermore, we introduce a second classΩ+p,q,s(α1; A, B, λ) defined as follows:
We say that a function f (z) ∈ Ω+p,q,s(α1; A, B, λ)wherever f (z) is of the form:

f (z) = z−p +
∞∑
k=p

|ak|zk (p ∈ N). (1.12)
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We note that: Ωp,q,s(α1; A, B, 0) = Ωp,q,s(α1; A, B) and Ω
+
p,q,s(α1; A, B, 0) = Ω+p,q,s(α1; A, B) (Liu and Srivastava [1]). Also

we observe that:

Ω+p,q,s(α1;β,−β, λ) = Ω+p,q,s(α1; λ, β)

=

f (z) ∈ Σp and
∣∣∣∣∣∣
1+ z(Hp,q,s(α1)f (z))′′

(Hp,q,s(α1)f (z))′
+ p

1+ z(Hp,q,s(α1)f (z))′′

(Hp,q,s(α1)f (z))′
− p+ 2λ

∣∣∣∣∣∣ < β

(z ∈ U; 0 ≤ λ < p; 0 < β ≤ 1; p ∈ N)} . (1.13)

Meromorphic multivalent functions have been extensively studied by (for example) Mogra [6,7], Uralegaddi and
Ganigi [8], Uralegaddi and Somanatha [9], Aouf [10,11], Aouf and Hossen [12], Srivastava et al. [13], Owa et al. [14], Joshi and
Aouf [15], Joshi and Srivastava [16], Aouf et al. [17], Raina and Srivastava [18], Yang [19,20], Kulkarni et al. [21], Liu [22] and
Liu and Srivastava [23,24].
In this paper we investigate the various important properties and characteristics of the classes Ωp,q,s(α1; A, B, λ)

and Ω+p,q,s(α1; A, B, λ). Following the recent investigations by Altintas et al. [25, p. 1668], we extend the concept of
neighborhoods of analytic functions, which was considered earlier by (for example) Goodman [26] and Ruscheweyh [27],
to meromorphically multivalent functions, belonging to the classesΩp,q,s(α1; A, B, λ) andΩ+p,q,s(α1; A, B, λ). We also derive
many interesting results for the Hadamard products of functions belonging to the p-valently meromorphic function class
Ω+p,q,s(α1, A, B, λ).
The main results of the first classΩp,q,s(α1; A, B, λ) are mentioned in Theorems 1 and 2, respectively. Moreover, for the

second classΩ+p,q,s(α1; A, B, λ), the main results will be included in Theorems 3 and 6–11, respectively.

2. Inclusion properties of the classΩp,q,s(α1;A, B, λ)

We begin by recalling the following result (popularly known as Jack’s lemma [28]), which we shall apply in proving our
first inclusion theorem (Theorem 1).

Lemma 1 (See [28]). Let the (nonconstant) functionw(z) be analytic in U withw(0) = 0. If |w(z)| attains its maximum value
on the circle |z| = r < 1 at a point z0 ∈ U, then

z0w′(z0) = γw(z0), (2.1)

where γ is a real number and γ ≥ 1.

Theorem 1. Let α1 ∈ R \ {0}. If

α1 ≥
(A− B)(p− λ)

1+ B
(−1 < B < A ≤ 1; 0 ≤ λ < p; p ∈ N), (2.2)

then

Ωp,q,s(α1 + 1; A, B, λ) ⊂ Ωp,q,s(α1; A, B, λ).

Proof. Let f (z) ∈ Ωp,q,s(α1 + 1; A, B, λ) and suppose that

(Hp,q,s(α1 + 1)f (z))′

(Hp,q,s(α1)f (z))′
= 1−

(A− B)(p− λ)w(z)
α1(1+ Bw(z))

, (2.3)

where the function w(z) is either analytic or meromorphic in U , with w(0) = 0. By differentiating (2.3) with respect to z
logarithmically and using (1.9), we have

(α1 + 1)
(
(Hp,q,s(α1 + 2)f (z))′

(Hp,q,s(α1 + 1)f (z))′
− 1

)
=
(B− A)(p− λ)w(z)

1+ Bw(z)
+

(B− A)(p− λ)zw′(z)
(1+ Bw(z))[α1 + (Bα1 − (A− B)(p− λ))w(z)]

. (2.4)

Now, if we suppose that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1 (z0 ∈ U), (2.5)

and apply Jack’s lemma, we find that

z0w′(z0) = γw(z0) (γ ≥ 1). (2.6)
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Writing

w(z0) = eiθ (0 ≤ θ ≤ 2π)

and putting z = z0 in (2.4), we get after some computations that∣∣∣∣ (α1 + 1)[(Hp,q,s(α1 + 2)f (z0))′ − (Hp,q,s(α1 + 1)f (z0))′]
B(α1 + 1)[(Hp,q,s(α1 + 2)f (z0))′ − (Hp,q,s(α1 + 1)f (z0))′] + D

∣∣∣∣2 − 1
=

∣∣∣∣ (α1 + γ )+ [Bα1 − (A− B)(p− λ)]eiθα1 + [B(α1 − γ )− (A− B)(p− λ)]eiθ

∣∣∣∣2 − 1
=
γ 2(1− B2)+ 2γ [α1(1+ B2)− B(A− B)(p− λ)] + 2γ [2α1B− (A− B)(p− λ)] cos θ∣∣α1 + [B(α1 − γ )− (A− B)(p− λ)]eiθ ∣∣2 , (2.7)

where

D = (A− B)(p− λ)(Hp,q,s(α1 + 1)f (z0))′.

Set

g(θ) = γ 2(1− B2)+ 2γ [α1(1+ B2)− B(A− B)(p− λ)] + 2γ [2Bα1 − (A− B)(p− λ)] cos θ (0 ≤ θ ≤ 2π)

(−1 < B < A ≤ 1; 0 ≤ λ < p; p ∈ N;α1 ∈ R \ {0}; γ ≥ 1; 0 ≤ θ ≤ 2π). (2.8)

Then, by hypothesis, we have

g(0) = γ 2(1− B2)+ 2γ (1+ B)[α1(1+ B)− (A− B)(p− λ)] ≥ 0

and

g(π) = γ 2(1− B2)+ 2γ (1− B)[α1(1− B)+ (A− B)(p− λ)] ≥ 0

which, together, show that

g(θ) ≥ 0 (0 ≤ θ ≤ 2π). (2.9)

In view of (2.9), (2.7) would obviously contradict our hypothesis that f (z) ∈ Ωp,q,s(α1 + 1; A, B, λ). Hence, we must have

|w(z)| < 1 (z ∈ U), (2.10)

and we conclude from (2.3) that

f (z) ∈ Ωp,q,s(α1; A, B, λ).

The proof of Theorem 1 is thus completed. �

Next we prove an inclusion property associated with a certain integral transform introduced below.

Theorem 2. Let µ be a complex number such that

Re(µ) >
(A− B)(p− λ)

1+ B
(−1 < B < A ≤ 1; 0 ≤ λ < p; p ∈ N).

If f (z) ∈ Ωp,q,s(α1; A, B, λ), then the function F(z) defined by

F(z) =
µ

zµ+p

∫ z

0
tµ+p−1f (t) dt (2.11)

also belongs to the classΩp,q,s(α1; A, B, λ).

Proof. From (2.11), we readily have

z(Hp,q,s(α1)F(z))′ = µHp,q,s(α1)f (z)− (µ+ p)Hp,q,s(α1)F(z). (2.12)

Suppose that f (z) ∈ Ωp,q,s(α1; A, B, λ) and put

(Hp,q,s(α1 + 1)F(z))′

(Hp,q,s(α1)F(z))′
= 1−

[(A− B)(p− λ)]w(z)
α1(1+ Bw(z))

, (2.13)
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where the functionw(z) is either analytic ormeromorphic inU , withw(0) = 0. Then, by using (2.12), (2.13) and the identity
(1.9), we find after some calculations that

α1

(
(Hp,q,s(α1 + 1)f (z))′

(Hp,q,s(α1)f (z))′
− 1

)
=
(B− A)(p− λ)w(z)

1+ Bw(z)
+

(B− A)(p− λ)zw′(z)
(1+ Bw(z))[µ+ (µB− (A− B)(p− λ))w(z)]

.

The remaining part of the proof of Theorem 2 is similar to that of Theorem 1 and so is omitted. �

3. Properties of the classΩ+
p,q,s(α1;A, B, λ)

In this section we assume further that
αj > 0 (j = 1, . . . , q), βj > 0 (j = 1, . . . , s), 0 ≤ B < 1, 0 ≤ λ < p, and p ∈ N.

We first determine a necessary and sufficient condition for a function f (z) ∈ Σp of the form (1.12) to be in the class
Ω+p,q,s(α1; A, B, λ) of meromorphically p-valent functions with positive coefficients.

Theorem 3. Let f (z) ∈ Σp be given by (1.12). Then f (z) ∈ Ω+p,q,s(α1; A, B, λ) if and only if

∞∑
k=p

k0k+p(α1)[(k+ p)(1+ B)+ (A− B)(p− λ)]|ak| ≤ p(A− B)(p− λ), (3.1)

where, for convenience,

0m(α1) =
(α1)m . . . (αq)m

(β1)m . . . (βs)mm!
(m ∈ N). (3.2)

Proof. Let f (z) ∈ Ω+p,q,s(α1; A, B, λ) be given by (1.12). Then from (1.11) and (1.12), we have∣∣∣∣ α1[(Hp,q,s(α1 + 1)f (z))′ − (Hp,q,s(α1)f (z))′]
α1B [(Hp,q,s(α1 + 1)f (z))′ − (Hp,q,s(α1)f (z))′] + (A− B)(p− λ)(Hp,q,s(α1)f (z))′

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∞∑
k=p
k(k+ p)0k+p(α1)|ak|zk+p

p(A− B)(p− λ)−
∞∑
k=p
[B(k+ p)+ (A− B)(p− λ)]k0k+p(α1)|ak|zk+p

∣∣∣∣∣∣∣∣∣
< 1 (z ∈ U).

Since |Re(z)| ≤ |z|(z ∈ C), we have

Re


∞∑
k=p
k(k+ p)0k+p(α1)|ak|zk+p

p(A− B)(p− λ)−
∞∑
k=p
[B(k+ p)+ (A− B)(p− λ)]k0k+p(α1)|ak|zk+p

 < 1 (z ∈ U). (3.3)

We consider real values of z and take z = r with 0 ≤ r < 1. Then, for r = 0, the denominator of (3.3) is positive and so is
positive for all r (0 < r < 1). Letting z = r → 1−, (3.3) yields

∞∑
k=p

k(k+ p)0k+p(α1)|ak| ≤ p(A− B)(p− λ)−
∞∑
k=p

[B(k+ p)+ (A− B)(p− λ)]k0k+p(α1)|ak|,

which leads us at once to (3.1).
In order to prove the converse, we assume that the inequality (3.1) holds true. Then we get∣∣∣∣∣ α1[(Hp,q,s(α1 + 1)f (z))′ − (Hp,q,s(α1)f (z))′]

α1B
[
(Hp,q,s(α1 + 1)f (z))′ − (Hp,q,s(α1)f (z))′

]
+ (A− B)(p− λ)(Hp,q,s(α1)f (z))′

∣∣∣∣∣
≤

∞∑
k=p
k(k+ p)0k+p(α1)|ak|

p(A− B)(p− λ)−
∞∑
k=p
[B(k+ p)+ (A− B)(p− λ)]k0k+p|ak|

< 1 (z ∈ U).

Hence, by the maximummodulus theorem, we have f (z) ∈ Ω+p,q,s(α1; A, B, λ). This completes the proof of Theorem 3. �
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Corollary 1. Let f (z) ∈ Σp be given by (1.12). If f (z) ∈ Ω+p,q,s(α1; A, B, λ), then

|ak| ≤
p(A− B)(p− λ)

k0k+p(α1) [(k+ p)(1+ B)+ (A− B)(p− λ)]
(k ≥ p; p ∈ N). (3.4)

The result is sharp for the function f (z) given by

f (z) = z−p +
p(A− B)(p− λ)

k0k+p(α1)[(k+ p)(1+ B)+ (A− B)(p− λ)]
zk (k ≥ p; p ∈ N). (3.5)

Putting λ = 0 in Theorem 3, we obtain

Corollary 2. Let f (z) ∈ Σp be given by (1.12). Then f (z) ∈ Ω+p,q,s(α1; A, B), if and only if

∞∑
k=p

k0k+p(α1)[(k+ p)(1+ B)+ p(A− B)] |ak| ≤ p2(A− B).

Remark 1. We note that the result obtained by Liu and Srivastava [1, Theorem 3] is not correct. The correct result is given
by Corollary 2.

Next we prove the following growth and distortion properties for the classΩ+p,q,s(α1; A, B, λ).

Theorem 4. Let the function f (z) of the form (1.12) belong to the classΩ+p,q,s(α1; A, B, λ). If the sequence [Ck] is nondecreasing,
then

r−p −
p(A− B)(p− λ)

Cp
rp ≤ |f (z)| ≤ r−p +

p(A− B)(p− λ)
Cp

rp (0 < |z| = r < 1), (3.6)

where

Ck = k0k+p(α1)[(k+ p)(1+ B)+ (A− B)(p− λ)] (k ≥ p; p ∈ N) (3.7)

and 0k+p(α1) is given by (3.2).
If the sequence { Ckk } is nondecreasing, then

pr−p−1 −
p2(A− B)(p− λ)

Cp
rp−1 ≤

∣∣f ′(z)∣∣ ≤ pr−p−1 + p2(A− B)(p− λ)
Cp

rp−1 (0 < |z| = r < 1). (3.8)

Each of these results is sharp with the extremal function f (z) given by

f (z) = z−p +
(A− B)(p− λ)

02p(α1)[2p(1+ B)+ (A− B)(p− λ)]
zp (p ∈ N). (3.9)

Proof. Let the function f (z), given by (1.12), be in the class Ω+p,q,s(α1; A, B, λ). If the sequence {Ck} is nondecreasing and
positive, then, by Theorem 3, we have

∞∑
k=p

|ak| ≤
p(A− B)(p− λ)

Cp
, (3.10)

and if the sequence { Ckk } is nondecreasing and positive, Theorem 3 also yields

∞∑
k=p

k |ak| ≤
p2(A− B)(p− λ)

Cp
. (3.11)

Making use of the conditions (3.10) and (3.11), in conjunction with the definition (1.12), we readily obtain the assertions
(3.6) and (3.8) of Theorem 4.
Finally, it is easy to see that the bounds in (3.6) and (3.8) are attained for the function f(z) given by (3.9).
Next we determine the radii of meromorphically p-valent starlikeness of order φ (0 ≤ φ < p) and meromorphically

p-valent convexity of order φ (0 ≤ φ < p) for functions in the classΩ+p,q,s(α1; A, B, λ). �
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Theorem 5. Let the function f (z) defined by (1.12) be in the classΩ+p,q,s(α1; A, B, λ). Then (i) f (z) is meromorphically p-valent
starlike of order φ (0 ≤ φ < p) in the disc |z| < r1, that is,

Re
{
−
zf ′(z)
f (z)

}
> φ (|z| < r1; 0 ≤ φ < p; p ∈ N), (3.12)

where

r1 = inf
k≥p

{
k0k+p(α1)(p− φ)[(k+ p)(1+ B)+ (A− B)(p− λ)]

p(A− B)(p− λ)(k+ φ)

} 1
k+p

. (3.13)

(ii) f (z) is meromorphically p-valent convex of order φ (0 ≤ φ < p) in the disc |z| < r2, that is,

Re
{
−

(
1+

zf ′′(z)
f ′(z)

)}
> φ (|z| < r2; 0 ≤ φ < p; p ∈ N), (3.14)

where

r2 = inf
k≥p

{
0k+p(α1)(p− φ)[(k+ p)(1+ B)+ (A− B)(p− λ)]

(A− B)(p− λ)(k+ φ)

} 1
k+p

, (3.15)

and 0k+p(α1) is given by (3.2). Each of these results is sharp for the function f (z) given by (3.5).

Proof. (i) From the definition (1.12), we easily get

∣∣∣∣∣
zf ′(z)
f (z) + p

zf ′(z)
f (z) − p+ 2φ

∣∣∣∣∣ ≤
∞∑
k=p
(k+ p)|ak||z|k+p

2(p− φ)−
∞∑
k=p
(k− p+ 2φ)|ak||z|k+p

. (3.16)

Thus, we have the desired inequality:∣∣∣∣∣
zf ′(z)
f (z) + p

zf ′(z)
f (z) − p+ 2φ

∣∣∣∣∣ ≤ 1 (0 ≤ φ < p; p ∈ N) (3.17)

if
∞∑
k=p

(
k+ φ
p− φ

)
|ak||z|k+p ≤ 1. (3.18)

Hence, by Theorem 3, (3.18) will be true if(
k+ φ
p− φ

)
|z|k+p ≤

k0k+p(α1)[(k+ p)(1+ B)+ (A− B)(p− λ)]
p(A− B)(p− λ)

(k ≥ p; p ∈ N). (3.19)

The last inequality (3.19) leads us immediately to the disc |z| < r1, where r1 is given by (3.13).
(ii) In order to prove the second assertion of Theorem 5, we find from the definition (1.12) that

∣∣∣∣∣∣ 1+ zf
′′
(z)

f ′(z) + p

1+ zf ′′(z)
f ′(z) − p+ 2φ

∣∣∣∣∣∣ ≤
∞∑
k=p
k(k+ p)|ak||z|k+p

2p(p− φ)−
∞∑
k=p
k(k− p+ 2φ)|ak||z|k+p

. (3.20)

Thus we have the desired inequality:∣∣∣∣∣ 1+ zf ′′(z)
f ′(z) + p

1+ zf ′′(z)
f ′(z) − p+ 2φ

∣∣∣∣∣ ≤ 1 (0 ≤ φ < p; p ∈ N), (3.21)

if
∞∑
k=p

k(k+ φ)
p(p− φ)

|ak||z|k+p ≤ 1. (3.22)
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Hence, by Theorem 3, (3.22) will be true if

k(k+ φ)
p(p− φ)

|z|k+p ≤
k0k+p(α1)[(k+ p)(1+ B)+ (A− B)(p− λ)]

p(A− B)(p− λ)
(k ≥ p; p ∈ N). (3.23)

This last inequality (3.23) readily yields the disc |z| < r2 with r2 defined by (3.15), and the proof of Theorem 5 is completed
by merely verifying that each assertion is sharp for the function f (z) given by (3.5). �

4. Neighborhoods

In this section, we also assume that

αj > 0 (j = 1, . . . , q) and βj > 0 (j = 1, . . . , s).

Following the earlier works (based upon the familiar concept of neighborhoods of analytic functions) by Goodman [26] and
Ruscheweyh [27], and (more recently) by Altintas et al. [29,30,25], Liu [22], and Liu and Srivastava [23,24,1], we begin by
introducing here the δ-neighborhood of a function f (z) ∈ Σp of the form (1.1) by means of the definition given below:

Nδ(f ) =

{
g : g ∈ Σp, g(z) = z−p +

∞∑
k=1

bkzk−p and

∞∑
k=1

(k+ p)0k(α1)[(A− B)(p− λ)+ k(1+ |B|)]
p(A− B)(p− λ)

|ak − bk| ≤ δ

(−1 ≤ B < A ≤ 1; δ > 0; 0 ≤ λ < p; p ∈ N)

}
. (4.1)

Making use of the definition (4.1), we now prove Theorem 6.

Theorem 6. Let the function f (z) defined by (1.1) be in the classΩp,q,s(α1; A, B, λ). If f (z) satisfies the following condition:

f (z)+ εz−p

1+ ε
∈ Ωp,q,s(α1; A, B, λ) (ε ∈ C, |ε| < δ, δ > 0), (4.2)

then

Nδ(f ) ⊂ Ωp,q,s(α1; A, B, λ). (4.3)

Proof. It is easily seen from (1.11) that g(z) ∈ Ωp,q,s(α1; A, B, λ) if and only if, for any complex σ with |σ | = 1,

1+ z(Hp,q,s(α1)g(z))′′

(Hp,q,s(α1)g(z))′
+ p

B
(
1+ z(Hp,q,s(α1)g(z))′′

(Hp,q,s(α1)g(z))′

)
+ [pB+ (A− B)(p− λ)]

6= σ (z ∈ U; σ ∈ C; |σ | = 1), (4.4)

which is equivalent to

(g ∗ h)(z)
z−p

6= 0 (z ∈ U), (4.5)

where, for convenience,

h(z) = z−p +
∞∑
k=1

ckzk−p

= z−p +
∞∑
k=1

(k− p)0k(α1)[(A− B)(p− λ)σ + k(Bσ − 1)]
pσ(B− A)(p− λ)

zk−p. (4.6)

From (4.6), we have

|ck| =
∣∣∣∣ (k− p)0k(α1)[(A− B)(p− λ)σ + k(Bσ − 1)]pσ(B− A)(p− λ)

∣∣∣∣
≤
(k+ p)0k(α1)[(A− B)(p− λ)+ k(1+ |B|)]

p(A− B)(p− λ)
(k, p ∈ N). (4.7)
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Now, if

f (z) = zp +
∞∑
k=1

akzk−p ∈ Σp

satisfies the condition (4.2), then (4.5) yields∣∣∣∣ (f ∗ h)(z)z−p

∣∣∣∣ ≥ δ (z ∈ U; δ > 0). (4.8)

Let

g(z) = z−p +
∞∑
k=1

bkzk−p ∈ Nδ(f ), (4.9)

so that∣∣∣∣ [f (z)− g(z)] ∗ h(z)z−p

∣∣∣∣ =
∣∣∣∣∣ ∞∑
k=1

(ak − bk)ckzk
∣∣∣∣∣

≤ |z|
∞∑
k=1

(k+ p)0k(α1)[(A− B)(p− λ)+ k(1+ |B|)]
p(A− B)(p− λ)

b |ak − bk|

< δ (z ∈ U; δ > 0), (4.10)

which leads us to (4.5), and hence also (4.4) for any σ ∈ C such that |σ | = 1. This implies that g(z) ∈ Ωp,q,s(α1; A, B, λ),
which evidently completes the proof of the assertion (4.3) of Theorem 6. �

We now define the δ-neighborhood of a function f (z) ∈ Σp of the form (1.12) as follows:

N+δ (f ) =

{
g : g ∈ Σp, g(z) = z−p +

∞∑
k=p

|bk|zk and

∞∑
k=p

k0k+p(α1)[(A− B)(p− λ)+ (k+ p)(1+ B)]
p(A− B)(p− λ)

||ak| − |bk|| ≤ δ

(0 ≤ B < A ≤ 1; δ > 0; 0 ≤ λ < p; p ∈ N)

}
. (4.11)

Theorem 7. Let the function f (z) defined by Eq. (1.12) be in the classΩ+p,q,s(α1+1; A, B, λ)(0 ≤ B < A ≤ 1; 0 ≤ λ < p; p ∈ N).
Then

N+δ (f ) ⊂ Ω
+

p,q,s (α1; A, B, λ)
(
δ =

2p
α1 + 2p

)
. (4.12)

The result is sharp in the sense that δ cannot be increased.
Proof. Making use of the same method as in the proof of Theorem 6, we can show that [cf. Eq. (4.6)]

h(z) = z−p +
∞∑
k=p

ckzk

= z−p +
∞∑
k=p

k0k+p(α1)[(A− B)(p− λ)σ + (k+ p)(Bσ − 1)]
pσ(B− A)(p− λ)

zk. (4.13)

If f (z) ∈ Ω+p,q,s(α1 + 1; A, B, λ) is given by (1.12), we obtain∣∣∣∣ (f ∗ h)(z)z−p

∣∣∣∣ =
∣∣∣∣∣1+ ∞∑

k=p

ck|ak|zk+p
∣∣∣∣∣

≥ 1−
α1

α1 + 2p

∞∑
k=p

k0k+p(α1 + 1)[(A− B)(p− λ)+ (k+ p)(1+ B)]
p(A− B)(p− λ)

|ak|

≥ 1−
α1

α1 + 2p
=

2p
α1 + 2p

= δ,
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by appealing to assertion (3.1) of Theorem 3. The remaining part of our proof of Theorem 7 is similar to that of Theorem 6,
and we skip the details involved.
To show the sharpness of the assertion of Theorem 7, we consider the functions f (z) and g(z) given by

f (z) = z−p +
(A− B)(p− λ)

02p(α1 + 1)[(A− B)(p− λ)+ 2p(1+ B)]
zp ∈ Ω+p,q,s(α1 + 1; A, B, λ) (4.14)

and

g(z) = z−p +
[

(A− B)(p− λ)
02p(α1 + 1)[(A− B)(p− λ)+ 2p(1+ B)]

+
(A− B)(p− λ)δ′

02p(α1)[(A− B)(p− λ)+ 2p(1+ B)]

]
zp, (4.15)

where

δ′ > δ =
2p

α1 + 2p
.

Clearly, the function g(z) belongs to N+
δ′
(f ). On the other hand, we find from Theorem 3 that g(z) is not in the class

Ω+p,q,s(α1; A, B, λ). Thus the proof of Theorem 7 is completed. �

Finally, we prove the following theorem.

Theorem 8. Let f (z) ∈ Σp be given by (1.1) and define the partial sums s1(z) and sn(z) as follows:

s1(z) = z−p and sn(z) = z−p +
n−1∑
k=1

akzk−p (n ∈ N), (4.16)

it being understood that an empty sum is (as usual) nil. Suppose also that

∞∑
k=1

dk|ak| ≤ 1
(
dk =

(k+ p)0k(α1)[(A− B)(p− λ)+ k(1+ |B|)]
p(A− B)(p− λ)

)
. (4.17)

Then

(i) f (z) ∈ Ωp,q,s(α1; A, B, λ),
(ii) If {0k(α1)}(k ∈ N) is nondecreasing and

01(α1) >
p(A− B)(p− λ)

(1+ p)[(A− B)(p− λ)+ (1+ |B|)]
, (4.18)

then

Re
{
f (z)
sn(z)

}
> 1−

1
dn

(z ∈ U; n ∈ N), (4.19)

and

Re
{
sn(z)
f (z)

}
>

dn
1+ dn

(z ∈ U; n ∈ N). (4.20)

Each of the bounds in (4.19) and (4.20) is the best possible for each n ∈ N .

Proof. (i) It is not difficult to see that z−p ∈ Ωp,q,s(α1; A, B, λ)(p ∈ N). Thus, from Theorem 6 and the hypothesis (4.17) of
Theorem 8, we have

N1(z−p) ⊂ Ωp,q,s(α1; A, B, λ) (0 ≤ λ < p; p ∈ N), (4.21)

which shows that f (z) ∈ Ωp,q,s(α1; A, B, λ).
(ii) Under the hypothesis in Part (ii) of Theorem 8, we can see from (4.17) that

dk+1 > dk > 1 (k ∈ N). (4.22)

Therefore, we have

n−1∑
k=1

|ak| + dn
∞∑
k=n

|ak| ≤
∞∑
k=1

dk|ak| ≤ 1, (4.23)

where we have used the hypothesis (4.17) again.
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By setting

g1(z) = dn

[
f (z)
sn(z)

−

(
1−

1
dn

)]
= 1+

dn
∞∑
k=n
akzk

1+
n−1∑
k=1
akzk

, (4.24)

and applying (4.23), we find that

∣∣∣∣g1(z)− 1g1(z)+ 1

∣∣∣∣ ≤ dn
∞∑
k=n
|ak|

2− 2
n−1∑
k=1
|ak| − dn

∞∑
k=n
|ak|
≤ 1 (z ∈ U), (4.25)

which readily yields the assertion (4.19) of Theorem 8. If we take

f (z) = z−p −
zn−p

dn
, (4.26)

then
f (z)
sn(z)

= 1−
zn

dn
→ 1−

1
dn

(z → 1−),

which shows that the bound in (4.19) is the best possible for each n ∈ N . Similarly, if we put

g2(z) = (1+ dn)
(
sn(z)
f (z)
−

dn
1+ dn

)

= 1−
(1+ dn)

∞∑
k=n
akzk

1+
∞∑
k=1
akzk

(4.27)

and make use of (4.23), we can deduce that

∣∣∣∣g2(z)− 1g2(z)+ 1

∣∣∣∣ ≤ (1+ dn)
∞∑
k=n
|ak|

2− 2
n−1∑
k=1
|ak| + (1− dn)

∞∑
k=n
|ak|
≤ 1 (z ∈ U), (4.28)

which leads us immediately to the assertion (4.20) of Theorem 8.
The bound in (4.20) is sharp for each n ∈ N , with the extremal function f (z) given by (4.26). The proof of Theorem 8 is

thus completed. �

5. Convolution properties

For the functions

fj(z) = z−p +
∞∑
k=p

|ak,j|zk (j = 1, 2; p ∈ N), (5.1)

we denote by (f1 ~ f2)(z) the Hadamard product (or convolution) of the functions f1(z) and f2(z), that is,

(f1 ~ f2)(z) = z−p +
∞∑
k=p

|ak,1||ak,2|zk. (5.2)

Throughout this section, we assume further that the sequence {0m(α1)}(m ∈ N) is nondecreasing, where 0m(α1) is given
by (3.2),

C(p, λ, A, B, k) = (k+ p)(1+ B)+ (A− B)(p− λ) (k ≥ p) (5.3)

and

D(p, λ, A, B) = p(A− B)(p− λ). (5.4)
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Theorem 9. Let the functions fj(z) (j = 1, 2) defined by (5.1) be in the class Ω+p,q,s(α1; A, B, λ). Then (f1 ~ f2)(z) ∈ Ω
+
p,q,s

(α1; A, B, γ ), where

γ = p
(
1−

2(1+ B)(A− B)(p− λ)2

02p(α1)[2p(1+ B)+ (A− B)(p− λ)]2 − (A− B)2(p− λ)2

)
. (5.5)

The result is sharp for the functions fj(z) (j = 1, 2) given by

fj(z) = z−p +
(A− B)(p− λ)

02p(α1)[2p(1+ B)+ (A− B)(p− λ)]
zp (j = 1, 2; p ∈ N). (5.6)

Proof. Employing the technique used earlier by Schild and Silverman [31], we need to find the largest γ such that

∞∑
k=p

k0k+p(α1)C(p, γ , A, B, k)
D(p, γ , A, B)

|ak,1||ak,2| ≤ 1 (5.7)

for fj(z) ∈ Ω+p,q,s(α1; A, B, λ) (j = 1, 2). Since fj(z) ∈ Ω
+
p,q,s(α1; A, B, λ) (j = 1, 2), we readily see that

∞∑
k=p

k0k+p(α1)C(p, λ, A, B, k)
D(p, λ, A, B)

|ak,j| ≤ 1 (j = 1, 2). (5.8)

Therefore, by the Cauchy–Schwarz inequality, we obtain

∞∑
k=p

k0k+p(α1)C(p, λ, A, B, k)
D(p, λ, A, B)

√
|ak,1||ak,2| ≤ 1. (5.9)

This implies that, we only need to show that

C(p, γ , A, B, k)
(p− γ )

|ak,1||ak,2| ≤
C(p, λ, A, B, k)

(p− λ)

√
|ak,1||ak,2| (k ≥ p) (5.10)

or, equivalently, that

√
|ak,1||ak,2| ≤

(p− γ )C(p, λ, A, B, k)
(p− λ)C(p, γ , A, B, k)

(k ≥ p). (5.11)

Hence, by the inequality (5.9), it is sufficient to prove that

D(p, λ, A, B)
k0k+p(α1)C(p, λ, A, B, k)

≤
(p− γ )C(p, λ, A, B, k)
(p− λ)C(p, γ , A, B, k)

(k ≥ p). (5.12)

It follows from (5.12) that

γ ≤ p−
p(k+ p)(1+ B)(A− B)(p− λ)2

k0p+k(α1)[C(p, λ, A, B, k)]2 − p(A− B)2(p− λ)2
(k ≥ p). (5.13)

Now, defining the functionΦ(k) by

Φ(k) = p−
p(k+ p)(1+ B)(A− B)(p− λ)2

k0p+k(α1)[C(p, λ, A, B, k)]2 − p(A− B)2(p− λ)2
(k ≥ p), (5.14)

we see thatΦ(k) is an increasing function of k. Therefore, we conclude that

γ ≤ Φ(p) = p
(
1−

2(1+ B)(A− B)(p− λ)2

02p(α1)[2p(1+ B)+ (A− B)(p− λ)]2 − (A− B)2(p− λ)2

)
, (5.15)

which evidently completes the proof of Theorem 9. �
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Putting A = β and B = −β (0 < β ≤ 1) in Theorem 9, we obtain the following consequence.

Corollary 3. Let the functions fj(z) (j = 1, 2) defined by (5.1) be in the class Ω+p,q,s(α1; λ, β). Then (f1 ~ f2)(z) ∈
Ω+p,q,s(α1 ; γ , β), where

γ = p
(
1−

β(1− β)(p− λ)2

02p(α1)(p− λβ)2 − β2(p− λ)2

)
. (5.16)

The result is sharp for the functions fj(z) (j = 1, 2) given by

fj(z) = z−p +
β(p− λ)

02p(α1)(p− λβ)
zp (j = 1, 2; p ∈ N). (5.17)

Using arguments similar to those in the proof of Theorem 9, we obtain the following result.

Theorem 10. Let the function f1(z) defined by (5.1) be in the classΩ+p,q,s(α1; A, B, λ). Suppose also that the function f2(z) defined
by (5.1) be in the classΩ+p,q,s(α1; A, B, γ ). Then (f1 ~ f2)(z) ∈ Ω

+
p,q,s(α1; A, B, ξ), where

ξ = p
(
1−

2(1+ B)(A− B)(p− λ)(p− γ )
02p(α1)[2p(1+ B)+ (A− B)(p− λ)][2p(1+ B)+ (A− B)(p− γ )] −Ω

)
(Ω = (A− B)2(p− λ)(p− γ )). (5.18)

The result is sharp for the functions fj(z) (j = 1, 2) given by

f1(z) = z−p +
(A− B)(p− λ)

02p(α1)[2p(1+ B)+ (A− B)(p− λ)]
zp (p ∈ N) (5.19)

and

f2(z) = z−p +
(A− B)(p− γ )

02p(α1)[2p(1+ B)+ (A− B)(p− γ )]
zp (p ∈ N). (5.20)

Putting A = β and B = −β (0 < β ≤ 1) in Theorem 10, we obtain Corollary 4.

Corollary 4. Let the function f1(z) defined by (5.1) be in the class Ω+p,q,s(α1; λ, β). Suppose also that the function f2(z) defined
by (5.1) be in the classΩ+p,q,s(α1; γ , β). Then (f1 ~ f2)(z) ∈ Ω

+
p,q,s(α1; η, β), where

η = p
(
1−

β(1− β)(p− λ)(p− γ )
02p(α1)(p− λβ)(p− γ β)− β2(p− λ)(p− γ )

)
. (5.21)

The result is the best possible for the functions fj(z) (j = 1, 2) given by

f1(z) = z−p +
β(p− λ)

02p(α1)(p− λβ)
zp (p ∈ N) (5.22)

and

f2(z) = z−p +
β(p− γ )

02p(α1)(p− γ β)
zp (p ∈ N). (5.23)

Theorem 11. Let the functions fj(z) (j = 1, 2) defined by (5.1) be in the classΩ+p,q,s(α1; A, B, λ). Then the function h(z) defined
by

h(z) = z−p +
∞∑
k=p

(|ak,1|2 + |ak,2|2)zk (5.24)

belongs to the classΩ+p,q,s(α1; A, B, ζ ), where

ζ = p
(
1−

4(1+ B)(A− B)(p− λ)2

02p(α1)[2p(1+ B)+ (A− B)(p− λ)]2 − 2(A− B)2(p− λ)2

)
. (5.25)

This result is sharp for the functions fj(z) (j = 1, 2) given already by (5.6).
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Proof. Noting that

∞∑
k=p

[k0k+p(α1)C(p, λ, A, B, k)]2

[D(p, λ, A, B)]2
|ak,j|2 ≤

(
∞∑
k=p

k0k+p(α1)C(p, λ, A, B, k)
D(p, λ, A, B)

|ak,j|

)2
≤ 1 (j = 1, 2), (5.26)

for fj(z) ∈ Ω+p,q,s(α1; A, B, λ) (j = 1, 2), we have

∞∑
k=p

[k0k+p(α1)C(p, λ, A, B, k)]2

2[D(p, λ, A, B)]2
(|ak,1|2 + |ak,2|2) ≤ 1. (5.27)

Therefore, we have to find the largest ζ such that

C(p, ζ , A, B, k)
(p− ζ )

≤
k0k+p(α1)[C(p, λ, A, B, k)]2

2p(A− B)(p− λ)2
(k ≥ p), (5.28)

that is,

ζ ≤ p−
2p(k+ p)(1+ B)(A− B)(p− λ)2

k0k+p(α1)[C(p, λ, A, B, k)]2 − 2p(A− B)2(p− λ)2
(k ≥ p). (5.29)

Now, defining a function Ψ (k) by

Ψ (k) = p−
2p(k+ p)(1+ B)(A− B)(p− λ)2

k0k+p(α1)[C(p, λ, A, B, k)]2 − 2p(A− B)2(p− λ)2
(k ≥ p), (5.30)

we observe that Ψ (k) is an increasing function of k. We thus conclude that

ζ ≤ Ψ (p) = p
(
1−

4(1+ B)(A− B)(p− λ)2

02p(α1)[2p(1+ B)+ (A− B)(p− λ)]2 − 2(A− B)2(p− λ)2

)
, (5.31)

which completes the proof of Theorem 11. �

Putting A = β and B = −β (0 < β ≤ 1) in Theorem 11, we obtain the following corollary.

Corollary 5. Let the functions fj(z) (j = 1, 2) defined by (5.1) be in the classΩ+p,q,s(α1; λ, β). Then the function h(z) defined by
(5.24) belongs to the classΩ+p,q,s(α1; τ , β), where

τ = p
(
1−

2β(1− β)(p− λ)2

02p(α1)(p− λβ)2 − 2β2(p− λ)2

)
. (5.32)

The result is sharp for the functions fj(z) (j = 1, 2) given already by (5.17).

Remark 2. We note that the results obtained by Liu and Srivastava [1, Theorems 4, 5 and 7], are not correct. The correct
results are given by Theorems 4, 5 and 7, respectively, after putting λ = 0.
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