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a b s t r a c t

In this work, we analyze a Stokes problem arising in the study of the Navier–Stokes flow
of a liquid jet. The analysis is accomplished by showing that the relevant Stokes operator
accounting for a free surface gives rise to a sectorial operator which generates an analytic
semigroup of contractions. Estimates on solutions are established using Fourier methods.
The result presented is the key ingredient in a local existence and uniqueness proof for
solutions of the full nonlinear problem.
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1. Introduction

In this paper, we are concerned with solutions of the modified Stokes problem

Dtv − µ1v + ∇q = f on (0, T ) × Ω (1.1)
∇ · v = 0 on (0, T ) × Ω (1.2)
v(0, ·) = 0 on Ω (1.3)
S(v, q) = 0 on (0, T ) × SF (1.4)

Dm
3 q|Γℓ

= Dm
3 q|Γ0 , Dk

3v|Γℓ
= Dk

3v|Γ0 for 0 ≤ m ≤ s − 2, 0 ≤ k ≤ s − 1 (1.5)

for suitable initial data and sufficiently general body forces f. Here Ω denotes the set

Ω = D × (0, ℓ), (1.6)

where ℓ > 0 and D =

(a1, a2) ∈ R2

: a21 + a22 < κ2

for some radius κ > 0. We are primarily interested in thin fluid fila-

ments (i.e.,whereκ is small relative to the axial period ℓ) andhencewe can assumeκ < 1. Throughout, Cartesian coordinates
in Rn will be written in the form (a1, . . . , an). SF denotes the portion of ∂Ω corresponding to the cylinder surface, given by

SF =

(a1, a2, a3) ∈ ∂Ω : a21 + a22 = κ2 , (1.7)
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Γ0 and Γℓ denote the opposing faces of ∂Ω

Γ0 = D × {0}, Γℓ = D × {ℓ}, (1.8)

and s ≥ 2. The quantity v is the (Lagrangian) fluid velocity, q is the (Lagrangian) fluid pressure,n is the outwardunit normal to
Ω , andµ > 0 is the (constant) fluid viscosity. Themoving free-boundary condition is abbreviated by S(v, q) = 0on SF , where

S(v, q) =


qni − µ

3
j=1

(Djvi + Divj)nj

3

i=1

. (1.9)

Note that the conditions (1.5) require that solutions be periodic of period ℓ in the a3-direction. Our objective in this work is
to show that this Stokes problem allows unique solutions for given initial data and arbitrary T > 0.

We now briefly motivate how the linear problem (1.1)–(1.5) arises in the study of free fluid jets. We consider the
three-dimensional motion of a jet bounded by an evolving free surface under isothermal conditions and without surface
tension. The fluid is assumed to be viscous, homogeneous, incompressible, and Newtonian. Tomodel the fluid jet, the three-
dimensional incompressible Navier–Stokes equations are coupled with periodic boundary conditions in the axial direction
as in [1] and moving free-surface boundary conditions in the radial direction:

Dtu + (u · ∇)u − µ1u + ∇p = g e3 on Ω(t) (1.10)
∇ · u = 0 on Ω(t) (1.11)

(pI − µ(∇u + ∇uT )) · N = P0N on SF (t) (1.12)

Dm
3 p|Γℓ(t) = Dm

3 p|Γ0(t), Dk
3u|Γℓ(t) = Dk

3u|Γ0(t) for 0 ≤ m ≤ s − 2, 0 ≤ k ≤ s − 1 (1.13)

Dty(t, ·) = u(t, y(t, ·)) on Ω (1.14)
u(0, ·) = u0(·) on Ω (1.15)
y(0, ·) = I(·) on Ω. (1.16)

In this Eulerian descriptionu is the fluid velocity, p is the fluid pressure, y is the fluid parcel trajectorymap, P0 is the (constant)
ambient pressure, and g is the acceleration due to gravity. At time t , the fluid domain, free surface, and periodic faces are
given by Ω(t) = y(t, Ω), SF (t) = y(t, SF ), Γ0(t) = y(t, Γ0), and Γℓ(t) = y(t, Γℓ), respectively. N is the outward unit
normal to Ω(t) and e3 = (0, 0, 1)T .

The periodic boundary condition is chosen because it leads to a simpler functional setting and avoids all axial boundary
layer difficulties while retaining the primary mathematical challenges of the problem. In addition, the assumption of
periodicity in the axial direction has been successfully used to study physical flow phenomena in the numerical simulation
of drop dynamics for viscoelastic fluid jets [2].

To obtain a fixed fluid domain, it is useful to shift to a Lagrangian specification of the flow field. The problem (1.10)–(1.16)
then becomes

Dtvi − µ

3
j,k,m=1

λj,kDk(λj,mDmvi) +

3
k=1

λi,kDkq = gδ3,i for i ∈ {1, 2, 3} on Ω (1.17)

3
j,k=1

λj,kDkvj = 0 on Ω (1.18)

qni − µ

3
j,k=1

(λj,kDkvi + λi,kDkvj)nj = 0 for i ∈ {1, 2, 3} on SF (1.19)

Dm
3 q|Γℓ

= Dm
3 q|Γ0 , Dk

3v|Γℓ
= Dk

3v|Γ0 , Dk
3x|Γℓ

= Dk
3x|Γ0 for 0 ≤ m ≤ s − 2, 0 ≤ k ≤ s − 1 (1.20)

Dtx = v on Ω (1.21)
v(0, ·) = u0(·) on Ω (1.22)
x(0, ·) = 0 on Ω. (1.23)

Here v is the Lagrangian fluid velocity, q is the difference between the Lagrangian fluid pressure and the ambient pressure,
x = y − I is the fluid parcel displacement map, and δi,j denotes the Kronecker delta. One consequence of converting the
governing equations to the Lagrangian specification is the introduction of a priori unknown quantities involving derivatives
of the trajectory map y, which we denote by λi,j(t, a) : Ω → R where

Λ =

λi,j


= (∇y)−1
=

D1y1 D1y2 D1y3
D2y1 D2y2 D2y3
D3y1 D3y2 D3y3

−1

. (1.24)
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It readily follows from a continuity argument that x ≈ 0 for t ≪ 1 so that Λ is approximately equal to the 3 × 3 identity
matrix for small times t . Taking λi,j = δi,j in (1.17)–(1.23) we obtain, with the exception of the initial data, the linearized
Stokes problem (1.1)–(1.5). Details of the Lagrangian coordinate change for closely related problems are given by Beale [3]
and Teramoto [1].

To obtain a local-in-time solution for the full nonlinear problem (1.17)–(1.23), a fixed point approach can be used, which
requires unique solvability of a slightly more general version of the linearized problem discussed here. That general case,
however, can be shown to reduce to the one treated in this paper. This overarching strategy of studying a modified Stokes
problem in Lagrangian coordinates and its use in a fixed point argument was championed by Beale in [3] for a semi-infinite
‘‘ocean’’ of fluid having a free upper surface and fixed bottom. Teramoto subsequently adapted Beale’s techniques to gain
similar results for a free surface problem involving axisymmetric flow down the exterior of a solid vertical column of
sufficiently large radius [1].

It is important, however, to note that while the fluid jet appears similar to the problem considered in [1], there are
key differences which require that we build upon the work done by Beale and Teramoto. For example, unlike the fluid
domains under consideration in [4,5,3,6,1], there is no stationary surface opposite the free surface to which a Dirichlet
boundary condition can be assigned. Foremost among the consequences of not having such a condition are the loss of general
applicability of the Poincaré inequality and the loss of invertibility of the modified Stokes operator, which is central to the
analysis. Moreover, where Teramoto is able to exploit axisymmetry and cylindrical coordinates to reduce his problem to
two dimensions, the same approach introduces significant challenges in the fluid jet case since the Navier–Stokes equations
in cylindrical coordinates have singular coefficients when the axis at r = 0 is contained in the fluid domain.

Also in contrast to [4,5,3,6,1], we utilize an elegant semigroup approach to the linearized problem. This has the benefit
of immediately providing a solution to the abstract Cauchy problem associated with the problem (1.17)–(1.23). We
improve upon the spectral analysis of the corresponding operator −A found in [3] and show that it is, in this setting, a
sectorial operator which generates an analytic semigroup of contractions. Additionally, we are able to establish explicit
characterizations for both spaces in the modified Helmholtz decomposition of (L2(Ω))3.

This paper is organized as follows: in Section 2, we introduce the setting of the problem and present some preliminary
lemmas which adapt and extend standard results from [3] to fit this setting; in Section 3, we derive the relevant abstract
Cauchy problem and restrict the spectrum of the underlying differential linear operator A to a sector in the right half of the
plane as well as provide estimates on the resolvent operator of A; in Section 4, we establish that −A is the infinitesimal
generator of an analytic semigroup of contractions and use this solve the linearized problem (1.1)–(1.5).

2. State spaces and estimates

To analyze Eqs. (1.1)–(1.5), we take as our initial fluid domain (the space occupied by the fluid at t = 0) the infinite
cylinder along the a3-axis,

Ω∞ =

(a1, a2, a3) ∈ R3

: a21 + a22 < κ2 , (2.1)

with free surface ∂Ω∞ =

(a1, a2, a3) ∈ R3

: a21 + a22 = κ2

. We restrict our attention to flow which is periodic in the a3

direction, hence we are interested primarily in functions of the form

f =


n

f̂n(a1, a2)e2π ina3/ℓ ∈ Hk
loc(Ω∞) = W k,2

loc (Ω∞), (2.2)

with f̂n ∈ Hk(D). In practice however, we will find it more convenient to work with functions over a single period. It is
natural then to interpret a3-periodic functions on Ω∞ as being defined on a solid torus T ⊂ R3. It should be clear that
Hk(T ) is smoothly isomorphic to the space of functions of interest.

While T is a natural choice for the domain given the periodic setting, we prefer to work in the physical space occupied by
Ω∞. To this end, we notice that there is a C∞ diffeomorphism from one period of Ω∞ onto T and consider the bounded set
Ω = D×(0, ℓ)with boundary ∂Ω = SF ∪Γ0∪Γℓ. While the use ofΩ in place ofΩ∞ does give rise tominor technical issues
(as opposed to T ) concerning the regularity of functions as one approaches the ‘‘artificial’’ corners in the boundaries, most
of these problems can be dealt with by temporarily exchanging Ω for a larger subset of Ω∞. As such we will occasionally
find a use for the set Ω1 = D × (−ℓ, ℓ).

Given a spatial domain U ⊂ R3 and a time interval I ⊂ R, the following notational conventions are adopted for arbitrary
function spaces X(U) and Y (I × U):

X(U) = (X(U))3, Y(I × U) = (Y (I × U))3, (2.3)
Xσ (U) = {u ∈ X(U) : ∇ · u = 0} , Yσ (I × U) = {u ∈ Y(I × U) : ∇ · u = 0} , (2.4)
X = X(Ω), Y = Y ((0, T ) × Ω), (2.5)
0X = {u ∈ X : u = 0 on SF } , 0Y = {u ∈ Y : u = 0 on SF } . (2.6)

Here the vector and tensor fields are equipped with the Euclidean and Frobenius norms, respectively. To keep the
notation simple, we use the following rule: If a function space already has a subscript, its divergence-free subspace will
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be denoted by appending a σ to the existing subscript. Our notation is thus closely aligned to the one chosen by Beale
in [3]. Spaces not following these conventions will be explicitly defined in each instance. We now introduce the spaces
fundamental to this text; though each assumes Ω as its spatial domain, the extension to Ω1 is obvious. For the set
of functions on Ω whose a3-periodic extensions are continuously differentiable and bounded on Ω∞ we simply take
Ck
p =


u|Ω : u =


∞

n=−∞
ûn(a1, a2)e2π ina3/ℓ ∈ Ck


Ω∞


. Note that ûn ∈ Ck(D) necessarily. Similarly, we define C∞

p (or
Ck,α
p ) to be the set of all such functions which are bounded and smooth (or Hölder continuous with exponent α) on Ω∞. It

is clear that the following space is isomorphic to Hk(T ):

Hk
p =


u =

∞
n=−∞

ûn(a1, a2)e2π ina3/ℓ ∈ Hk(Ω) : ûn ∈ Hk(D) and (u, u)Hk
p

< ∞


(2.7)

for k ∈ N0, where

(u, v)Hk
p

=

∞
n=−∞

k
m=0

(2πn)2m

ℓ2m−1
(ûn, v̂n)Hk−m(D) and ∥u∥Hk

p
=


(u, u)Hk

p
. (2.8)

The norms ∥ · ∥Hk
p
and ∥ · ∥Hk are equivalent norms on Hk

p which are actually equal for k ∈ {0, 1}. Here ∥ · ∥Hk denotes the

standard norm on Hk(Ω). It then readily follows that H0
p = L2 and

Hk
p = {f ∈ Hk

: Dj
3f |Γℓ

= Dj
3f |Γ0 for all 0 ≤ j ≤ k − 1} (2.9)

for k ≥ 1. We define Hs
p, s ∈ R+, using complex interpolation. Note that, throughout the text, we typically use r and s to

denote non-integer regularity and k and mwhen we restrict ourselves to integer regularity.
Instead of the standardHelmholtz decomposition of L2, we take our lead from [3] and pursue something slightly different.

In particular, to incorporate a3-periodicity along with the divergence-free condition into the auxiliary space, we choose our
decomposition so that L2 can be projected onto H0

pσ . For convenience, we set Ps
= Hs

pσ and introduce the space

Vs
= {v ∈ Ps

: Stan(v) = 0 on SF }, (2.10)

where Stan = S − (S · n)n is the tangential part of S. Finally, to incorporate regularity with respect to time we define the
space

K s
p(I × Ω) = Hs/2(I;H0

p) ∩ H0(I;Hs
p). (2.11)

In contrast to [3], we now provide an explicit characterization of the orthogonal complement (P0)⊥ arising in our
Helmholtz decomposition of L2. This result will prove important later on.

Proposition 2.1. The orthogonal complement of P0 in L2 has the characterization (P0)⊥ = {∇q : q ∈
0H1

p }.

Proof. Let Y = {∇q : q ∈
0H1

p }. It is sufficient to show two things: (i) Y is closed in L2 so that Y = (Y⊥)⊥, and (ii) P0
= Y⊥. In

order to prove (i), we will first need to show that the orthogonal complement of X = 0C∞
pσ

∥·∥L2 in L2 has the characterization
X⊥

= {∇q : q ∈ H1
p }. Let q ∈ H1

p ,u ∈ X. There exist uk ∈
0C∞

pσ such that uk → u in L2. Integration by parts yields

(∇q,u)L2 = lim
k→∞

(∇q,uk)L2 = lim
k→∞


Γℓ

quk · e3 +


Γ0

quk · (−e3) = 0. (2.12)

Thus ∇q ∈ X⊥. Conversely, let w ∈ X⊥. Then, in particular, (w,u)L2 = 0 for all u ∈ C∞
cσ . Thus there exists p ∈ H1 such that

w = ∇p, see [7, pp. 10–11]. Now consider

u =

 0
0

u(a1, a2)


∈

0C∞

pσ , (2.13)

where u ∈ C∞
c (D) is arbitrary. Then, applying integration by parts, we obtain

0 = (w,u)L2 = (∇p,u)L2 (2.14)

=


Γℓ

pu · e3 +


Γ0

pu · (−e3) (2.15)

=


Γℓ

pu −


Γ0

pu (2.16)

=

p|Γℓ

− p|Γ0 , u

L2(D)

. (2.17)
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Since u is an arbitrary element of a dense subset of L2(D) (see [8, p. 13]), this implies that p|Γℓ
= p|Γ0 on L2(D). Hence p ∈ H1

p
by (2.9).

With this characterization in hand, we can now prove (i). Let qk ∈
0H1

p such that ∇qk → f ∈ L2. Since ∇qk ∈ X⊥, we
have

(f,u)L2 = lim
k→∞

(∇qk,u)L2 = 0 (2.18)

for all u ∈ X. Hence f ∈ X⊥ and so there exists p ∈ H1
p such that f = ∇p. Notice that for n ≠ 0

∥(q̂k)n − p̂n∥2
H1(D)

≤ ℓ2

n


2πn
ℓ

2

∥(q̂k)n − p̂n∥2
H1(D)

+

2
j=1

∥Dj((q̂k)n − p̂n)∥2
L2(D)


(2.19)

≤ ℓ2
∥∇(qk − p)∥2

L2 . (2.20)

Thus (q̂k)n → p̂n in H1(D). Since (q̂k)n ∈ H1
0 (D), a closed subspace of H1(D), we obtain p̂n ∈ H1

0 (D) for n ≠ 0. For n = 0,
applying the standard Poincaré inequality yields a constant C > 0 such that

∥(q̂k)0 − (q̂m)0∥
2
H1(D)

≤ C∥∇((q̂k)0 − (q̂m)0)∥
2
(L2(D))2

≤ Cℓ2
∥∇(qk − qm)∥2

L2 (2.21)

which implies that (q̂k)0 converges in H1
0 (D). Moreover, the limit is necessarily p̂0 + λ, for some λ ∈ R, since it is readily

seen that (q̂k)0 converges to this limit in the weaker L2-norm. Thus f = ∇qwhere q = p + λ ∈
0H1

p . Hence Y is closed in L2.
Finally, we show (ii). Let u ∈ Y⊥ and ϕ ∈ C∞

c . Then

0 = (∇ϕ,u)L2 = −


Ω

ϕ(∇ · u). (2.22)

Hence∇ ·u acts as a bounded linear functional on C∞
c and can be extended to all of L2 by density. This unique operator must

be the zero functional and thus u ∈ P0. Conversely, let v ∈ P0. Since L2 = Y ⊕ Y⊥, there are q ∈
0H1

p and ṽ ∈ Y⊥ such that
v = ṽ + ∇q. Taking the divergence of both sides of this equation yields 1q = 0 and, by Lax–Milgram, qmust be the unique
solution of this equation in 0H1

p . Thus q = 0 and v = ṽ ∈ Y⊥. Thus P0
= Y⊥ and the claim follows. �

The following are analogous to results in [3] and are readily shownusing similar techniques. They are given here explicitly
for the reader’s convenience.

Proposition 2.2. Let P be the orthogonal projection of L2 onto P0.

(1) For s ≥ 0, we have PHs
p = Ps and P|Hs

p : Hs
p → Ps is bounded.

(2) P|Ks
p : Ks

p → Ks
p is bounded with norm bounded independent of T .

(3) Suppose s ≥ 1. If f ∈ Hs
p, then there is a unique f̃ ∈ Hs

p such that

P(∇f ) = ∇ f̃ , f |SF = f̃ |SF , and 1f̃ = 0. (2.23)

Wewill see that, just as in [3], many crucial quantities can be cast as solutions of a particular problem involving Laplace’s
equation. Adapting the boundary conditions to reflect periodicity and the absence of a fixed bottom surface, the relevant
problem in our setting takes the form

1u = f in Ω, u = 0 on SF , Dk
3u|Γℓ

= Dk
3u|Γ0 for k ∈ {0, 1}, (2.24)

where f ∈ Hs−2
p is given. The following result demonstrates that (2.24) has a unique solution and provides an estimate for

it in terms of the inhomogeneity f . We note that the provided proof does not draw from the corresponding proof in [3].

Proposition 2.3. For f ∈ Hs−2
p , s ≥ 2, there is a unique solution u ∈

0Hs
p of 1u = f on Ω . Additionally, there exists C > 0,

independent of f , such that ∥u∥Hs
p ≤ C∥f ∥Hs−2

p
.

Proof. Let f =


n f̂ne
2π ina3/ℓ. We first consider the boundary-value problem, Lnu = −f̂n on D with u = 0 on ∂D, where Ln

and its associated sesquilinear form (Bn : H1
0 (D) × H1

0 (D) → C) are given by

Lnu = −1u +


2πn
ℓ

2

u (2.25)

Bn[u, v] = (∇u, ∇v)L2(D) +


2πn
ℓ

2

(u, v)L2(D). (2.26)
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Clearly, Bn is continuous and coercive on H1
0 (D), thus we can apply Lax–Milgram to obtain a unique weak solution, ûn ∈

H1
0 (D). The construction u =


n ûne2π ina3/ℓ is then our candidate for the solution of the boundary-value problem in Ω . We

now restrict our discussion to the case when s = k ∈ Z. Given the regularity of ∂D we can immediately conclude that each
ûn ∈ Hk(D) is a strong solution. Our goal is to show that u ∈ Hk

p . First we obtain some preliminary estimates for ûn where
n ≠ 0:

Bn[ûn, ûn] = (−f̂n, ûn)L2(D) (2.27)

∥∇ûn∥
2
L2(D)

+


2πn
ℓ

2

∥ûn∥
2
L2(D)

≤ ∥f̂n∥L2(D)∥ûn∥L2(D) (2.28)

∥ûn∥L2(D) ≤


ℓ

2πn

2

∥f̂n∥L2(D). (2.29)

Notice that from this estimate we can conclude
n


2πn
ℓ

2k

∥ûn∥
2
L2(D)

≤


n


2πn
ℓ

2(k−2)

∥f̂n∥2
L2(D)

≤ ∥f ∥2
Hk−2
p

< ∞. (2.30)

This gives us an estimate on the lowest order terms in the Hk
p-norm. For the highest order terms, standard elliptic regularity

theory (e.g., see [9, p. 323]) provides an estimate of the form

∥ûn∥Hk(D) ≤ C1∥f̂n∥Hk−2(D), (2.31)

though the constant C1 here generally depends on the coefficients (and hence n) of Ln. However, upon closer inspection
of the proof of this result (e.g., in [9]), we observe that our above estimates on ∥ûn∥L2(D) can be used in place of the usual
L∞-estimate on the coefficient (2πn/ℓ)2 of Ln. In consequence this allows C1 to be chosen independently of n. Therefore

n

∥ûn∥
2
Hk(D)

≤ C2
1


n

∥f̂n∥2
Hk−2(D)

≤ C2
1∥f ∥2

Hk−2
p (Ω)

< ∞. (2.32)

Finally, we must show that the intermediate order terms in the Hk
p-norm are also summable. Exploiting complex

interpolation between H0(D) and Hk(D) and Young’s inequality, we obtain for each 0 < m < k
n


2πn
ℓ

2m

∥ûn∥
2
Hk−m(D)

≤


n


2πn
ℓ

2m 
∥ûn∥

m/k
L2(D)

∥ûn∥
1−m/k
Hk(D)

2
(2.33)

≤ C2


n


2πn
ℓ

2m(k−2)/k

∥f̂n∥
2m/k
L2(D)

∥f̂n∥
2(k−m)/k
Hk−2(D)

(2.34)

≤ C2


n

m
k


2πn
ℓ

2m(k−2)/k

∥f̂n∥
2m/k
L2(D)

k/m

(2.35)

+
k − m

k


∥f̂n∥

2(k−m)/k
Hk−2 (D)

k/(k−m)

 (2.36)

= C2


n

m
k


2πn
ℓ

2(k−2)

∥f̂n∥2
L2(D)

+
k − m

k
∥f̂n∥2

Hk−2(D)
(2.37)

≤ C3∥f ∥2
Hk−2 . (2.38)

Thus u ∈
0Hk

p with ∥u∥2
Hk
p

≤ C4(k+1)∥f ∥2
Hk−2
p

, which completes the proof for integer values of s. Interpolation then provides

the remaining cases. �

3. A spectral result

Our first goal is to use themodified Helmholtz projection P to rewrite the problem (1.1)–(1.5) in a variational formwhich
has the velocity as its only unknown. First we notice that for any solution (v, q) of the problem, (1.2) implies v(t) ∈ P0 for
each t . Since it is readily seen that P commutes with Dt , applying P to (1.1) yields

Dtv − µP1v + ∇q1 = Pf, (3.1)
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where ∇q1 = P∇q (with 1q1 = 0 on Ω and q1 = q on SF ) by Proposition 2.2(3). This application of P removes the
indeterminacy of the pressure term in the sense that the value of q1 is uniquely determined by v.

Lemma 3.1. Suppose s ≥ 2 and (v, q) ∈ Hs
p × Hs−1

p satisfies (1.4). Then there exists a bounded linear operator Q : Hs
p → Hs−1

p
mapping v → q1 where q1 is the function provided by Proposition 2.2(3) with ∇q1 = P∇q.

Proof. To see this, we use the fact that q and q1 agree on the free surface and observe that (1.4) implies that the normal
component of S(v, q) must vanish on SF . Hence S(v, q1) · n = 0 implies q1 = 2µκ−22

i,j=1 aiajDjvi on SF . Given v ∈ Hs
p, we

note that f = 2µκ−22
i,j=1 aiajDjvi ∈ Hs−1

p . For s = 2, we can apply Lax–Milgram to obtain the existence of a unique weak
solution q1 ∈ H1

p of the problem

1q1 = 0 on Ω (3.2)
q1 = f on SF (3.3)

Dk
3q1|Γℓ

= Dk
3q1|Γ0 for k ∈ {0, 1} (3.4)

with ∥q1∥H1
p

≤ C1∥v∥H2
p
where C1 > 0 is independent of v. For s ≥ 3, we consider the problem

1φ = −1f on Ω (3.5)
φ = 0 on SF (3.6)

Dk
3φ|Γℓ

= Dk
3φ|Γ0 for k ∈ {0, 1} (3.7)

which has a unique solution φ ∈
0Hs−1

p , by Proposition 2.3, satisfying ∥φ∥Hs−1
p

≤ C2∥1f ∥Hs−3
p

for some C2 > 0 which is

independent of v. Finally, we set q1 = φ + f ∈ Hs−1
p and observe that ∥q1∥Hs−1

p
≤ C2∥1f ∥Hs−3

p
+ ∥f ∥Hs−1

p
≤ C3∥v∥Hs

p .
Interpolation now yields the claim for the remaining values of s. It readily follows that the constructed operator is linear
in v. �

Wenow take the general approach used in semigroup theory by treating (1.1) as an abstract ordinary differential equation
with respect to time whose solution is, for each value of t , an element of the appropriate function space (Vs) on Ω . If we
define an operator A : Vs

→ Ps−2 by

Av = −µP1v + ∇Qv, (3.8)

the problem (1.1)–(1.5) takes on the form

v̇ + Av = Pf on (0, T ) × Ω (3.9)
v(0, ·) = 0 on Ω. (3.10)

Notice that (1.4) is satisfied since our construction of Q ensures that the normal component of S(v, q) will vanish on SF . The
operator A is a modification of the standard Stokes operator.

We tackle the matter of determining the spectrum of −A first. Unfortunately, in contrast to the problems treated in
[4,5,3,6,1], A is not injective with our boundary conditions (implying that 0 lies in the spectrum of A) since A(v + c) = Av
for any constant vector c. This, combined with the inability to apply the Poincaré inequality in general, makes the problem
of determining the spectrum more challenging here than in the aforementioned cases. Restricting the spectrum of A to a
sector in the right half of the plane and providing estimates on the resolvent operator, the following theorem is a key result
of this work.

We will show that ρ(A) contains all λ ∈ C such that |Im(λ)| > Re(λ). Given g ∈ Ps−2 and λ with |Im(λ)| > Re(λ), we
find a unique solution (v, q) ∈ Vs

× Hs−1
p of the problem

− µ1v − λv + ∇q = g (3.11)

along with (1.2), (1.4) and (1.5). To see that this is equivalent to the statement about ρ(A), suppose that there exists v ∈ Vs

such that (A−λI)v = g. Using our decomposition of L2, we find q0 ∈
0H1

p such that∇q0 = µ(I−P)1v. Setting q = Qv+q0,
we obtain (3.11). It is now straightforward to verify that (v, q) also satisfies (1.2), (1.4) and (1.5). Conversely, given a solution
(v, q) of the stationary problemwe can apply P to (3.11) to obtain (A−λI)v = g. Hence (A−λI)v = g has a unique solution
v if and only if the problem (1.2), (1.4), (1.5), (3.11) has a unique solution (v, q).

Theorem 3.2. For g ∈ Ps−2, the problem (1.2), (1.4), (1.5), (3.11) has a unique weak solution (v, q) ∈ P1
× L2 for each λ ∈ C

such that |Im(λ)| > Re(λ).

Proof. Notice that for any v ∈ P1, v satisfies (1.2) and the portion of (1.5) referring to the velocity. The free surface condition
(1.4) is not necessarily satisfied though and will need to be incorporated into a variational formulation directly. To that end,
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let us consider the sesquilinear form ⟨·, ·⟩ : P1
× P1

→ C defined by

⟨v,u⟩ = −λ(v,u)L2 +
µ

2

3
i,j=1


Ω

(Djvi + Divj)(Djūi + Diūj). (3.12)

Now suppose u ∈ H1
p, v ∈ P2, q ∈ H1

p and observe that
Ω

(−µ1v − λv + ∇q) · u = −µ


Ω


i

1viui


− λ(v,u)L2 +


∂Ω

q(u · n) −


Ω

q∇ · u (3.13)

= µ

i,j


Ω

DjuiDjvi +


i


∂Ω

ui


qni − µ


j

Djvinj



− λ(v,u)L2 −


Ω

q∇ · u (3.14)

= ⟨v,u⟩ +


∂Ω

S(v, q) · u + µ

i,j


∂Ω

uiDivjnj

−


Ω

DjuiDivj −


Ω

q∇ · u (3.15)

= ⟨v,u⟩ +


∂Ω

S(v, q) · u −


Ω

q∇ · u + µ


i


Ω

uiDi(∇ · v) (3.16)

= ⟨v,u⟩ +


∂Ω

S(v, q) · u −


Ω

q∇ · u. (3.17)

Notice that the pair (v, q) currently satisfies (1.2) and (1.5). If we suppose that (v, q) additionally satisfies (3.11) and (1.4),
then we obtain

(g,u)L2 = ⟨v,u⟩ +


Γℓ

S(v, q) · u +


Γ0

S(v, q) · u = ⟨v,u⟩ (3.18)

for all u ∈ P1. Thus ⟨v,u⟩ = (g,u)L2 can be seen as a weak formulation of the full problem which does not involve q.
In an effort to apply Lax–Milgram, we verify that the sesquilinear form is both continuous and coercive. Applying Hölder,
|⟨v,u⟩| ≤ C∥v∥H1

p
∥u∥H1

p
, where C > 0 depends onµ and λ. Hence the sesquilinear form is continuous. That it is also coercive

follows from Korn’s inequality:

|⟨v, v⟩|2 =


µ

2

3
i,j=1


Ω

|Djvi + Divj|
2
− Re(λ)∥v∥2

L2

2

+

Im(λ)∥v∥2

L2
2

(3.19)

≥
1
2


µ

2

3
i,j=1


Ω

|Djvi + Divj|
2
− Re(λ)∥v∥2

L2 + |Im(λ)| · ∥v∥2
L2

2

(3.20)

≥ C∥v∥4
H1
p
. (3.21)

For Re(λ) ≥ 0, line (3.19) implies

|⟨v, v⟩|2 ≥ Im(λ)2∥v∥4
L2 ≥

1
2
|λ|

2
∥v∥4

L2 . (3.22)

Moreover, the same estimate can be obtained for Re(λ) < 0 since the right-hand side of line (3.19) then expands to
something of the form φ + |λ|

2
∥v∥4

L2 where φ ≥ 0. Since the sesquilinear form satisfies the conditions of Lax–Milgram,
we obtain a unique weak solution v ∈ P1 of (1.2), (1.4), (1.5), (3.11) along with the estimate

∥v∥H1
p

≤ C∥g∥L2 . (3.23)

We now seek an associated pressure, q, of v. Recall that an associated pressure need only satisfy (3.11) in the sense of
distributions (i.e., when tested against arbitrary u ∈ C∞

c ). As with the velocity, we begin by finding a weak formulation for
the pressure. Notice that, for q ∈ H1

p with (v, q) satisfying (1.4), we obtain from (3.17) that
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Ω

q∇ · u = ⟨v,u⟩ − (g,u)L2 (3.24)

for all u ∈ H1
p. Using continuity of the sesquilinear form we obtain immediately that the right-hand side is a bounded linear

functional in u, F : C∞
c → C, which vanishes when ∇ · u = 0. From [10], we know there is a unique q̃ ∈ L2 such that

F = ∇ q̃ and


Ω

q̃ = 0. (3.25)

It is now straightforward to verify that q = −q̃ satisfies (3.11) in the distributional sense and hence is an associated pressure
of v. It is uniquely determined under the additional condition


Ω
q = 0, but otherwise is unique only up to a constant. �

The proof of the preceding theorem allows us to draw the following conclusion about the case λ = 0.

Corollary 3.3. For g = 0, (v, q) ∈ P1
× L2 is a weak solution of the problem (1.2), (1.4), (1.5), (3.11) with λ = 0 if and only if

v and q are constant.

Proof. Reasoning as in (3.19), we have

0 = |⟨v, v⟩| =
µ

2

3
i,j=1


Ω

|Djvi + Divj|
2

≥ 2µ
3

i=1


Ω

|Djvi|
2. (3.26)

Hence v and a fortiori q are constant. �

Theorem 3.4. Let s ≥ 2. Then σ(A) ⊂ {λ ∈ C : |Im(λ)| ≤ Re(λ)}. Moreover, for λ with |Im(λ)| > Re(λ) and |λ| ≥ ε > 0 the
resolvent operator R(λ; A) = (A − λI)−1 satisfies

∥R(λ; A)g∥Hs
p ≤ C(∥g∥Hs−2

p
+ (1 + ε−1)(|λ| + 1)(s−2)/2

∥g∥L2) (3.27)

for all g ∈ Ps−2. Here C > 0 is a constant which is independent of λ, ε, and g.

Proof. Wewill nowdemonstrate that theweak solution provided by Theorem3.2 can, in fact, bemade into a strong solution
of the problem (1.2), (1.4), (1.5), (3.11). In order to avoid the lack of regularity due to the ‘‘artificial’’ corners in our domain,
we turn to the equivalent problem of finding a weak solution (v1, q1) of the problem (1.2), (1.4), (1.5), (3.11) on the larger
domain Ω1. By choosing q1 such that


Ω1

q1 = 0 we can ensure that (v1, q1) is simply the periodic extension of (v, q) to
Ω1. Then it follows from standard results [11] that (v1, q1) has the additional regularity we seek on compactly contained
subsets of Ω1. To obtain regularity all the way up to the boundary, we follow the approach in [12] which is applicable
to the boundary provided that it is smooth locally. Thus the pair (v1, q1) has the desired regularity near SF up to and
including the intersections with Γ0, Γℓ since these regions occur on a smooth portion of the free surface on Ω1. It follows
that vp ∈ H2

loc(Ω∞) and qp ∈ H1
loc(Ω∞), hence v ∈ P2 and q ∈ H1

p .
To see that (v, q) provides us with a strong solution of our problem, we only need to verify that (1.4) and (3.11) are

satisfied. Using (3.17), for all u ∈ P1 we have

(−µ1v − λv + ∇q − g,u)L2 =


∂Ω

S(v, q) · u =


SF

S(v, q) · u. (3.28)

Taking u ∈
0C∞

pσ implies that −µ1v − λv + ∇q − g lies in the orthogonal complement of 0C∞
pσ

∥·∥L2 . It was demonstrated
in the proof of Proposition 2.1 that this orthogonal complement consists of the gradients of functions in H1

p , so that
−µ1v − λv + ∇q − g = ∇p for some p ∈ H1

p . However, (3.17) now yields

(g,u)L2 = (−µ1v − λv + ∇(q − p),u)L2 = ⟨v,u⟩ +


∂Ω

S(v, q − p) · u −


Ω

(q − p)∇ · u (3.29)

for all u ∈ H1
p. Restricting u to C∞

c and exploiting (3.25) reduces this to


Ω
p∇ · u = 0. Integrating by parts, we see that

Ω
∇p · u vanishes for arbitrary u ∈ C∞

c . Since this is a dense subset of L2, ∇p = 0 and q satisfies (3.11). All that remains is
to show that (1.4), the free surface boundary condition, is also satisfied. From (3.28) we now immediately obtain

SF
S(v, q) · u = 0 (3.30)

for all u ∈ P1. Following the lead of [13], we localize to a neighborhood Σ ⊂ SF and construct u ∈ P1 such that
u|SF = (S(v, q) − (S(v, q) · n)n)φ where φ is a smooth nonnegative function vanishing outside Σ . Then
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SF

S(v, q) · u =


Σ

|S(v, q) − (S(v, q) · n)n|
2φ + (S(v, q) · n)n · (S(v, q) − (S(v, q) · n)n)φ (3.31)

=


Σ

|Stan(v)|2φ (3.32)

= 0 (3.33)

implies that Stan(v) = 0 on Σ . Since Σ was chosen arbitrarily, we obtain S(v, q) = (S(v, q) · n)n on SF . Let θ(v, q) =

q − 2µκ−2 aiajDjvi ∈ H1
p . Since θ(v, q)|SF = S(v, q) · n, (3.28) yields

∂Ω

θ(v, q)n · u =


Ω

∇θ(v, q) · u = 0 (3.34)

for all u ∈ P1. By density, ∇θ(v, q) ∈ (P0)⊥ and θ(v, q) = p + ω for some p ∈
0H1

p and ω ∈ R. Since this implies
S(v, q) · n = q − 2µκ−2 aiajDjvi = ω on SF , we take q∗

= q − ω and obtain a unique strong solution (v, q∗) ∈ V2
× H1

p
of the problem (1.2), (1.4), (1.5), (3.11).

To further increase regularity, we turn to the standard a priori estimates of Agmon, Douglis, and Nirenberg (ADN) [14].
Here it is useful to work on T rather than Ω . The associated problem is readily seen to be uniformly elliptic in the sense of
ADNwith boundary conditions satisfying the complementing condition. The a priori estimates inT then lead to the following
estimate in Ω:

∥q∗
∥Hs−1

p
+

3
j=1

∥vj∥Hs
p ≤ Cλ

3
j=1

∥gj∥Hs−2
p

(3.35)

for a positive constant Cλ which depends on λ. Thus (v, q∗) ∈ Vs
× Hs−1

p is the unique solution of (1.2), (1.4), (1.5), (3.11)
and σ(A) ⊂ {λ ∈ C : Re(λ) ≥ 0}. Now all that remains is to show that the resolvent estimate (3.27) is satisfied. From (3.35)
we obtain the estimate

∥v∥2
Hs
p

≤


3

j=1

∥vj∥Hs
p

2

≤ 3C2
λ∥g∥2

Hs−2
p

= 3C2
λ∥(A − λI)v∥2

Hs−2
p

. (3.36)

Thus we have

∥v∥Hs
p ≤ c1∥(A + I)v∥Hs−2

p
(3.37)

≤ c1

∥(A − λI)v∥Hs−2

p
+ (|λ| + 1)∥v∥Hs−2

p


(3.38)

≤ c2

∥g∥Hs−2

p
+ (|λ| + 1)∥v∥(s−2)/s

Hs
p

∥v∥2/s
L2


, (3.39)

where c1 and c2 are positive constants which do not depend on λ. Here we have used complex interpolation between L2 and
Hs

p. Finally, we apply Hölder to (3.22) which yields

∥g∥L2 ≥
|λ|
√
2
∥v∥L2 . (3.40)

Now let us restrict ourselves to |λ| > ε for arbitrary ε > 0. If s = 2, then (3.39) and (3.40) yield (3.27) directly. Otherwise,
we can apply Young’s inequality to (3.39) obtain

∥v∥Hs
p ≤ c2


∥g∥Hs−2

p
+ c3(|λ| + 1)s/2∥v∥L2 +

1
2c2

∥v∥Hs
p


(3.41)

≤ c4

∥g∥Hs−2

p
+ (|λ| + 1)s/2∥v∥L2


(3.42)

≤ c5

∥g∥Hs−2

p
+ (1 + ε−1)(|λ| + 1)(s−2)/2

∥g∥L2


, (3.43)

where c3, c4, and c5 are positive constants which do not depend on λ and ϵ. Since v = R(λ; A)g, this completes the proof. �

Since Hs
p is compactly embedded in Hs−2

p for s ≥ 2, Riesz–Schauder theory and Corollary 3.3 imply the following result.
It follows that the kernel of A contains constants only.

Corollary 3.5. σ(A) consists of isolated eigenvalues of finite multiplicity. Moreover, the eigenvalue 0 of A has multiplicity 1.
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4. The inhomogeneous Cauchy problem

We can now show that −A is the infinitesimal generator of an analytic semigroup of contractions. This is the main
step involved in constructing solutions to the linear problem (1.1)–(1.5). We refer the reader to [15] for standard results
in semigroup theory.

Theorem 4.1. The operator −A, with domain V2, generates an analytic semigroup of contractions, J(t), on P0 with ∥J(t)∥
= 1.

Proof. As we seek to apply Lumer–Phillips, we begin by showing that −A is dissipative. To do this, we must improve
(slightly) upon the estimate provided by (3.40). For λ < 0, we obtain

|(g, v)L2 | = |⟨v, v⟩| = −λ∥v∥2
L2 +

µ

2

3
i,j=1


Ω

|Djvi + Divj|
2

≥ −λ∥v∥2
L2 . (4.1)

Dissipativity now follows using the Hölder inequality. Since A+ I is surjective by Theorem 3.4 and P0 is reflexive (as a Hilbert
space), we can apply Lumer–Phillips to obtain that V2 is dense in P0 and −A generates a C0 semigroup of contractions, J(t),
on P0. As the generator of a C0 semigroup of contractions, −A is closed (see Theorem II.1.4 in [15], for example) and using
(3.40) together with Theorem 12.31 from [16] we see that J(t) is actually an analytic semigroup on P0. Now, since J(t) is a
semigroup of contractions, we have ∥J(t)∥ ≤ 1. However, 0 is contained in the point spectrum of −A (see the discussion
preceding Theorem 3.4). Hence ∥J(t)∥ = 1 as required. �

With this semigroup result in hand, we are finally ready to solve the inhomogeneous linear problem (1.1)–(1.5).
Theorem 4.1 immediately provides a solution to the Cauchy problem (3.9)–(3.10) and makes the Paley–Wiener theory
utilized in [3] unnecessary. Here we abbreviate the sets G = (0, T ) × Ω and ∂GF = (0, T ) × SF .

Theorem 4.2. Let 3 < s ≤ 4, T > 0, and f ∈ Ks−2
p such that Pf(0, ·) = 0. Then the problem (1.1)–(1.5) has a unique solution

(v, q) such that v ∈ Ks
p, ∇q ∈ Ks−2

p , and q|SF ∈ K s−3/2
p (∂GF ). Moreover, this solution satisfies

∥v∥Ks
p + ∥∇q∥Ks−2

p
+ ∥q|SF ∥K s−3/2

p (∂GF )
≤ C∥f∥Ks−2

p
, (4.2)

where C is a positive constant which is independent of T and f.

Proof. First we notice that Pf ∈ C0,(s−3)/2([0, T ]; P0) by the Sobolev Embedding theorem. Combining Corollary 4.3.3 and
Theorem 4.3.5(iii) from [17], the abstract Cauchy problem

v̇ + Av = Pf (4.3)
v(0, ·) = 0 (4.4)

has a unique strong solution v ∈ C1,(s−3)/2([0, T ]; P0), with v(t) ∈ V2 for each t ∈ [0, T ]. Here we are exploiting the fact
that −A is the generator of an analytic semigroup on P0. Note that v is a strong solution in the sense of semigroups, i.e., v
is differentiable almost everywhere on [0, T ], with v̇ ∈ L1((0, T ); P0), such that v(0, ·) = 0 and v̇(t) = −Av(t) + Pf(t)
almost everywhere on [0, T ]. In fact, v is a classical solution in the semigroup sense since it is continuously differentiable
with respect to time.

To show that v ∈ Ks
p, we reconsider the abstract Cauchy problem (now with a new unknown variable ṽ) from another

perspective. We begin by applying the periodic analog of Lemma 2.2 from [3] in order to extend Pf to Ks−2
p (R × Ω) in such

a way that the extension is bounded independent of T and vanishes for t < 0. Multiplying through the abstract Cauchy
problem by the weight w(t) = e−t and taking Fourier transforms in t , we obtain

Fw(ṽ)(ξ) = (A + (1 + iξ)I)−1Fw(Pf)(ξ). (4.5)

Since it is clear that Fw(Pf)(ξ) ∈ Ps−2, this uniquely defines Fw(ṽ)(ξ) ∈ Vs by Theorem 3.4. Making use of the Fourier
transform characterization of Hs-spaces for s ∈ R+ (e.g., see [18]) and the fact that Fourier transforms are unitary
transformations, we have

∥ṽ∥2
Ks
p(R×Ω)

≤ 2

∥ṽ∥2

L2(R;Hs
p)

+ ∥ṽ∥2
Hs/2(R;L2)


(4.6)

= 2

∥Fw(ṽ)(ξ + 1)∥2

L2(R;Hs
p)

+ ∥(1 + ξ 2)s/4Fw(ṽ)(ξ + 1)∥2
L2(R;L2)


(4.7)

= 2


R


∥Fw(ṽ)(ξ + 1)∥2

Hs
p
+ (1 + ξ 2)s/2∥Fw(ṽ)(ξ + 1)∥2

L2


dξ . (4.8)
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Applying the resolvent estimate (3.27) to the first term of the integral, we obtain

∥Fw(ṽ)(ξ + 1)∥2
Hs
p

≤ c1

∥Fw(Pf)(ξ + 1)∥Hs−2

p
+ 2(|1 + i(ξ + 1)| + 1)(s−2)/2

∥Fw(Pf)(ξ + 1)∥L2

2
(4.9)

≤ c2

∥Fw(Pf)(ξ + 1)∥2

Hs−2
p

+ (

1 + (ξ + 1)2 + 1)s−2

∥Fw(Pf)(ξ + 1)∥2
L2


(4.10)

≤ c2

∥Fw(Pf)(ξ + 1)∥2

Hs−2
p

+ (3

1 + ξ 2)s−2

∥Fw(Pf)(ξ + 1)∥2
L2


(4.11)

≤ c3

∥Fw(Pf)(ξ + 1)∥2

Hs−2
p

+

1 + ξ 2(s−2)/2

∥Fw(Pf)(ξ + 1)∥2
L2


(4.12)

where c1, c2, and c3 are positive constants which are independent of ξ and f. Similarly, we can apply estimate (3.40) to the
second term of the integral to get

(1 + ξ 2)s/2∥Fw(ṽ)(ξ + 1)∥2
L2 ≤ 2(1 + ξ 2)s/2|1 + i(ξ + 1)|−2

∥Fw(Pf)(ξ + 1)∥2
L2 (4.13)

= 2


1 + ξ 2

1 + (1 + ξ)2


(1 + ξ 2)(s−2)/2

∥Fw(Pf)(ξ + 1)∥2
L2 (4.14)

≤ 6(1 + ξ 2)(s−2)/2
∥Fw(Pf)(ξ + 1)∥2

L2 . (4.15)

Combining these estimates yields

∥ṽ∥2
Ks
p(R×Ω)

≤ c4


R

∥Fw(Pf)(ξ + 1)∥2
Hs−2
p

+

1 + ξ 2(s−2)/2

∥Fw(Pf)(ξ + 1)∥2
L2 dξ (4.16)

= c4

∥Fw(Pf)(ξ + 1)∥2

L2(R;Hs−2
p )

+ ∥(1 + ξ 2)(s−2)/4Fw(Pf)(ξ + 1)∥2
L2(R;L2)


(4.17)

= c4

∥Pf∥2

L2(R;Hs−2
p )

+ ∥Pf∥2
H(s−2)/2(R;L2)


(4.18)

≤ c4∥Pf∥2
Ks−2
p (R×Ω)

, (4.19)

where c4 > 0 is a constant which is independent of ξ and f. By uniqueness, we must have v = ṽ|G ∈ Ks
p. We now seek a

suitable q so that (v, q) is the unique solution of (1.1)–(1.5). For fixed t , this amounts to finding a unique q ∈ Hs−1
p such that

∇q = µ1v + Av + f − Pf on Ω (4.20)
q = Qv on SF . (4.21)

Since s > 3, this is easily accomplished by taking the divergence of the first equation and applying Proposition 2.3. All that
remains is to show that (v, q) satisfies (4.2). To estimate q we first notice that

∇q = µ(I − P)1v + ∇Qv + (I − P)f. (4.22)

The only termwhich we do not yet know how to estimate is ∇Qv. However, since 1Qv = 0 on Ω and Qv = φ on SF where
φ = 2µκ−22

i,j=1 aiajDjvi ∈ Hs−1
p , it follows from Proposition 2.2(3) that ∇Qv = P(∇φ). Then by Proposition 2.2(2),

∥∇Qv∥Ks−2
p

= ∥P(∇φ)∥Ks−2
p

≤ c5∥∇φ∥Ks−2
p

≤ c6∥v∥Ks
p , (4.23)

where c5 and c6 are positive constants. Similarly, since Q was constructed so that q = Qv on SF ,

∥q|SF ∥K s−3/2
p (∂GF )

= ∥Qv|SF ∥K s−3/2
p (∂GF )

≤ c7∥Qv∥K s−1
p

≤ c8∥v∥Ks
p , (4.24)

where c7 and c8 are positive constants. Thus, combining estimates, we obtain

∥v∥Ks
p + ∥∇q∥Ks−2

p
+ ∥q|SF ∥K s−3/2

p (∂GF )
≤ c9


∥v∥Ks

p + ∥f∥Ks−2
p


(4.25)

≤ c9

∥ṽ∥Ks

p(R×Ω) + ∥f∥Ks−2
p


(4.26)

≤ c10

∥h∥Ks−2

p (R×Ω)
+ ∥f∥Ks−2

p


(4.27)

≤ c11∥f∥Ks−2
p

(4.28)

where c9, c10, and c11 are positive constants which do not depend on f (or T ). �



S. Ceci, T. Hagen / J. Math. Anal. Appl. 395 (2012) 131–143 143

5. Concluding remarks

With Theorem 4.2 in hand, it is now straightforward to follow through the fixed point approach outlined in [3], with
minor revisions, to obtain the following local existence result. For details about these modifications we refer the reader
to [19].

Theorem 5.1. Suppose 3 < s < 7
2 . For any u0 ∈ Vs−1 there exists T > 0, depending on ∥u0∥Hs−1

p
, so that the problem (1.17)–

(1.23) has a solution (v, q) with v ∈ Ks
p, q ∈ K s−3/2

p (∂GF ), and ∇q ∈ Ks−2
p .

Since the same arguments can be successfully applied to yield a similar local existence result when the initial
displacement is taken to be nonzero in (1.23), uniqueness of solutions can then be shown to follow in the standard way.
It is also a simple matter to prove that the unique solution given by Theorem 5.1 is axisymmetric provided that u0 is taken
to be axisymmetric [19] contains additional details.

As a final comment, it bears mentioning that while the inclusion of surface tension could, with some work, be
accommodated within the general framework established in this article, similar results (summarized in [20]) indicate that
the regularity of the underlying spaces would be unlikely to change. Moreover, the omission of surface tension is in line
with our goal to eventually establish a global existence result for the fluid fiber with free surface. Based on studies of
one-dimensional asymptotic regimes of the problem with surface tension, the inclusion of surface tension is likely to be
prohibitive for global existence. In contrast, our work is geared toward global existence results for one-dimensional thin-
filament models without surface tension [21].
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