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How Far Can Nim in Disguise Be Stretched?

Uri Blass

Electrical Engineering, Tel Aviv University, Ramat Aviv, 61391, Israel

Aviezri S. Fraenkel

Applied Mathematics and Computer Science, Weizmann Institute of Science,
Rehovot, 76100, Israel

and

Romina Guelman

Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, 91904, Israel

Received November 3, 1997

A move in the game of nim consists of taking any positive number of tokens from
a single pile. Suppose we add the class of moves of taking a nonnegative number
of tokens jointly from all the piles. We give a complete answer to the question
which moves in the class can be adjoined without changing the winning strategy of
nim. The results apply to other combinatorial games with unbounded Sprague�
Grundy function values. We formulate two weakened conditions of the notion of
nim-sum 0 for proving the results. � 1998 Academic Press

1. INTRODUCTION

A cardinal theme in the theory of combinatorial games is how to generate
new games from a given game or from a restricted class of games. The most
widely used method is that of producing a game which is the sum of given
games, but there are several other, less well-known methods; see, e.g.,
Chap. 14 of [Con1976].

A typical game consists of a finite collection of piles of finitely many
tokens, where the moves are to remove a positive number of tokens from
any single pile, or a positive number from several piles, according to
specified rules. Such games often have equivalent manifestations, say in the
form of board games, but for concreteness we shall restrict attention to the
former.

A central role in such games is taken by the game of nim, in which only
removal from any single pile is permitted. Most of our discussions will be
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centered about nim, but actually our results hold for any game which
has unbounded Sprague-Grundy function values. Basic facts on the theory
of combinatorial games can be found, e.g., in [BCG1982], [Con1976],
[Guy1991], [Now1996].

Recently we began investigating the generation of new games by adding
to given games classes of new moves [FrL1991], [FrO1998]. For a brief
expository description of this approach, see [Fra1996, Section 6]. To
conduct this program in an efficient way, it is very useful to find first the
precise class of moves that can be adjoined to nim without changing its
winning strategy. This then allows to adjoin moves for which we will know
that they modify the strategy of nim.

Fundamental to investigations in combinatorial game theory is the notion
of nim-sum. Let S=[a1 , ..., an] be a multiset set of nonnegative integers which
has some 1-bit in a least significant position k, so to the right of position k all
the ai have 0-bits only. (Note that S is a multiset rather than a set; the ai are
not necessarily distinct.) If S has nim-sum _=0, we also say that S is even,
since every column in the binary expansions of a1 , ..., an has then an even
number of 1-bits. We define S to be baLanced, if _ has a 0 in position k,
since then the Least significant binary position in which the ai have 1-bits
has an even number of 1-bits. For S to be balanced, no parity requirements
are imposed on any digital position to the left of k. Finally, we say that S
is smooTh if it is balanced and _ has a 0 also in position k+1, since then
the last Two binary positions in which the ai have 1-bits have an even
number of 1-bits. Note that every even multiset is smooth, and every
smooth multiset is balanced. A balanced multiset is a weaker form of a
smooth multiset, and a smooth multiset is a weaker form of an even multi-
set.

Let S=[a1 , ..., an] (n�2) be a multiset of nonnegative integers with at
least two distinct ai>0. Let 1 be a game consisting of n piles of finitely
many tokens where a1 , ..., an tokens can be removed from the n piles (in
addition to the option of removing any positive number of tokens from any
single pile, as mentioned above). The player making the last move wins,
and the opponent loses.

Let t1 , ..., tn be nonnegative integers with t i�ai , for all i. For any integer
s, write s(b) for the binary representation of s, and �$ for nim-summation.
We distinguish between three cases.

1. �$n
i=1 ti (b){�$n

i=1 (ti (b)&ai (b)) for all t i�a i (i # [1, ..., n]). Then
the strategy of 1 is that of nim. This is so, because the nim-sum of position
(t1 ..., tn), which is �$n

i=1 t i (b), is distinct from the nim-sum of its follower
(t1&a1 , ..., tn&an), which is �$n

i=1 (ti (b)&ai (b)). Hence the nim-sum is the
Sprague-Grundy function of 1. In terms of the game-graph of 1, the move
options of removing a1 , ..., an are equivalent to new edges in this digraph
between vertices of distinct S-G function values.
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2. �$n
i=1 ti (b)=�$n

i=1 (ti (b)&ai (b))=R for some ti�ai (i # [1, ..., n]).
In this case there is a ''short-circuiting'' of the S-G function value R of 1.
If R is never 0, then the strategy of 1 is still the same as that of nim, but
if 1 is a component in a sum with another game, say with S-G function
value R, then the move option of removing a1 , ..., an does change the
strategy of this sum.

3. �$n
i=1 ti (b)=�$n

i=1 (ti (b)&ai (b))=0 for some t i�a i (i # [1, ..., n]).
In this case a 0 of the S-G function is short-circuited, so the strategy of 1
is necessarily different from that of nim.

It is easy to see that case 3 holds if S is an even multiset. In Theorem 1
we prove that case 2 holds if and only if S is a balanced multiset. In
Theorem 2 we give necessary and sufficient conditions for the stronger
case 3 to hold. It turns out that the condition of a balanced multiset has
to be strengthened only slightly for case 3 to hold.

The precise forms of Theorems 1 and 2 are formulated in Section 2.
Proofs are given in Section 3. The proof of Theorem 1 is constructive; it
provides an algorithm for producing the integers t1 , ..., tn such that �$n

i=1 ti (b)
=�$n

i=1 (ti (b)&ai (b)). Similarly for Theorem 2.

2. THE MAIN RESULTS

It is useful to preface the following definition before stating our first
result.

Definition 1. Let S=[a1 , ..., an] be a multiset of nonnegative integers.
Denote by _ the nim-sum of the ai . Let k be the maximum integer such
that 2k | ai for every i # [1, ..., n]. If _k=0 (the bit in position k of _), then
S is balanced. Otherwise it is imbalanced. If _k=_k+1=0, then S is smooth.
If _=0, then S is even.

Note that position k is the least significant position in which any of the
ai has a 1-bit, so ai (b) j=0 for all j<k. For example, [2, 3, 4] is imbalanced
(k=0), [1, 2, 5] is balanced (k=0) but not smooth, [2, 3, 5] is smooth but
not even, and [1, 2, 3] is even.

If S=[a1 , ..., an] is an even multiset, then case 3 holds, since it holds, in
fact, for t i=ai . A special case is when all the ai are the same and n is even,
in which case even �$n

i=1 la=�$n
i=1 (l&1) a=0 for every positive integer l.

Since the notions of balanced and smooth multisets are weak forms of that
of even multisets, we may expect a weaker result for the former. This is
indeed the case; the interesting point is that the result is not all that weaker.
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Theorem 1. Let S=[a1 , ..., an] be a multiset of nonnegative integers,
n�2, with at least two ai>0. Then there are integers t1 , ..., tn with ti�ai for
all i, such that

:$
n

i=1

ti (b)= :$
n

i=1

(t i (b)&ai (b)) (1)

if and only if S is a balanced multiset.

The proof that if S is imbalanced then there are no integers ti satisfying
(1) was already given in [FrL1991], where the truth of the opposite direc-
tion was conjectured. Since the known direction is the easy one, and in
order for this paper to be self-contained, we repeat the short proof below.

Our second theorem gives necessary and sufficient conditions for the
stronger result (case 3 above) to hold. It turns out that though S even is
certainly a sufficient condition, it is by no means necessary.

Theorem 2. Let S=[a1 , ..., an] be as in Theorem 1. Then there are
integers t1 , ..., tn with ti�ai , i # [1, ..., n], such that

:$
n

i=1

ti (b)= :$
n

i=1

(t i (b)&ai (b))=0 (2)

if and only if either

1. n is odd and S is balanced.

2. n is even, and: either S is balanced and there is i # [1, ..., n] such
that ai (b)k=0 (where k is as in Definition 1) ; or S is smooth and n�4; or
S is even.

We then have,

Corollary 1. For n=2, (2) holds if and only if S is even, if and only
if a1=a2 .

To summarize, adjoining the moves of removing a1 , ..., an from the piles
results in a game with a strategy different from nim if and only if (2) is
satisfied, which, for n=2, is equivalent to a1=a2 . If only (1) is satisfied,
then the resulting game has the same strategy as nim, but the strategy will
be different if the game is a component in a sum of games.

The new notions in this paper are those of balanced and smooth sets,
which are weakened conditions of the notion of nim-sum 0.
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3. PROOFS

Notation. 1. For any real number x, denote by wxx the largest integer
�x.

2. For any positive integer s, denote by s(b)=�m
j=0 s j 2 j the binary

representation of s, where m=wlog2 sx, and s j # [0, 1] for all j.

3. Whenever we add nonnegative integers, say a1 , ..., an , we put

m=max(wlog2 a1 x, ..., wlog2 an x),

which is consistent with m in 2.

4. �$ and � denote nim-summation.

Note that for any positive integers a and d, a(b)+d(b)=(a+d )(b).

Definition 2. In the (binary) addition a(b)+d(b), there is a carry
integer c(b), where c(b) j+1 is the carry-bit generated by a(b) j+d(b) j+c(b) j,
to be added to a(b) j+1+d(b) j+1, namely, c(b) j+1=1 if a(b) j+d(b) j+
c(b) j>1, and c(b) j+1=0 otherwise, where c(b)0=0 and j # [0, ..., m]; m as
in Notation 3.

The addition rule, based on Definition 2, is summarized in Table 1.

TABLE 1

a(b) j c(b) j d(b) j (a(b)+d(b)) j c(b) j+1

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Lemma 1. Let a and d be two integers. Then, in the above notation,
a(b)+d(b)=a(b)�d(b)�c(b), where c(b) is the carry integer of a(b)+d(b).

Proof. The sum a(b)+d(b) is given in the 4th column of Table 1. We
see that it has a 1-bit precisely in those rows in which the first 3 columns
have an odd number of 1-bits, i.e., precisely in rows in which a(b)�d(b)
�c(b)=1. K
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Proof of Theorem 1. Let di=ti&ai . Then (1) holds if and only if

:$
n

i=1

(ai (b)+di (b))= :$
n

i=1

d i (b). (3)

It thus suffices to examine under what conditions d1 , ..., dn can be constructed
such that (3) holds.

By Lemma 1, for every i # [l, ..., n], ai (b)+di (b)=ai (b)�di (b)�ci (b),
where ci (b) is the carry integer of the sum of ai (b) and di (b). Substituting
into (3), we get �$n

i=1 (ai (b)�di (b)�c i (b))=�$n
i=1 di (b). Thus (3) holds if

and only if

:$
n

i=1

(ai (b)�ci (b))=0. (4)

In every position <k, ai (b) has no 1-bits for all i, hence in every posi-
tion �k, ci (b) has no 1-bits for all i, where k is as in Definition 1. Thus
if S is imbalanced, then in position k there is an odd number of 1-bits, so
(4) cannot hold. Hence there are no integers t1 , ..., tn satisfying (1).

So from now on we can assume that S is balanced. To construct d1 , ..., dn

satisfying (3) we first construct c1 , ..., cn satisfying (4), in Algorithm
NotNimdi below, and then show how to construct the di .

Given an integer a(b), an integer c(b) can be a carry integer of the sum
of a(b) with an unknown integer d(b), if the following carry rules are kept.
These rules follow immediately from Definition 2.

1. If l is the rightmost 1-bit of a(b), then for every j<l we have
c(b) j+1=0. For j�l, we have:

2. If a(b) j=c(b) j=0, then c(b) j+1=0.

3. If a(b) j=c(b) j=1, then c(b) j+1=1.

4. If a(b) j+c(b) j=1, then c(b) j+1 # [0, 1].

Indeed, in case 4 we clearly have c(b) j+1=d(b) j.
Let now m=max(wlog2 a1 x, ..., wlog2 an x). Note that even if every di (b)

has its leftmost 1-bit in a position �m, i.e., di<2m+1 for all i # [l, ..., n],
any carry integer ci (b) may still have a 1-bit in position m+1.

Consider the 2n_(m+2) matrix M consisting of a1(b), ..., an(b) with a
blank line after each ai (b), where the carry ci (b) will be constructed in
Algorithm NotNimdi1 below. Because of the anomaly, in English, of writing
from left to right, yet writing numbers with their significance increasing from
right to left, we will number the columns of M, contrary to the common
convention, from right (0) to left (m+1). Also the carry-bits will be
constructed from position (column) 0 to m+1.

The following are the guidelines the algorithm will follow.
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A. In every column of M, the number of 1-bits is even, which is
necessary to satisfy (4).

B. Every ci is constructed to be consistent with the above carry rules.

C. For every j # [k, ..., m+1] there are h, l # [1, ..., n], h{l, such
that ah(b) j+ch(b) j=al (b) j+c l (b) j=1, where k is as in Definition 1.

Property C is needed to ensure that A and B can be realized in every
column of M. Indeed, suppose the ( j&l ) th column of M is the 0-vector,
and the jth column contains a single 1-bit. Then there is no way of mending
the j th column to have an even number of 1-bits, as needed for consistency
with the carry rules.

Note that if S is balanced, then column k of M contains an even positive
number of 1-bits, and all columns to the right of k are the 0-vector,
provided that ci (b) j=0 for all j # [0, ..., k], i # [1, ..., n]. This indeed holds
by carry rule 1.

Suppose that the ( j&1)th position was constructed satisfying the above
guidelines, and now the j th position must be constructed. First, to satisfy
the carry rules, if ai (b) j&1=ci (b) j&1=1, then we must put c i (b) j=1.
Secondly, if the number of 1-bits in the j th column is even but C is
violated, then it has to be restored so as to leave the number of 1-bits even.
Finally, if the number of 1-bits in the jth position is odd, then the algorithm
must change it to even such that C is also satisfied. These requirements are
reflected in Algorithm NotNimdi1 below. The word ``Nimdi'' was coined in
[FrL1991]; it stands for NIM in DIsguise. Since in the present case we
have balanced multisets, for which the moves may result in a non-nim strategy,
the designation NotNimdi for the algorithm seemed appropriate.

Algorithm NotNimdi1

1. For j�k, put ci (b) j=0 for all i.

2. For j from k+1 to m+1 do:

(a) For every i # [1, ..., n] for which ai (b) j&1=c i (b) j&1=1, put
ci (b) j=1; for all other i put ci (b) j=0.

(b) Suppose first that the number of 1-bits in column j is even. If

ai (b) j�ci (b) j=0 (5)

for every i then pick h and l with h{l such that

ah(b) j&1+ch(b) j&1=al (b) j&1+c l (b) j&1=1, (6)

and put ch(b) j=cl (b) j=1. [We'll see later that such h and l
indeed always exist.]

151HOW FAR CAN NIM IN DISGUISE BE STRETCHED?



(c) Secondly, suppose that the number of 1-bits in column j is
odd.

i. If for every i for which ai (b) j&1�c i (b) j&1=0 we have
ai (b) j�c i (b) j=0, then pick h such that ah(b) j&1+
ch(b) j&1=1 and ah(b) j+ch(b) j=0, and put ch(b) j=1.

ii. If there is i for which ai (b) j&1�ci (b) j&1=0, and ai (b) j

�ci (b) j=1, then pick h such that ah(b) j&1+ch(b) j&1

=1 and put ch(b) j=1.

Validity Proof of the Algorithm

We begin by observing the general structure of the algorithm. In step
2(a) column j of c1 (b), ..., cn(b) is constructed. This construction is consistent
with Table 1. If we next go to step 2(b), then a correction to two of the carry
bits might be done, by changing them from 0 to 1; if we go to step 2(c) instead,
then a single carry bit will be changed from 0 to 1. No further corrections are
done in column j.

It suffices to show that the algorithm produces carry integers c1 , ..., cn

such that A, B, C of the above guidelines are satisfied. We will do this by
showing that they hold for every column j. This is clear for j�k by step 1.
In particular, C holds for j=k, since the multiset S is balanced. (This is the
only place in the proof where we use the fact that S is balanced.)
For j # [k+1, ..., m+1] we use induction on j. So suppose A, B, C
hold for column j&1 ( j�k+1), and we now apply the algorithm for
column j.

After applying step 2(a), which is consistent with the carry rules, suppose
first that the number of 1-bits in column j is even. We then say that column
j has even parity. If there is h such that ah(b) j+ch(b) j=1, then there is also
l{h with al (b) j+cl (b) j=1, since column j has even parity, so property C
holds. Otherwise, (5) holds for every i, and so C is violated. Now h and
l{h with property (6) exist by the induction hypothesis. Moreover, in step
2(a) we have put ch(b) j=cl (b) j=0. Also ah(b) j=al (b) j=0 by (5). So
putting ch(b) j=cl (b) j=1 restores property C; it also preserves the even
parity of column j, and is consistent with the carry rules.

We now suppose that, after applying step 2(a), column j has odd parity,
i.e., it contains an odd number of 1-bits, so step 2(c) applies.

We assume first that the hypothesis of 2(c)i is satisfied. By the induction
hypothesis, there is an even positive number of i for which ai (b) j&1+ci (b) j&1

=1. For all of these i we have ci (b) j=0 by step 2(a). Since column j has odd
parity, there thus exist h and l satisfying (6), for which, say, ah(b) j+ch(b) j=0
and al (b) j+cl (b) j=1. Hence putting ch(b) j=1 restores both A and C, and
is consistent with B.
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Secondly, assume that the hypothesis of 2(c)i is violated. Then the
hypothesis of 2(c)ii holds. So there is i for which ai (b) j&1�c i (b) j&1=0,
and

ai (b) j+ci (b) j=1. (7)

Note that au(b) j&1+cu(b) j&1=1 implies au(b) j+cu(b) j�1, since cu(b) j

=0 by 2(a).

(I) Suppose that there is only a single i for which ai (b) j&1�ci (b) j&1

=0 such that (7) holds. Since column j has odd parity, the number of u for
which au(b) j+cu(b) j=1 and au(b) j&1+cu(b) j&1=1 must be even. Hence
putting cu(b) j=1 for any such u restores A and is consistent with C. Indeed
any such u is distinct from i, since ai (b) j&1�ci (b) j&1=0, whereas au(b) j&1

+cu(b) j&1=1.

(II) Suppose there are at least two i for which ai (b) j&1�ci (b) j&1

=0 such that (7) holds. Then C is already satisfied, so putting cu(b) j=1
for any u as in (I) restores A and doesn't spoil C.

Note that putting cu(b) j=1 in both (I) and (II) is consistent with B.
We now return to the proof of Theorem 1. It only remains to construct

the di , which is done by the following algorithm.

For every i=1 to n do: for j=0 to m put di (b) j=ci (b) j+1. (8)

In other words, di (b) is a ``right shift'' of ci (b).
The validity of (8) is an immediate conclusion of Table 1 and Algorithm

NotNimdi1: Table 1 shows that di (b) j=ci (b) j+1 holds except for the second
and penultimate rows. But when a(b) j=c(b) j=0, there is no reason to put
d(b) j=1, and when a(b) j=c(b) j=1, we may as well put d(b) j=1. Thus these
two rows do not arise in our case. (They may arise in the proof of Theorem 2,
which follows below.) K

Example. Let [a1 , a2 , a3]=[3, 5, 8]. This is clearly a balanced multiset
(with k=0).

We have 3(b)=0011 in the standard representation of binary numbers.
Similarly, 5(b)=0101 and 8(b)=1000.

Following the steps of algorithm NotNimdi1 we get c1(b)=0100, c2(b)
=1010, c3(b)=0000. From (8), d1(b)=0010, d2(b)=0101, d3(b)=0000,
so d1=2, d2=5, d3=0.

Since di=ti&ai we have t1=5, t2=10, t3=8. In binary, t1(b)=0101,
t2(b)=1010, t3(b)=1000.

From all this we get that t1(b)�t2(b)�t3(b)=0111=7(b), which is the
same as (t1(b)&a1(b))� (t2(b)&a2(b))� (t3(b)&a3(b)).
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Proof of Theorem 2. We first show that the conditions are necessary If
S is imbalanced, then even (1) doesn't hold, by Theorem 1. So suppose S
is balanced but not smooth, n even, but ai (b)k=1 for all i. We have
ci (b)k=0 for all i. Since S is not smooth, there is an odd number of
ai (b)k+1=1. To satisfy (4), we need an odd number of ci (b)k+1=1. This
holds if and only if there is an odd number of di (b)k=1, if and only if (2)
is violated (since di=ti&a i).

Finally, if S is smooth but not even and n=2, then there is a least
column j such that a1(b) j�a2(b) j=0 and a1(b) j+1+a2(b) j+1=1.

We first consider the case where a1(b) j=a2(b) j=1. If also c1(b) j=c2(b) j

=1, then c1(b) j+1=c2(b) j+1=1, so column j+1 has odd parity. The other
possibility consistent with (4) is c1(b) j=c2(b) j=0. Then column j+1 has
even parity if and only if d1(b) j+d2(b) j=1, and the latter contradicts (2).

Secondly, let a1(b) j=a2(b) j=0. If c1(b) j=c2(b) j=1, then again column
j+1 has even parity if and only if d1(b) j+d2(b) j=1. If c1(b) j=c2(b) j=0,
then c1(b) j+1=c2(b) j+1=0, so column j+1 has odd parity.

For proving the sufficiency, we first consider the case where n is odd.
Since S is balanced, Theorem 1 implies that there are integers t1 , ..., tn with
ti�ai , i # [1, ..., n], such that (1) holds. Let di=t i&aj . Then (3) holds.

If �$n
i=1 di (b){0, then there exists j # [0, ..., m] such that �$n

i=1 di (b) j

=1. This means that in the n_(m+1) matrix consisting of d1(b), ..., dn(b),
the j th column has odd parity. We wish to make it even, while, at the same
time, preserving (3).

At the beginning of the proof of Theorem 1 we saw that (3) holds if and
only if (4) holds. Note that changing di (b) j may change ci (b) j+1. Table 1
shows, however, that for fixed ai (b) j, ci (b) j, a change in di (b) j does not
change ci (b) j+1 if and only if

ai (b) j�ci (b) j=0. (9)

So it suffices to show that for every j # [0, ..., m], there is i # [1, ..., n] for
which (9) holds (because this enables to regulate the parity of di (b) so as
to satisfy (2)). If this is not so, then ci (b) j+ai (b) j=1 for every i. Since n
is odd, we then have, �$n

i=1 (ai (b) j�ci (b) j)=1, which contradicts (4).
Thus, for every j for which �$n

i=1 di (b) j=1 there is i for which we can
change di (b) j leaving (4), and hence (3), intact.

Secondly, we examine the case where n is even.

Case I. S is balanced but not smooth, and ai (b)k=0 for some i. In
Case II we indicate the changes the argument requires for the case where
S is smooth and n�4.

We construct the ci (b) by Algorithm NotNimdi2 below. It is a small
modification of Algorithm NotNimdi1. The idea of the proof is to show
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that something like (9) holds for all the relevant columns j. To do this, we
add another requirement to the guidelines A, B, C, namely:

D. For every j # [k, ..., m+1] there are s, t # [1, ..., n], s{t, such
that as(b) j�cs(b) j=at(b) j�ct(b) j=0. Algorithm NotNimdi2 will imple-
ment the four guidelines.

If S is smooth, n�4 and ai (b)k=1 for all i, we require D to hold only
for j�k+1.

Algorithm NotNimdi2
Steps 1, 2(a), 2(c)i are as in Algorithm NotNimdi1. Steps 2(b) and 2(c)ii

are expanded:

2(b) Suppose first that the number of 1-bits in column j is even. If
either (5) holds for every i or ai (b) j+ci (b) j=1 for every i, then pick h and
l with h{l such that (6) holds, and put ch(b) j=cl (b) j=1.

2(c)ii If there is i for which ai (b) j&1�ci (b) j&1=0, and a i (b) j �
ci (b) j=1, then pick h such that ah(b) j&1+ch(b) j&1=ah(b) j+ch(b) j=1
and put ch(b) j=1. If there is no such h, then pick h such that ah(b) j&1+
ch(b) j&1=1, and put ch(b) j=1.

Validity Proof of the Algorithm
The validity proof is as that of Algorithm NotNimdi1, with the following

additions. In column k, C is satisfied since S is balanced and ci (b)k=0 for
all i. Also D holds there, since there is i for which ai (b)k=0 by hypothesis,
and since n is even. Incidentally, we see that n�4.

Suppose that C and D both hold for column j&1. We show that they
hold also for column j ( j�k+1).

We consider first the case where column j has even parity. If (5) holds
for every i, then clearly both C and D are satisfied by putting ch(b) j=cl (b) j

=1. So suppose that ai (b) j+ci (b) j=1 for every i. By the induction hypo-
thesis, there are integers h, l satisfying (6). In step 2(a) we put ch(b)h=
cl (b)h=0. So putting ah(b) j=a l (b) j=1 results in D being satisfied, and C
is also satisfied since n�4.

Now consider the case where column j has odd parity. By the induction
hypothesis, there exist h, l, h{l satisfying (6), and there exist s, t, s{t,
satisfying as(b) j&1�cs(b) j&1=at(b) j&1�ct(b) j&1=0. In case 2(c)i, C has
been restored for column j without any change in rows s and t, so D holds
by the hypothesis of 2(c)i.

In case 2(c)ii, if there is h such that ah(b) j&1+ch(b) j&1=ah(b) j+
ch(b) j=1, then putting ch(b) j=1 makes ah(b) j�ch(b) j=0. Since n is even
and A has been restored, there exists an index i{h for which also ai (b) j�
ci (b) j=0. If, on the other hand, for every h for which ah(b) j&1+ch(b) j&1

=1 we have ah(b) j+ch(b) j=0, then putting ch(b) j=1 for one of these j
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still leaves some i for which ai (b) j+ci (b) j=0. Again, since n is even, there
are actually two distinct such i.

Case II. S is smooth and n�4. If ai (b)k=0 for some i, then Case I
applies. We may thus assume ai (b)k=1 for all i. If either ai (b)k+1=0 for
all i or ai (b)k+1=1 for all i, put cu(b)k+1=cv(b)k+1=1 for some u{v.
Then both C and D are satisfied for j=k+1. In any other case we have
au(b)k+1=0 and av(b)k+1=1 for some u, v # [1, ..., n]. Since S is smooth,
there is actually an even number of h satisfying ah(b)k+1=1, so at least 2.
Since n is even, there is an even number of s such that as(b)k+1=0, so at
least 2. Putting ci (b)k+1=0 for all i, we see that both C and D are satisfied
for j=k+1.

Though D is not satisfied for j=k, it is clear that there is an even
number of di (b)k=1. In fact this holds precisely for the two values u, v for
which we put cu(b)k+1=cv(b)k+1=1 above. Now since C and D hold for
j=k+1, they also hold for all j # [k+1, ..., m+1] by the same induction
proof used in Case 1. K

In the previous example we found that d1(b)�d2(b)�d3(b)=0111=7(b).
For j # [0, 1, 2], (9) holds only for i=3. This leads to the new value d3=7,
t3=15, with d1(b)�d2(b)�d3(b)=0.

Proof of Corollary 1. In the proof of Theorem 2 we observed that n�4
also for the case where S is balanced and ai (b)k=0 for some i. So for n=2,
(2) holds if and only if S is even. K
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