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We propose a manifestly SO(8) invariant BF type Lagrangian for describing the dynamics of M2-brane–
anti-M2-brane system in flat spacetime. When one of the scalars which satisfies a free-scalar equation
takes a large expectation value, the M2-brane–anti-M2-brane action reduces to the tachyon DBI action of
D2-brane–anti-D2-brane system in flat spacetime.
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1. Introduction

Following the idea that the Chern–Simons gauge theory may be used to describe the dynamics of coincident M2-branes [1], Bagger and
Lambert [2] as well as Gustavsson [3] have constructed three-dimensional N = 8 superconformal SO(4) Chern–Simons gauge theory based
on 3-algebra. It is believed that the BLG world volume theory at level one describes two M2-branes on R8/Z2 orbifold [4]. The world
volume theory of N M2-branes on R8/Zk orbifold has been constructed in [5] which is given by N = 6 superconformal U (N)k × U (N)−k
Chern–Simons gauge theory.

The signature of the metric on 3-algebra in the BLG model is positive definite. This assumption has been relaxed in [6] to study
N coincident M2-branes in flat spacetime. The so called BF membrane theory with arbitrary semi-simple Lie group has been proposed
in [6]. This theory has ghost fields, however, there are different arguments that model may be unitary due to the particular form of the
interactions [6,7]. The bosonic part of the Lagrangian for gauge group U (N) is given by

L = Tr

(
1

2
εabc Ba Fbc − 1

2
D̂a X I D̂a X I + 1

12
M I J K M I J K

)
+ (

∂a X I− − Tr
(

Ba X I))∂a X I+ (1)

where Aa, Ba, X I are in adjoint representation of U (N) and X I−, X I+ are singlets under U (N), and

M I J K ≡ X I+
[

X J , X K ] + X J
+
[

X K , X I] + X K+
[

X I , X J ], D̂a X I = Da X I − X I+Ba, Da X I = ∂a X I − i
[

Aa, X I]. (2)

Obviously the above Lagrangian is invariant under global SO(8) transformation and under U (N) gauge transformation associated with
the Aa gauge field. It is also invariant under gauge transformation associated with the Ba gauge field

δB X I = X I+Λ, δB Ba = DaΛ, δB X I+ = 0, δB X I− = Tr
(

X IΛ
)
. (3)

The Lagrangian (1) is a candidate to describe the dynamics of N stable M2-branes in flat supergravity background. A nonlinear extension
of this Lagrangian in non-abelian case is proposed in [8,9] (see also [10,11]).1

In this Letter, we would like to study the dynamics of unstable M2-brane–anti-M2-brane system. The instability of this system can
be either unperturbative effect or it can be the result of having tachyon fields in the spectrum of M2-brane–anti-M2-brane system, as in
the D2-brane–anti-D2-brane system. Assuming the latter case, one may then use the Higgs mechanism [13] to find the effective action

E-mail address: garousi@mail.ipm.ir.
1 Nonlinear action of M2-brane in the presence of background fields for abelian case has been discussed in [12].
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by including appropriately the tachyons in the nonlinear action [8,9]. That is, when one of the scalars X I+ takes a large expectation value,
M2-brane–anti-M2-brane action should be reduced to the D2-brane–anti-D2-brane action. However, this mechanism does not work for
the tachyon potential because the M2-brane–anti-M2-brane action should describe the D2-brane–anti-D2-brane system at strong coupling.
One expects the tachyon potential at the strong coupling to be totally different than the tachyon potential at the weak coupling. So the
Higgs mechanism cannot fix the tachyon potential in terms of the tachyon potential of D2-brane–anti-D2-brane system. To find the M2-
brane–anti-M2-brane action we do as follows: Near the unstable point, one can set the tachyon potential to one, and find the other parts
of the M2-brane–anti-M2-brane action by the Higgs mechanism. Then one multiplies the result by the unknown M2-brane–anti-M2-brane
tachyon potential.

In the next section we review the construction of the effective action of D2 D̄2 system proposed in [15] which is a non-abelian
extension of the tachyon DBI action. Then we use de Wit–Herger–Samtleben duality transformation to write the D2 D̄2 action in a BF
theory. In Section 3, we propose an SO(8) invariant BF type action for M2M̄2 system which reduces to the above theory when one of the
scalars X I+ takes a large expectation value.

2. D2-brane–anti-D2-brane effective action

An effective action for D9 D̄9 system has been proposed in [22] whose vortex solution satisfies some consistency conditions. This action
has been written as a non-abelian extension of the tachyon DBI action in [15]. However, the ordering of the matrices in the action is not
consistent with the S-matrix elements. Hence, another effective action has been proposed in [15] which is consistent with the S-matrix
elements. This second action may be related to the action proposed in [22] by some field redefinition. In the following we are going to
review this second construction of the effective action for D2 D̄2 system.

The effective action for describing the dynamics of one non-BPS D p -brane in flat background in static gauge is given by [16–19]

S = −T p

∫
dp+1σ V

(
T 2)√−det

(
ηab + ∂a Xi∂b Xi + λFab + λ∂a T ∂b T

)
(4)

where λ ≡ 2πα′ and V = 1 − π
2 T 2 + O (T 4) is the tachyon potential.2 The action for N non-BPS D p-branes may be given by some non-

abelian extension of the above action. To study the non-abelian extension of the above action for arbitrary p, one may first consider the
non-abelian action for p = 9 case which has no transverse scalar field, and then use the T -duality transformations to find the non-abelian
action for any p.

The following non-abelian action has been proposed in [17] for describing the dynamics of N non-PBS D9-branes:

S = −T9 STr
∫

d10σ V
(
T 2)√−det(ημν + λFμν + λDμT Dν T ) (5)

where the symmetric trace make the integrand to be a Hermitian matrix. In the above, the gauge field strength and covariant derivative
of the tachyon are

Fμν = ∂μ Aν − ∂ν Aμ − i[Aμ, Aν ], DμT = ∂μT − i[Aμ, T ].
Obviously the action (5) has U (N) gauge symmetry and reduce to (4) for N = 1.

The trace in the non-abelian action (5) is the symmetric trace. That is, if one expands the square root and the tachyon potential,
then the non-abelian expressions of the form Fμν , DμT and the individual T of the tachyon potential must appear in each term of the
expansion as symmetric. This property make it possible to treat the non-abelian expressions Fμν , DμT and T as ordinary number when
manipulating them. Various couplings in the action (5) are consistent with the appropriate disk level S-matrix elements in string theory
[17,20,21]. In particular, the calculation in [21] shows that the consistency is hold only if one uses the symmetric trace prescription.

Using the effective action of N non-BPS D9-branes (5), one finds the effective action of N non-BPS D2-branes by using T -duality [17].
The proposal for the effective action of D2 D̄2 [14,15] is then to project the effective action of N = 2 non-BPS D2-branes with (−1)F L , i.e.,
the matrices Aa , Xi and T take the following form:

Aa =
(

A(1)
a 0

0 A(2)
a

)
, Xi =

(
Xi(1) 0

0 Xi(2)

)
, T =

(
0 τ

τ ∗ 0

)
(6)

which reduces the U (2) gauge symmetry to U (1) × U (1) gauge symmetry.
Replacing the above matrices in the effective action of N = 2 non-BPS D2-branes [17], one finds that the effective action of D2 D̄2 takes

the following form:

S D D̄ = −T2

∫
d3σ STr

(
V

√
det(Q )

√
−det

(
ηab + λ2 g2

Y M∂a Xi
(

Q −1
)

i j∂b X j + λ

(
Fab + 1

T2
T A

ab

)
+ 1

T2
T S

ab

))
. (7)

The matrices Q ij , T S
ab , T A

ab are

Q ij = Iδi j − g2
Y M

T2

[
Xi, T

][
X j, T

]
, det(Q ) = 1 + g2

Y M

T2

[
Xi, T

][
T , Xi],

T S
ab = Da T Db T + g2

Y M

T2
Da T

[
Xi, T

](
Q −1)

i j

[
X j, T

]
Db T ,

2 Our index convention is that μ,ν, . . . = 0,1, . . . ,9; a,b, . . . = 0,1, . . . , p; i, j, . . . = p + 1, . . . ,9 and I, J , . . . = 3,4, . . . ,10.
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T A
ab = ig2

Y M∂a Xi(Q −1)
i j

[
X j, T

]
Db T − ig2

Y M Da T
[

Xi, T
](

Q −1)
i j∂b X j . (8)

Here the transverse scalars in [17] are normalized as Φ i = gY MλXi where gY M is the three-dimensional Yang–Mills coupling constant, i.e.,
λ2T2 = 1/g2

Y M , and a factor of
√

λT2 has been absorbed into the tachyon field. The tachyon potential is then a function of T 2/(λT2). The
trace in the action is completely symmetric between all matrices Fab, ∂ Xi, Da T , [Xi, T ] and individual T of the tachyon potential. Hence,
(Q −1)i j appears in symmetric form. Moreover, the symmetric trace makes the matrix ηab + 1

T2
∂a Xi(Q −1)i j∂b X j + 1

T2
T S

ab in the action to

be symmetric and matrix T A
ab to be antisymmetric.

Now we use the following de Wit–Herger–Samtleben duality transformation [8]:

−T2

√−φ det(gab + λFab) → −T2

√
−φ det

(
gab + g2

Y M

T2

B ′
a B ′

b

φ

)
+ 1

2
εabc B ′

a Fbc (9)

for any scalar φ, any symmetric matrix gab and any antisymmetric matrix Fab . Using this duality in which φ = V
√

det(Q ) and B ′ = V B ,
the action (7) can be written in the following form:

S D D̄ = −T2

∫
d3σ STr

(
V

√
det(Q )

√
−det

(
ηab + 1

T2
∂a Xi

(
Q −1

)
i j∂b X j + g2

Y M

T2

Ba Bb

det(Q )
+ 1

T2
T S

ab

))

+ 1

2

∫
d3σ STr

(
V εabc Ba

(
Fbc + 1

T2
T A

bc

))
(10)

where

Ba =
(

B(1)
a 0

0 B(2)
a

)
.

Near the unstable point of the tachyon potential one cat set V ∼ 1. In the next section we are going to write an action for M2-brane–anti-
M2-brane system around its unstable point that reduces to the above action around its unstable point under the Higgs mechanism [13].

3. M2-brane–anti-M2-brane effective action

Using the prescription given in [13], one may expect that effective action of the M2M̄2 system to be reduced to the effective action
of D2 D̄2 system when X I+ takes a large expectation value. However, the tachyon potential in the M2M̄2 system may not be related to
the tachyon potential in the D2 D̄2 system in this way since the M2M̄2 action should describe the D2 D̄2 system at the strong coupling
limit. Moreover, it is expected that the tachyon potential at the strong coupling to be totally different than the tachyon potential at the
weak coupling. However around their unstable point both potential are one. In this Letter we are going to fix the effective action of M2M̄2
around its unstable point by using the Higgs mechanism [13].

The prescription given in [13] has been used in [8,9] to find a nonlinear action for multiple M2-branes. Following [8], the M2M̄2

extension of S D D̄ in (10) should have SO(8) invariant terms ∂̃a X I (Q̃ −1)I J ∂̃b X J where ∂̃a X I and Q̃ I J should be defined to be invariant
under the Ba gauge transformation and when X I+ = vδ I10 where v = gY M , they satisfy the boundary condition:

∂̃a X I(Q̃ −1)
I J ∂̃b X J → ∂a Xi(Q −1)

i j∂b X j + v2 Ba Bb

det(Q )
. (11)

This fixes ∂̃a X I to be [8]

∂̃a X I = ∂a X I − X I+Ba −
(

X+ · X

X2+

)
∂a X I+ (12)

where X2+ = X I+ X I+ . This is invariant under the gauge transformation (3). The boundary value of Q̃ I J is [8]

Q̃ i j = Q ij, Q̃ i10 = Q̃ 10i = 0, Q̃ 1010 = det(Q ). (13)

At the boundary, one has det(Q̃ ) = (det(Q ))2.
An ansatz for Q̃ I J which is consistent with the above boundary condition may be

Q̃ I J = aδ I J + bM I K M K J

where a,b are some SO(8) invariants which can be found from the above boundary condition, and

M I J ≡ X I+
[

X J , T
] + X J

+
[
T , X I ] (14)

in which X I+ is a singlet under U (1) × U (1) and

X I =
(

X I(1) 0

0 X I(2)

)
, T =

(
0 τ

τ ∗ 0

)
. (15)

Note that δB(M I J ) = 0 and consequently δB(Q̃ I J ) = 0 if one assumes the tachyon to be invariant under the Ba gauge transformation.
Imposing the boundary condition Q̃ i j = Q ij on the above ansatz, one finds
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Q̃ I J = δ I J + 1

T2
M I K M K J . (16)

It also satisfies the boundary condition Q̃ 1010 = det(Q ). Using the relation between type IIA theory and M-theory, i.e., �p = g1/3
s �s , T2 can

be written in terms of 11-dimensional Plank length �p as T2 = 1/(2π)2�3
p .

The matrices T̃ S
ab and T̃ A

ab should be determined by forcing them to be invariant under global SO(8) and under gauge transformation
associated with Ba , and by imposing the boundary condition that at the boundary X I+ = vδ I10 they should be reduced to those in (8). The
result is

T̃ S
ab = Da T

(
1√

det(Q̃ )

+ 1

T2
M I K (

Q̃ −1)
I J M K J

)
Db T ,

T̃ A
ab = i∂̃a X I(Q̃ −1)

I J M J K Db T X K+ − iDa T M I K (
Q̃ −1)

I J ∂̃b X J X K+. (17)

Note that the tachyon is invariant under the Ba gauge transformation.
Taking the above points, one finds that the extension of the D2 D̄2 action (10) around its unstable point to M2M̄2 is then given by the

following action:

∫
d3σ STr

(
−T2

(
det(Q̃ )

)1/4

√
−det

(
ηab + 1

T2
∂̃a X I

(
Q̃ −1

)
I J ∂̃b X J + 1

T2
T̃ S

ab

)

+ 1

2
εabc

(
Ba Fbc − 2i

T2
∂̃a X K ∂̃b X I(Q̃ −1)

I J M J K Dc T

))

where we have replaced Ba X K+ in the last line by the covariant expression −∂̃a X K . This action is manifestly invariant under global SO(8),
satisfies the Higgs mechanism and is also invariant under gauge transformations associated with gauge fields Aa and Ba . The symmetric
trace is between the gauge invariants ∂̃a X I , Da T , M I J .

The above action is not complete yet. Its tachyon potential is at its unstable point, i.e., V ∼ 1, and it dose not reduce to the action (1)
at low energy and for T = 0. We assume that the tachyon potential appears in the action as an overall function as in tachyon DBI action.
The tachyon potential should be a function of only tachyon. The tachyon is a dimensionfull field, so the tachyon potential should be a
function of V ( 1

T 1/3
2

T 2). As we discussed before, this potential is not expected to be reduced to the tachyon potential of the D2 D̄2 system

under the Higgs mechanism. To have consistency with action (1), one should add some extra terms to the above action [8,9]. Hence, our
proposal for the effective action of M2M̄2 is the following:

∫
d3σ STr

(
V

[
−T2

(
det(Q̃ )

)1/4

√
−det

(
ηab + 1

T2
∂̃a X I

(
Q̃ −1

)
I J ∂̃b X J + 1

T2
T̃ S

ab

)

+ 1

2
εabc

(
Ba Fbc − 2i

T2
∂̃a X K ∂̃b X I(Q̃ −1)

I J M J K Dc T

)

+ (
∂a X I− − Tr

(
Ba X I))∂a X I+ − Tr

(
X+ · X

X2+
D̂a X I∂a X I+ − 1

2

(
X+ · X

X2+

)2

∂a X I+∂a X I+
)])

. (18)

The last line in the above action has been added to have consistency at low energy and for T = 0 with the action (1) for gauge group
U (1)× U (1) [8,9]. This action is manifestly invariant under global SO(8) and is also invariant under gauge transformations associated with
gauge fields Aa and Ba . The symmetric trace in the first two lines is between the gauge invariants ∂̃a X I , Da T , M I J and individual T of the
tachyon potential, and in the last line it is only over the tachyon potential.

Let us now compare the two actions (18) and (10) around their unstable points where V ∼ 1 ∼ V . Action (18) gives the equation
of motion for X I− to be ∂a∂

a X I+ = 0. If one of the scalars X I+ takes large expectation value, i.e., X I+ = vδ I10, then ∂̃a Xi = ∂a Xi , ∂̃a X10 =
∂a X10 − v Ba and X+ · ∂a X = v∂a X10. Fixing the gauge symmetry (3) by setting X10 = 0, one then recovers the D2 D̄2 action (10). On the
other hand, if the shift symmetry X I− → X I− + cI is gauged as in [23,24] by introducing a new field C I

a and writing ∂a X I− as ∂a X I− − C I
a ,

then equation of motion for the new field gives ∂a X I+ = 0 which has only constant solution X I+ = v I . Using the SO(8) symmetry, one can
write it as X I+ = vδ I10. Then the M2M̄2 theory (18) would be classically equivalent to the D2 D̄2 theory (10).

The M2M̄2 action (18), for constant X I+ , are written almost entirely in terms of covariant derivative of the scalars/tachyon and 3-
bracket M I J . Similar observation has been made in [11] for the higher derivative corrections to the Lorentzian-signature M2-brane action.
As pointed out in [11], one expects this part of the action which has no dependency on X I+ to be relevant to the theories beyond the
Lorentzian signature that we have considered here.
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