system the combined screening/risk-based strategy and the risk-based strategy are efficient strategies with reasonable cost-effectiveness.

PIN34

COST-EFFECTIVENESS OF TWO SCREENING STRATEGIES FOR CHLAMYDIA TRACHOMATIS INFECTIONS IN FRANCE

Préauber N, Delaveyne R
ANAES, Saint Denis la Plaine Cedex, France

OBJECTIVES: To evaluate two screening programs for Chlamydia Trachomatis (CT) in France by measuring cost per case and cost per treated case. **METHODS:** We evaluated the cost-effectiveness ratios of two CT screening strategies using a decision tree model. Strategy A involved screening of asymptomatic women only with partner notification; Strategy B involved screening of both asymptomatic men and women with partner notification. The current strategy of no screening was not evaluated. Clinical pathways were validated by a panel of experts. Direct cost analysis was performed from the point of view of the French National Health Insurance System. **RESULTS:** Overall, 347 women, and their partners could be treated by strategy A, and 296 individuals and their partners by strategy B. The total cost of strategy B was lower than that of strategy A (€213,400 compared to €250,558). Costs per case and costs per treated case were comparable for the two strategies, €557 and €722 respectively. According to a sensitivity analysis, the key variables were: CT prevalence, male participation rate, and likelihood that a man should consult a doctor. **CONCLUSIONS:** This is the first model for CT screening built on French data and thus a useful tool for French health policy decision-makers as it provides estimates for budgetary impact analysis. Its limitations are the hypotheses on which it is based (averted outcomes, direct costs . . .). Besides comparing the cost-effectiveness of screening, our study highlighted the need to standardize clinical practice and develop a good communication program.

PIN35

MENINGOCOCCAL C VACCINATION OF CHILDREN AGED LESS THAN 1 YEAR: INCLUSION OF HERD IMMUNITY LEADS TO LESS FAVORABLE COST-EFFECTIVENESS RATIOS

Welte R¹, van den Dobbelsteen G², Postma MJ³
¹University of Ulm, Ulm, Germany; ²National Institute of Public Health and the Environment, Bilthoven, Netherlands; ³Groningen University Institute for Drug Exploration/university of Groningen Research Institute of Pharmacy (GUIDE/GRIP), Groningen, Netherlands

OBJECTIVES: To estimate the incremental cost-effectiveness ratio (ICER) of routine meningococcal serogroup C conjugate vaccination of children at 2, 3, and 4, or at 5 and 6 months instead of at 14 months in the Netherlands and to determine the impact of including herd-immunity. **METHODS:** The analysis was performed from a societal perspective and in accordance to the Dutch guidelines for pharmacoeconomic research, using a cohort model. Direct and indirect (friction cost method) costs were considered. Future costs and effects were discounted at 4% and 2000 was chosen as baseline year. A vaccine effectiveness of 90% (based on UK data) and a vaccine protection duration of 20 years (based on the experience with Haemophilus influenzae type b) were used. Also on the basis of UK data, we assumed that 70% of all unvaccinated persons aged 0–14 months are protected because of the herd-immunity effect caused by the recent meningococcal C conjugate vaccination of all persons aged 14 months to 18 years. **RESULTS:** For immunization of children at 2, 3, and 4 (5 + 6) months, the herd-immunity effect decreases the yearly number of additional life years gained from 51 (36) to 15 (11) but leads to a strong increase of the ICER from €149,000 (€105,000) per life year gained to €497,000 (€349,000) per life year gained. Even if only a herd-immunity effect of 50% is assumed, the ICER still increases to about €298,000 (€209,000) per life year gained. These results are sensitive to the protection duration and effectiveness of the vaccine and the meningococcal C incidence. **CONCLUSIONS:** The inclusion of herd-immunity decreases the rendered small health gain and thus leads to even less favorable cost-effectiveness ratios for vaccination of children aged less than one year. Hence, the current Dutch vaccination strategy of routine vaccinating children at 14 months should not be changed.

PIN36

COST-EFFECTIVENESS OF RESPIRATORY SYNCYTIAL VIRUS (RSV) PROPHYLAXIS AMONG PRETERM INFANTS IN POLAND

Kowalik E¹, Jakubczyk MK¹, Niewada MP², Kamiński B¹
¹Warsaw School of Economics, Warsaw, Poland; ²Medical University of Warsaw, Warsaw, Poland

Respiratory syncytial virus (RSV) is a leading cause of a lower respiratory tract infection in infants and is responsible for increased hospitalization, morbidity, and deaths amongst high-risk individuals including those who are born prematurely. As the treatment of RSV infections is limited the analysis was focused on prophylactic therapy with palivizumab, a humanized murine monoclonal antibody that provides passive immunity against RSV. **OBJECTIVES:** To evaluate costs and cost-effectiveness of RSV prophylaxis among infants born at less than 32 weeks gestation in Poland. **METHODS:** Decision tree analysis was used to compare cost-effectiveness of two strategies, palivizumab and no prophylaxis, among a hypothetical cohort of infants born <32 gestational age. Probabilities were derived from published trials. Costs encompassed: drug costs, costs of non-intensive and intensive pediatric hospital care and costs of asthma treatment up to age 7. The discount rate of costs was set at
3%. The cost-effectiveness ratio was expressed as cost of life year gained with RSV prophylaxis. Sensitivity analyses were performed for the key probabilities. RESULTS: Palivizumab prophylaxis was estimated to cost €8903 per life gained as compared to €6594 for no preventive treatment. The incremental cost-effectiveness ratio of one life year gained amounted to €13,246 (PPP: €1 = 1.9 PLN). The sensitivity analysis indicated that the results were sensitive to the probability of hospitalization for RSV for no prophylaxis. CONCLUSIONS: Palivizumab, as compared to other widely accepted medical procedures, appeared to be cost-effective prophylaxis for the prevention of serious lower respiratory-tract infection caused by RSV in infants born at less than 32 weeks gestation in Poland.

INTRODUCTION OF A NEW HEALTH TECHNOLOGY, POTENTIAL BEHAVIOURAL AND ORGANISATIONAL CHANGES AND POLICY IMPACT—ASSESSMENT OF NEW INFLUENZA TREATMENTS

Gyldmark M1, Sander B2
1F. Hoffman-La Roche Ltd, Basel, Switzerland; 2Institute for Medical Outcome Research, Loerrach, Germany

OBJECTIVES: The objective is to discuss and evaluate potential changes in patient, physician, and organisational behavior related to the introduction of a new health care technology (treatment of influenza with the anti-viral neuraminidase inhibitors). The changes evaluated are: 1) increased health care seeking by patients, due to the availability of antivirals for influenza; 2) Crowding out of inappropriate anti-biotic prescribing for influenza by antivirals; and 3) System change to allow telephone nurse prescribing rather than GP consultation. METHODS: Some unique characteristics of neuraminidase inhibitors has important implications for their cost-effectiveness in any given health care systems. A health economic decision model is employed in order to evaluate some of these potential changes when introducing treatment of influenza with neuraminidase inhibitors. The impact on cost-effectiveness and cost-utility of three different behavioural changes are investigated with the model as well as the base line cost-effectiveness and cost-utility of treating healthy adults in UK. RESULTS: The results of the economic modeling show that treatment of influenza in healthy adults with the anti-viral oseltamivir has incremental cost-utility ratios between £4,775/QALY (baseline) and £15,772/QALY (increased health care seeking by patients). CONCLUSION: In order to make a decision regarding introduction of influenza treatment with the new technology a number of issues ought to be addressed. These may be best dealt with in a full HTA where all aspects of introducing a new technology are investigated. By only evaluating certain aspects of the introduction of the technology, decision makers are likely to make decisions based on incomplete information. This may result in sub-optimal patient treatment and resource use in society.