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Abstract Proteins are often referred to in accordance with the
activity with which they were first associated or the organelle in
which they were initially identified. However, a variety of nu-
clear factors act in multiple molecular reactions occurring si-
multaneously within the nucleus. This review describes the func-
tions of the nuclear factors PSF (polypyrimidine tract-binding
protein-associated splicing factor) and p54™*/NonO. PSF was
initially termed a splicing factor due to its association with the
second step of pre-mRNA splicing while p54™"/NonO was
thought to participate in transcriptional regulation. Recent evi-
dence shows that the simplistic categorization of PSF and its
homolog p54™™®/NonO to any single nuclear activity is not pos-
sible and in fact these proteins exhibit multi-functional charac-
teristics in a variety of nuclear processes.

© 2002 Published by Elsevier Science B.V. on behalf of the
Federation of European Biochemical Societies.
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1. Introduction

The nucleus is a complex organelle in which a wide range of
processes occur. Specific nuclear factors are assigned to these
activities. For example, being a ‘splicing factor’ will usually
mean binding to RNA and participating in RNA splicing
activities while the term ‘transcription factor’ will insinuate
interactions with DNA and regulation of transcription. How-
ever, nuclear reactions occur simultaneously and in very close
proximity [1]. In fact, there is cross-talk between nuclear pro-
cesses and certain proteins can take part in multiple nuclear
events. In this review we discuss the data regarding two such
multi-functional proteins, PSF and p54°®/NonO.

PSF (polypyrimidine tract-binding protein (PTB)-associated
splicing factor), a 100 kDa polypeptide, was identified and
characterized in a complex with PTB [2]. The polypyrimidine
tract is a region found in most introns of higher eukaryotes to
which several factors can bind and is important for the defi-
nition of the 3’-splice site. However, most of PSF is associated
with the nuclear matrix and is not bound to PTB [3]. Immu-
nofluorescent staining has shown nucleoplasmic distribution
of PSF in both diffuse and punctate patterns [4,5] where local-
ization in nucleoplasmic foci is determined by the presence of
a RNA recognition motif (RRM) 2 (Fig. 1) [6]. The proline/
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glutamine-rich N-terminus of PSF might be involved in pro-
tein—protein interactions [2].

p54™® (human) and NonO (mouse) are highly homologous
to the C-terminus of PSF (Fig. 1) [7,8]. Proteomics have iden-
tified PSF and p54"™/NonO in the nucleolus [9] and in asso-
ciation with the nuclear membrane [10]. p54™®/NonO was
recently shown to be a component of a novel nuclear domain
termed paraspeckles [11]. The Drosophila homolog of these
proteins is the NONA/BJ6 protein encoded by the no-on-tran-
sient A gene required for normal visual and courtship song
behavior [12]. Another homolog, hrp65, is identified in Chiro-
nomus tentans as a component of nuclear fibers functioning in
nuclear export [13]. This family of proteins is highly homolo-
gous in the two C-terminal RRMs, implying a role in RNA
processing. Yet, prior to their cloning, PSF and p54"™®/NonO
were characterized as a p100/p52 DNA-binding heterodimer
[14] and indeed these proteins bind to dsDNA, ssDNA and
RNA [2,8,15,16]. Several groups have identified PSF and
p54"™/NonO in a variety of systems and complexes. In this
review we try to present a coherent picture of the known
nuclear activities of these multi-functional proteins.

2. PSF and p54™®/NonO in nuclear RNA processing

The first function attributed to PSF is participation in con-
stitutive pre-mRNA splicing [2]. Initially, PSF and its 68 kDa
proteolytic form were identified as spliceosome-associated
proteins SAP102 and SAP68 of the B complex representing
the complete spliceosome [17]. PSF binds to polypyrimidine
tracts and is shown to be an essential factor required for in
vitro splicing [2] acting during the second catalytic step of
splicing (Fig. 2A) and a component of the spliceosome C
complex [18]. Additional findings connect PSF to splicing ac-
tivities: it co-purified in 25S particles containing U4, U5 and
U6 snRNPs [19] and physically interacted with UlA in a
complex which contains a form of UIA that is not associated
with Ul-snRNP. This complex is thought to function both in
splicing and in polyadenylation [20]. PSF can bind to U5-
snRNA (J.G. Patton, personal communication) and can inter-
act with CUG tracts found in the 3’-UTR of the DMPK gene
which causes myotonic dystrophy [21]. p54™™®/NonO has high
affinity for RNA via its N-terminus [§8] and can bind to B-
globin pre-mRNA and RNA [15] and the intronic pyrimidine-
rich sequence in B-tropomyosin pre-mRNA [22]. However,
direct involvement of p54"™®/NonO in pre-mRNA splicing
has not been shown.

Recently, p54™®/NonO and PSF were found to act in the
binding and nuclear retention of defective RNAs [23]. RNAs
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Fig. 1. Structural elements in PSF, p54"™®/NonO, NONA/BJ6 and hrp65 proteins. The C-terminus harbors the RRMs, the homologous element
in these proteins. In addition, N- and C-termini contain regions rich in proline (P), glutamine (Q), histidine (H), glycine (G) and asparagine
(N). PSF has an RNA-binding RGG element that is probably methylated and therefore cannot bind RNA. Yellow boxes show identified nu-
clear localization sequences. p54"™®/NonO has a region predicted to form a HTH structure followed by a basic/acidic (*) stretch of amino
acids which together might form a DBD. When translocated, most of PSF and p54"®/NonO fuse with the C-terminus of the TFE3 transcrip-
tion factor (red) that contains basic helix-loop-helix (bHLH) and leucine zipper (LZ) domains.

in the nucleus can be edited either in a selective manner thus
leading to the production of protein, or can be promiscuously
hyperedited, theoretically causing the translation of mutated
proteins. The latter RNAs must be retained within the nu-
cleus. In the editing reaction, adenosines (A) of dsRNA
undergo hydrolytic deamination to inosines (I). It was shown
that indeed many such A-to-I edited RNAs were confined to
the nucleus by a protein complex consisting of p54™™®/NonO,
PSF and matrin3. The interaction between p54"™®/NonO and
I-RNA was shown both in vitro and in vivo [23]. Since ma-
trin3 is a component of the nuclear matrix [24] and in itself
does not bind I-RNA, and matrin4 is known to be PSF [23],
it is speculated that this p54™™®/PSF/matrin3 complex serves as
a ‘nuclear arm’ which anchors promiscuously edited RNAs as
part of a mechanism of nuclear retention (Fig. 2B).

3. Regulation of transcription by PSF and p54™/NonO

Splicing and transcription are coupled nuclear processes
[25]. Besides RNA-binding properties, PSF binds DNA [14]
and p54"™®/NonO binds ssDNA (and RNA) through its N-
terminus and dsDNA through its C-terminus [8]. PSF binds
the insulin-like growth factor response element in the porcine
P450scc gene which produces a steroidogenic enzyme. This
binding causes inhibition of the transcriptional activity of
this element. The inhibition originates from the N-terminus
of PSF [26,27]. Other work shows that PSF can bind to the
DNA-binding domain (DBD) of thyroid hormone receptors
(TR) and retinoid X receptors (RXR) [28]. p54™®/NonO is
bound to PSF in this complex. Interactions of full length
PSF with the DBD of TR in the absence of the hormone
ligand has a repressive effect on transcription, also mediated

by the N-terminus of PSF. Moreover, PSF in this complex
interacts directly with the repressor Sin3A which in turn re-
cruits a class I histone deacetylase (HDAC), a known partner
of Sin3A in the mediation of transcriptional repression. Sim-
ilarly, PSF and p54™®/NonO are shown to repress basal tran-
scription of the human CYPI7 gene involved in steroidogen-
esis and are found in complex with Sin3A, HDAC and SF-1
(steroidogenic factor). This repression is alleviated by cAMP
stimulation, phosphatase activity and increased binding of
SF-1/PSF/p54™® to the promoter, together with the release
of Sin3A-HDAC from the complex (Fig. 3A) [29,30].

p54™®/NonO has low affinity for octamer motifs found in
the IgH promoter in B cell leukemia cells [8]. In addition to its
own DNA-binding abilities, it can induce the binding of sev-
eral transcription factors to their response elements [31] and
binds directly to the Spi-1/PU.1 transcription factor [22]. A
direct implication in transcriptional control comes from work
showing that p54™®/NonO binds to an enhancer element in
the long terminal repeats of murine intracisternal A particles
and activates transcription [15].

4. PSF and p54™®/NonO activities in DNA unwinding and
DNA pairing

During DNA replication, DNA topoisomerase I cleaves
one of the DNA strands in the duplexes formed and allows
the uncleaved strand to pass through the break, in this way
reducing the tension in the DNA supercoils. PSF and p54"®/
NonO co-purified with DNA topoisomerase I at a 1:1:1 ratio
in nickel affinity chromatography [32]. However, PSF and
topoisomerase I can independently bind to nickel and there-
fore it is still unclear whether this is a natural complex [23].
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Fig. 2. PSF and p54"™®/NonO interactions with RNA. A: PreemRNA splicing proceeds in two steps. During the first step, splicing factors as-
semble on intronic and exonic cis-elements, including the polypyrimidine tract found in the 3" of the intron. A nucleophilic attack (arrow) de-
taches the 5’-exon from the intron, and the intron forms a lariat. During the second step of splicing there is some interchanging of proteins.
PSF interacts with the polypyrimidine tract. A second nucleophilic attack occurs and the mature spliced mRNA is formed while the intronic
lariat is discarded. B: Promiscuously edited I-A dsRNA is retained in the nucleus by a p54"*/PSF/matrin3 ‘arm’ connected to the nuclear ma-
trix, while selectively edited mRNA can be exported through nuclear pores to the cytoplasm.

Yet, functional evidence for such interactions does exist.
When recombinant PSF or PSF/p54™™® complexes are incuba-
ted in vitro with recombinant or purified topoisomerase I, the
specific activity of the enzyme is greatly enhanced, especially
with the PSF/p54™™ heterodimer. The latter alone does not
cause DNA relaxation [32]. Furthermore, the PSF/p54™™®
complex stimulates dissociation of topoisomerase I from the
DNA after cleavage and enhances its ‘jumping’ between two
separate DNA helices (Fig. 3B) [33]. PSF and topoisomerase I
are found to partially co-localize in nucleoplasmic areas of
interphase cells. During mitosis topoisomerase I remains
with the chromatin compartment while PSF disperses in the
cytosol [32].

PSF does not only affect the unwinding of DNA but func-
tions also in the annealing of DNA. Homologous DNA pair-
ing is a step required in several nuclear functions such as
DNA recombination, repair, replication and more. RecA in
Escherichia coli and its homologs in eukaryotes are well
known ATP-dependent homology promoting factors. In the
search for additional proteins that promote homologous
DNA pairing, two proteins were identified and termed
hPOMp75 and hPOMpl100 [34], later identified as TLS/FUS
and PSF, respectively [35,36]. TLS is encoded by a pro-onco-
gene translocated in several cancers. p54"™®/NonO does not
possess DNA pairing activity (B.S. Lopez, personal commu-
nication). PSF and TLS require ssDNA and dsDNA with
sequence homology between them for their in vitro pairing
activity, as well as divalent cations. In contrast to the RecA
protein family, no ATP is required and PSF and TLS do not
contain any associated exonuclease activity [34]. Mechanisti-
cally, PSF exhibits DNA reannealing activity, i.e. the forma-
tion of duplex DNA from two homologous DNA strands. In
addition, PSF can promote the invasion of a ssDNA between
a DNA duplex and produce a D-loop formation required for

homologous recombination (Fig. 3C). This property is en-
hanced when PSF is phosphorylated by protein kinase C
(PKC). Other splicing factors such as SF2/ASF and U2AF®
were also able to cause DNA reannealing but could not form
D-loops [36].

5. PSF and p54™®/NonO in tumorigenesis

The pairing activities of PSF and TLS are demonstrated in
non-immortalized cells and are elevated in transformed cells
[35,37] indicating a connection with proliferation. Indeed, pro-
liferating cells exhibit a two-fold higher activity than quiescent
cells. Furthermore, induction of differentiation causes a pro-
nounced decrease in their pairing activities [35]. Although di-
rect physical interactions between PSF and TLS or p54"rb/
NonO and TLS have not been found [28,35] (B.S. Lopez, F.
Moreau-Gachelin, D. Storm, personal communications and
our unpublished results), it appears that some interactions
are occurring in larger protein complexes. These proteins co-
purify with EWS (a TLS homolog also involved in transloca-
tions) in large RNA-protein complexes [38]. They all re-local-
ize to similar types of nucleolar caps during actinomycin D
induced transcriptional inhibition (Shav-Tal et al., submitted).
PSF and TLS can bind to TR and RXR [28] and, as will be
described below, p54™™/NonO and TLS interact with Spi-1/
PU.1 and affect its activity [22,39]. We speculate that these
proteins are in close proximity in large RNA-protein com-
plexes.

Chromosomal translocations of the TLS gene occur in two
types of cancer. Similarly, both PSF and p54"*/NonO trans-
locate to the TFE3 gene in cases of papillary renal cell carci-
noma [40]. The TFE3 transcription factor contains a DNA-
binding helix—turn-helix (HTH) and an adjacent leucine zip-
per (LZ) required for dimerization. In addition, there are two
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Fig. 3. PSF and p54"®/NonO interactions with DNA. A: PSF and p54™®/NonO can form a complex with SF-1 and together bind the CYPI7
promoter. Repression of transcription is achieved by the binding of the Sin3A repressor to PSF along with HDAC. Removal of repression oc-
curs by cAMP stimulation, the removal of Sin3A/HDAC and the dephosphorylation of SF-1. B: Topoisomerase I relaxes tension in DNA heli-
ces. PSF/p54™™ complex enhances topoisomerase I activity and induces its ‘jumping’ to other DNA helices after cleavage. C: PSF can bind to
both dsDNA and ssDNA. It has DNA pairing activity and also can form D-loop structures as depicted. In this case it allows the insertion of

a homologous ssDNA between a DNA duplex.

transcriptional activation domains. The fusion protein con-
tains PSF or p54"™®/NonO sequences fused to the C-terminus
of TFE3, harboring the HTH, LZ and one activation domain
(Fig. 1). Since most of the protein encoding sequences of the
PSF and p54"/NonO genes are translocated to TFE3, it is
possible that their functions as proteins are preserved. How-
ever, GFP-NonO-TFE3 does not enhance transcription and
its localization is altered in comparison to GFP-NonO which
co-localizes with splicing factor-rich speckles [41]. The func-
tional significance of these translocations remains to be eluci-
dated.

p54"™/NonO is a binding partner of the Spi-1/PU.1 tran-
scription factor which is overexpressed in Friend erythroleu-
kemia [22]. Since the interaction occurs between the DBD of
Spi-1/PU.1 and the RNA-binding domain of p54"™/NonO, it
is assumed that this might have functional effects. Indeed, Spi-
1/PU.1 binds RNA sequences preferred by p54"™®/NonO, in-
hibits the binding of p54"™®/NonO to the polypyrimidine tract
of B-tropomyosin pre-mRNA, interferes with in vitro splicing
reactions [22] and can interact with TLS [39]. Thus, interfer-
ence with RNA-binding proteins might be an important step
in the leukemic process.

6. p54™®/NonO has carbonic anhydrase (CA) enzymatic
activity

The maintenance of pH homeostasis in the body is medi-
ated by the family of CAs comprising 11 active forms of

varying specific activities (5-3000 U/mg). A new 66 kDa pro-
tein, which turned out to be the p54"™®/NonO protein, was
identified in Leydig cells using anti-CAIl antibodies. Re-
combinant p54"™®/NonO was then shown to bind to a CA
inhibitor affinity chromatography matrix that normally binds
the different types of CAs. However, homology of p54"t/
NonO with CAs is low and the classical CA zinc-binding
domain is not found. The specific enzymatic activity of re-
combinant p54"™/NonO is 25 U/mg [42]. No such activity is
known for PSF.

7. Perspectives

Most nuclear proteins interacting with nucleic acids contain
either DBD or RNA-binding domain. Uniquely, PSF and
p54"®/NonO possess both domains. For p54™®/NonO it is
shown that these properties are located in two different parts
of the protein. Indeed, these proteins are found, as a hetero-
dimer or alone, in several nuclear complexes involved in the
binding and processing of nucleic acids. How are these multi-
functional proteins operating in the simultaneous processes
occurring in the nucleus? We propose that PSF and p54"rb/
NonO mediate different functions depending on the nuclear
compartment (nuclear matrix, nucleoplasm, nuclear foci, nu-
cleolus) in which they are located, and that localization might
be regulated by phosphorylation [5,43,44]. PSF was recently
found to be associated with a retained nuclear fraction of
activated PKCa which is usually cytoplasmically localized,
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and also serves as a substrate for this kinase [45]. Due to their
dual RNA/DNA-binding properties and the ability to interact
with several protein counterparts, these proteins might be re-
garded as ‘sticky’ proteins that can link multiple nuclear pro-
cesses. The ability to either heterodimerize or to remain as
monomers, and to bind RNA/DNA or interact with other
nuclear factors or both, allows the production of a variety
of nuclear complexes active in different nuclear reactions.

One option to consider is that PSF and p54"™®/NonO serve
structural functions through their multiple interfaces. The nu-
clear matrix fraction of these proteins might connect the nu-
clear scaffold to other parts of the nucleus. The work showing
PSF and p54"®/NonO as part of a nuclear matrix anchor for
the retention of I-RNAs or in association with the nuclear
envelope may exemplify this concept. Similarly, these hetero-
dimers, once in the soluble fraction of the nucleus, might serve
as docking sites for other factors in the formation of tran-
scription complexes and spliceosomes. In these cases, their
binding to RNA/DNA will allow the recruitment of addition-
al factors and the formation of complexes. The DNA-bound
transcription complexes containing PSF/p54™®/SF-1, together
with interchanging components Sin3A/HDAC and the RNA
processing complexes harboring PSF, imply such structural
interactions.

On the other hand, PSF and p54"™®/NonO do not serve
simply as bridging proteins. These proteins are shown to di-
rectly affect DNA pairing, stimulation of topoisomerase I ac-
tivity, transcriptional activation or repression, CA activity and
promotion of pre-mRNA splicing. In these cases they are
usually identified in monomeric form and this might indicate
nucleoplasmic localization. Indeed, translocated forms of
these proteins localize aberrantly and it is speculated that
perturbations of function and the natural binding to nuclear
partners occur. Moreover, modified expression of p54"rP/
NonO and PSF is observed in cancer cells and in differentiat-
ing cells [4,46-51]. Therefore, the abundance of monomeric
and heterodimeric forms in different cells probably varies,
subsequently determining which complexes will assemble in
each type of cell. Still, the fine details of understanding the
simultaneous involvement of PSF or p54"™®/NonO in this di-
versity of nuclear reactions remains to be determined.

8. Note added in proof

Recently, proteomic analysis of the human spliceosome has
verified the presence of PSF in this large complex [52].
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