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Abstract

The S-connectivity λS
G

(u, v) of (u, v) in a graph G is the maximum number of uv-paths that no two of them have an edge or a
node in S−{u,v} in common. The corresponding Connectivity Augmentation (CA) problem is: given a graph G0 = (V ,E0), S ⊆ V ,
and requirements r(u, v) on V ×V , find a minimum size set F of new edges (any edge is allowed) so that λS

G0+F
(u, v) � r(u, v) for

all u,v ∈ V . Extensively studied particular choices of S are the edge-CA (when S = ∅) and the node-CA (when S = V ). A. Frank
gave a polynomial algorithm for undirected edge-CA and observed that the directed case even with rooted {0,1}-requirements
is at least as hard as the Set-Cover problem (in rooted requirements there is s ∈ V − S so that if r(u, v) > 0 then: u = s for
directed graphs, and u = s or v = s for undirected graphs). Both directed and undirected node-CA have approximation threshold

Ω(2log1−ε n). The only polylogarithmic approximation ratio known for CA was for rooted requirements—O(logn · log rmax) =
O(log2 n), where rmax = maxu,v∈V r(u, v). No nontrivial approximation algorithms were known for directed CA even for r(u, v) ∈
{0,1}, nor for undirected CA with S arbitrary. We give an approximation algorithm for the general case that matches the known
approximation thresholds. For both directed and undirected CA with arbitrary requirements our approximation ratio is: O(logn)

for S �= V arbitrary, and O(rmax · logn) for S = V .
© 2007 Published by Elsevier Inc.
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1. Introduction and preliminaries

1.1. The problem and our result

Let G = (V ,E) be a graph and let S ⊆ V . The S-connectivity λS
G(u, v) of (u, v) in G is the maximum number

of uv-paths such that no two of them have an edge or a node in S − {u,v} in common. We consider the following
problem:
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Connectivity Augmentation (CA).

Instance: A directed/undirected graph G0 = (V ,E0), S ⊆ V , and a nonnegative integer requirement function r(u, v)

on V × V .
Objective: Add a minimum size set F of new edges to G0 so that for G = G0 + F

λS
G(u, v) � r(u, v) for all (u, v) ∈ V × V. (1)

Extensively studied particular choices of S are: S = ∅ (the edge-CA), S = V (the node-CA), any S so that
r(u, v) = 0 whenever u ∈ S or v ∈ S (the element-CA). Except the general requirements, two special types of re-
quirement functions are studied in the literature. The uniform requirements when r(u, v) = k for all u,v ∈ V , and the
rooted (single source/sink) requirements when there is s ∈ V −S so that if r(u, v) > 0 then: u = s for directed graphs,
and u = s or v = s for undirected graphs.

We summarize the status of CA problems with arbitrary and rooted requirements. A. Frank [7] gave a polynomial
time algorithm for undirected edge-CA based on Mader’s undirected splitting off theorem for edge-connectivity [18].
He also observed, that for directed graphs, even for rooted {0,1}-requirements, CA is at least as hard as the Set-Cover
problem. Combined with the result of [22] this implies an Ω(logn)-approximation threshold for this simple variant
(namely, the problem cannot be approximated within c lnn for some universal constant c < 1, unless P = NP). By
extending the construction from [7], a similar threshold was shown in [21] for the undirected rooted CA with root
s and S = V − {s}, but for {0, k}-requirements with k = Θ(n). For node connectivity problems, both undirected
and directed node-CA with r(u, v) ∈ {0, k} cannot be approximated within O(2log1−ε n) for any fixed ε > 0, unless
NP ⊆ DTIME(npolylog(n)), see [20]. The only polylogarithmic approximation ratio known for CA was for rooted
requirements [21] – O(logn · log rmax) = O(log2 n), where rmax = maxu,v∈V r(u, v) (in [21] the algorithm is given
for the case S = V − s and r(s, v) ∈ {0, k} but it easily extends to any S ⊆ V − s and arbitrary rooted requirements).

Summarizing, both directed and undirected CA have the following approximation thresholds. An Ω(logn)-
approximation threshold for S �= V [7,21]; for directed graphs this is so even for {0,1}-requirements. For S = V ,
both directed and undirected CA have approximation threshold Ω(2log1−ε n). Except for rooted requirements, no poly-
logarithmic approximation ratios were known for directed CA even for the fundamental case of {0,1}-requirements,
nor for undirected CA with S arbitrary. We give a tight approximation algorithm for any S �= V and arbitrary re-
quirements (our ratio for the general case is better than the one in [21] given for the rooted case), as well as the first
nontrivial algorithm for the case S = V .

Theorem. Both directed and undirected CA admit an O(logn)-approximation algorithm except the case S = V for
which there exists an O(rmax · logn)-approximation algorithm.

The techniques used for proving our result for directed CA (the undirected case follows from the directed one) is
a combination of some known techniques in addition to some new ones. First, we show a new method to decompose
the problem into two subproblems, each one of an “almost” rooted type, and consider the subproblems separately.
Second, for each subproblem, we use the well-known extension of the set-cover approximation techniques. This
is “submodular cover” problems approximation techniques [25] that are based on density considerations. Loosely
speaking, the density is the “increase in feasibility” or the “decrease in the deficiency” of an added edge set over
its size. Our definition of deficiency is different from the commonly used one that is based on “setpair formulation,”
cf., [3,6,10]. We define the deficiency of (u, v) as max{r(u, v) − λS(u, v),0} and the total deficiency as the sum of
the deficiencies of all the node pairs. In order to prove that we can find a subset of appropriate density we use the
well-known method of uncrossing “deficient” sets.

1.2. Related work

CA is a particular case of the Generalized Steiner Network (GSN) problem: given a complete directed/undirected
graph G = (V ,E) with edge-costs {ce: e ∈ E}, a node subset S ⊆ V , and a requirement function r(u, v) on V ×V , find
a minimum cost spanning subgraph G of G so that (1) holds for G. Clearly, GSN with {0,1}-costs is the CA problem.
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Variants of connectivity types (edge/node/element connectivity) and requirements (general/uniform/rooted require-
ments) are also extensively studied for other types of GSN costs (e.g., general, {1,∞}-costs, and metric costs). Note
also that the Directed Steiner Tree problem is the special case of directed GSN with rooted {0,1}-requirements.

For undirected graphs the best known approximation ratios for GSN are as follows. For edge-GSN Jain [14] gave
a 2-approximation algorithm. This result was extended to element-GSN in [3,6]. For node-GSN no nontrivial approx-
imation algorithms for arbitrary costs are known. Recently, Cheriyan and Vetta [4] gave an O(logn)-approximation
algorithm for the undirected metric node-GSN (namely, when S = V and the edge costs satisfy the triangle inequal-
ity). For directed graphs, nontrivial approximation algorithms are known only for {0,1}-requirements (in this case
all choices of S are equivalent). Dodis and Khanna [5] showed that even this simple case cannot be approximated
within O(2log1−ε n) for any ε > 0 unless NP ⊆ DTIME(npolylog(n)). Charikar et al. [2] gave an O(p2/3 log1/3 p)-
approximation algorithm where p = |{(u, v): r(u, v) = 1}| is the number of pairs that are to be connected. For rooted
{0,1}-requirements (this is the Directed Steiner Tree problem) [2] gave an O(nε/ε3)-approximation algorithm for any
constant ε > 0. See also surveys in [15,16] on various GSN problems.

As CA is a particular case of GSN, these approximation ratios (but not the hardness results) are valid for CA
problems as well, except the O(logn)-approximation algorithm for the undirected metric node-GSN of [4]. The result
of [4] is not valid for CA since in CA problems the costs are usually not metric; furthermore, a polylogarithmic
approximation for the node-CA is unlikely, since as shown in [20], the node-CA cannot be approximated within
O(2log1−ε n) for any fixed ε > 0 unless NP ⊆ DTIME(npolylog(n)).

In many cases, for undirected CA better approximation ratios are known than for its generalization GSN. As was
mentioned, undirected edge-CA is in P [7]. The node-CA (and the element-CA) turned to be NP-hard even when the in-
put graph G0 is connected and r(u, v) ∈ {0,2} (cf., [19]). However, while the element-CA admits a 7/4-approximation
algorithm [20], the undirected node-CA with r(u, v) ∈ {0, k} cannot be approximated within O(2log1−ε n) for any fixed
ε > 0, unless NP ⊆ DTIME(npolylog(n)), see [20]. For uniform requirements r(u, v) = k for all u,v ∈ V the com-
plexity status is not known for undirected graphs, but the problem is in P for directed graphs [10]; this implies a
2-approximation algorithm for undirected graphs. For undirected graphs an algorithm that computes a solution of
size roughly opt + k(k − k0)/2 is given in [12], where k0 is the connectivity of G0; furthermore, for any fixed k an
optimal solution can be computed in polynomial time [13]. For rooted uniform requirements (in undirected graphs)
the situation is similar, see [21].

For more work on CA problems see, e.g., [1,7,10,13,19–21], and surveys in [7–9,23]. For work on other types of
GSN costs see detailed surveys in [15,16] on known upper and lower bounds with respect to approximation.

1.3. Comparison to related work

Previous work on CA problems that does not follow from results for GSN dealt mainly with algorithm for some
special cases, for which were given either polynomial algorithm (cf., [7,8,10,24]), or constant ratio approximation
algorithms (cf., [12,13,17,19–21]). Our main result resolves the approximability of a fundamental case: directed CA
with {0,1}-requirements, thus showing that the approximation threshold Ω(logn) established by A. Frank [7] in the
90’s is achievable. Furthermore, we are able to match this approximation threshold even in a much more general
setting.

We note that the first part of our theorem extends to GSN, provided there is s ∈ V −S so that only edges incident to
s can be added. As was mentioned, even for undirected graphs our result is the best possible, and it cannot be deduced
from the O(logn)-approximation algorithm for the undirected metric node-GSN of [4], since for CA problems the
costs are usually not metric, and since the node-CA is unlikely to have a polylogarithmic approximation [20].

We elaborate on few more points that should be emphasized. Usually it is hard to give tight results to meaningful
subproblems of the directed GSN. A reason that approximation algorithm for directed GSN are rare is that even for
r(u, v) ∈ {0,1} the {0,1,∞}-costs case cannot be approximated within 2log1−ε n for any constant ε > 0 unless NP ⊆
DTIME(npolylog(n)) [5], while the best known approximation ratio for this simplest case is O(n1+ε/ε3) = Ω(n) [2].
This hardness result is valid also for the metric costs case. In particular, for directed graphs our result is unlikely to be
extended to more general cost functions. Even for GSN with rooted {0,1}-requirements, which is the Directed Steiner
Tree problem, there is still a large gap between known approximation ratio and threshold. For the Directed Steiner
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Tree problem the best known approximation ratio is O(nε/ε3) for any constant ε [2], while the known approximation
threshold is Ω(log2−ε n) [11].

This should be contrasted with the {0,1}-costs variant studied here; we are able to deal both with the most general
type of connectivity—the S-connectivity (bridging between edge- and node-connectivity) and directed graphs to get
tight results for (almost) all cases.

Another point is the following irregularity. Our approximation ratio is tight for S �= V since rooted CA has an
Ω(lnn)-approximation threshold (for directed graphs even for S = ∅ and {0,1}-requirements). For S = V our ap-
proximation ratio is tight for small requirements, but may seem weak if rmax is large. However, it might be that a
much better approximation algorithm does not exist: in [20] it is proved that for S = V and k = Θ(n), CA with
r(u, v) ∈ {0, k} cannot be approximated within 2log1−ε n for any constant ε > 0 unless NP ⊆ DTIME(npolylog(n)). Thus
there is a large gap in approximability between the case S = V \ {v} (for any v ∈ V ) for which we show an O(logn)-
approximation, and the substantially harder case S = V .

1.4. Notation and preliminaries

An edge from u to v is denoted by uv. A uv-path is a path from u to v. For arbitrary two sets A,B of nodes and
edges (or graphs) A−B is the set (or graph) obtained by deleting B from A (deletion of a node implies deletion of the
edges incident to it); similarly, A+B denotes the set (graph) obtained by adding B to A. Let H be a (possibly directed)
graph or an edge set on node set V . For disjoint X,Y ⊆ V we denote by δH (X,Y ) the set {uv ∈ E: u ∈ X, v ∈ Y } of
the edges in H from X to Y and dH (X,Y ) = |δH (X,Y )|; for brevity, δH (X) = δH (X,V −X) and dH (X) = |δH (X)|.
Let ΓH (X) be the set {v ∈ V −X: uv ∈ E for some u ∈ X} of neighbors of X in H . We sometimes omit the subscripts
if they are clear from the context. We call the new edges that are added to a given graph links in order to distinguish
them from the existing edges. Let opt denote the optimal solution value of an instance at hand.

2. Proof of the theorem

We need the following formulation of Menger’s theorem for S-connectivity, which can be easily deduced from its
original theorem by standard constructions. In this formulation C represents a “mixed” cut, which may include edges
and nodes from S − {u,v}.

Theorem 2.1 (Menger’s theorem for S-connectivity). Let u,v be two nodes of a (directed or undirected) graph G =
(V ,E) and let S ⊆ V . Then

λS
G(u, v) = min

{|C|: C ⊆ E + S − {u,v}, G − C has no uv-path
}
.

We prove the theorem for the directed case and the statement for the undirected CA follows from the following
proposition (cf., [16]), which implies that undirected CA problems cannot be much harder to approximate than the
directed ones.

Proposition 2.2. If there is a ρ-approximation algorithm for the directed CA then there is a 2ρ-approximation algo-
rithm for the undirected CA.

Let F ′ be an arbitrary solution to an instance G0, S, r of directed CA. Subdivide every edge in F ′ by a new node,
and then identify all these new nodes into a node s. The obtained graph satisfies the requirements between nodes in V ,
and the number of links incident to s is 2|F ′|. Now, if V − S �= ∅, then by identifying s with some node v ∈ V − S we
get that the new links added form a feasible solution for G0, S, r . This implies:

Corollary 2.3. For any solution F ′ for directed CA with S �= V and any s ∈ V − S, there exists a solution F with
|F | � 2|F ′| such that all the links in F are incident to s.

If S = V , we make rmax copies s1, . . . , srmax of s and of the links incident to s, choose arbitrary rmax nodes
{v1, . . . , vrmax}, and identify every si with vi . Again, it is easy to see that the new links added form a feasible so-
lution to the CA instance, and that the number of links added is 2|F ′|rmax.
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(a) (b)

Fig. 1. An example of construction of H+
0 . (a) An instance G0, r of CA: the requirements are r(ui , vj ) = 1, i, j = 1, . . . , k, and r(u, v) = 0

otherwise. (b) The graph H+
0 (the requirements remain the same, edges added are shown by dashed lines).

Given an instance G0, S, r for directed CA, let H0 = G0 + s (note that s /∈ S). We say that a set F of links incident
to s is a feasible solution for H0 if H0 + F satisfies the S-connectivity requirements defined by r . The H0-problem
is to find a feasible solution for H0 of minimum size. We will give an O(logn)-approximation algorithm for the H0-
problem. This is done by approximating the following two problems. Let H+

0 be obtained from H0 by adding rmax

edges from s to every node in V (see Fig. 1), and H−
0 is obtained by adding rmax edges from every node in V to s.

Intuitively, in H+
0 (the situation for H−

0 is symmetric) we “reduce” the problem to a new one, so that any solution
can contain only edges entering s. Indeed, since we pre-added “enough” edges from s to any v, any edge uv, u,v �= s

that belongs to a solution can be replaced by the edge us. Any path that used the edge uv now may use the edges us

and sv.
We say that a set F+ (F−) of links entering s (leaving s) is a feasible solution for H+

0 (for H−
0 ) if H+

0 + F+ (if
H−

0 + F−) satisfies the S-connectivity requirements defined by r . The H+
0 -problem is to find a feasible solution for

H+
0 of minimum size, and the H−

0 problem is defined similarly. E.g., in Fig. 1, each one of {u0s} and {u0a, as} is a
feasible solution to the H+

0 problem, and {u0s} is an optimal one. From Corollary 2.3 it follows that opt+,opt− � opt,
where opt+ and opt− denote the optimal solution values for H+ and H−, respectively, and opt is the optimal solution
value for H0.

We will prove the following two statements:

Lemma 2.4. Let F+ and F− be a feasible solution for the H+
0 and for the H−

0 problems, respectively. Then F =
F+ + F− is a feasible solution for the H0 problem.

Lemma 2.5. The H+
0 -problem (and the H−

0 -problem) admits an O(logn)-approximation algorithm.

The algorithm for directed CA with S �= V is as follows.

(1) Using the algorithm from Lemma 2.5 find solutions F+ for the H+
0 -problem and F− for the H−

0 -problem, so that
|F+| = O(logn) · opt+ and |F−| = O(logn) · opt−.

(2) Let F = F+ + F−, and let H = H0 + F .
Obtain a graph G from H by identifying s with an arbitrary node in V − S.

The algorithm computes a feasible solution, by Corollary 2.3 and Lemma 2.4. Since opt+,opt− � opt, the approx-
imation ratio is O(logn), by Lemma 2.5.

To finish the proof of the theorem it remains to prove Lemmas 2.4 and 2.5. We need the following statement that
stems from Menger’s theorem.

Proposition 2.6. λS
G(u, v) � k if, and only if, |Q|+ dG(X,Y ) � k for any partition (X,Q,Y ) of V with u ∈ X, v ∈ Y ,

and Q ⊆ S.

Proof of Lemma 2.4. Let H = H0 +F . Suppose to the contrary that there are u,v ∈ V so that λS
H (u, v) � r(u, v)−1.

Then by Proposition 2.6 there exists a partition (X,Q,Y ) of V + s with u ∈ X, v ∈ Y , and Q ⊆ S such that
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|C| � r(u, v)− 1 for C = Q∪ δH (X,Y ). Note that s /∈ C (since s /∈ S), so s ∈ X or s ∈ Y . If s ∈ X then δH−(X,Y ) =
δH (X,Y ), so H− −C has no uv-path. Since |C| � r(u, v)− 1, we conclude that λS

H−(u, v) � r(u, v)− 1, contradict-
ing that F− is a feasible solution for H−

0 . The proof of the case s ∈ Y is similar. �
In the rest of this section we prove Lemma 2.5. We use a result due to Wolsey [25] about the performance of the

greedy algorithm for a certain type of covering problems. A covering problem is defined as follows:

Instance: An integer nondecreasing function p given by an evaluation oracle on subsets of a groundset E .
Objective: Find F ⊆ E of minimum size so that p(F) = p(E).

The Greedy Algorithm starts with F = ∅ and adds elements to the solution one after the other using the following
simple greedy rule. As long as p(F) < p(E) it adds to F an element e ∈ E that has maximum p(F + e) − p(F); if
this step can be performed in polynomial time, then the algorithm can be implemented to run in polynomial time. Let
Δp = maxe∈E (p(e) − p(∅)), and for an integer k let H(k) = ∑k

i=1
1
i

denote the kth harmonic number.

Theorem 2.7 (See [25].). Suppose that for an instance of a covering problem
∑

e∈F2

(
p(F1 + e) − p(F1)

)
� p(F1 + F2) − p(F1) ∀F1,F2 ⊆ E, F1 ∩ F2 = ∅. (2)

Then the Greedy Algorithm produces a solution of size at most H(Δp) times the optimal.

Condition (2) is the submodularity condition (or the improvement independence condition), and covering problems
obeying it are called submodular covering problems. We formulate the H+

0 -problem as a submodular covering prob-
lem and using Theorem 2.7 show that it admits an O(logn)-approximation algorithm. The set E is obtained by taking
rmax links from v to s for every v ∈ V . We also need to define a function p on the subsets of E . For (u, v) ⊆ V × V

and F ⊆ E , let

q
(
F+, (u, v)

) = max
{
r(u, v) − λS

H+
0 +F+(u, v),0

}

be the deficiency of (u, v) in H+
0 + F+. Let

q
(
F+) =

∑

(u,v)∈V ×V

q
(
F+, (u, v)

)

be the total deficiency of H+
0 + F+. Then p is defined by:

p
(
F+) = q(∅) − q

(
F+)

. (3)

In other words, p(F+) is the decrease in the total deficiency as a result of adding F+ to H+
0 ; in the corresponding

covering problem, the goal is to find a minimum size F+ ⊆ E so that p(F+) = p(E) (that is, q(F+) = 0). Clearly, p is
monotone nondecreasing. The Greedy Algorithm can be implemented in polynomial time, as p(F+) can be computed
in polynomial time for any link set F+. Clearly, Δp � n2. We prove that (2) holds for p, and thus Theorem 2.7 implies
that the Greedy Algorithm produces a solution of size H(Δp) · opt+ � H(n2) · opt+ = O(logn) · opt+.

Remark. The reason why we decompose the problem into two subproblems, and only then apply Theorem 2.7, is
that the original CA instance (with p defined by (3)) is not a submodular covering problem. To see this, consider the
example in Fig. 1(a), with F1 = ∅ and F2 = {u0a, av0}. Then p(F1 + u0a) − p(F1) = p(F1 + av0) − p(F1) = 0,
since adding each one of u0a, av0 separately does not decrease the deficiency, while p(F1 + F2) − p(F1) = k2, since
the deficiency of G0 is k2 and since F2 is a feasible solution. On the other hand, the reason that our result does not
extend to more general instances of GSN (except the case when there is s ∈ V − S so that only edges incident to s can
be added) is that for general costs we cannot decompose the problem into such two subproblems.

Let F1,F2 ⊆ E be disjoint link sets. We need to prove the submodularity condition (2). To simplify the notation,
denote J = H+ + F1, F = F2, and denote by Δ(F, (u, v)) the decrease in the deficiency of (u, v) as a result of
0
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adding F to J . Namely, Δ(F, (u, v)) = q(F1, (u, v)) − q(F1 + F, (u, v)) is obtained by subtracting the deficiency of
(u, v) in J + F from the deficiency of (u, v) in J . Also denote by Δ(F) = q(F1) − q(F1 + F) the decrease in the
total deficiency as a result of adding F to J , and write Δ(e) instead of Δ({e}). Note that Δ(∅) = 0. Then (2) can be
rewritten as:∑

e∈F

Δ(e) � Δ(F). (4)

Note that, by the definition of Δ(·), for any link set F ′:

Δ(F ′) =
∑

(u,v)∈V ×V

Δ
(
F ′, (u, v)

)
.

Thus (4) is equivalent to:
∑

e∈F

∑

(u,v)∈V ×V

Δ
(
e, (u, v)

)
�

∑

(u,v)∈V ×V

Δ
(
F, (u, v)

)
.

Consequently, it would be sufficient to show that:
∑

e∈F

Δ
(
e, (u, v)

)
� Δ

(
F, (u, v)

) ∀(u, v) ∈ V × V. (5)

Let us fix u,v ∈ V . If λS
J (u, v) � r(u, v), then (5) is valid, since its both sides are zero. Note that λS

J+F (u, v) −
λS

J (u, v) � Δ(F, (u, v)), while Δ(e, (u, v)) = λS
J+e(u, v) − λS

J (u, v) if λS
J (u, v) � r(u, v) − 1. Thus if λS

J (u, v) �
r(u, v) − 1, it would be sufficient to prove that for any set F of links entering s:

∑

e∈F

(
λS

J+e(u, v) − λS
J (u, v)

)
� λS

J+F (u, v) − λS
J (u, v) ∀(u, v) ∈ V × V.

Let us say that X ⊆ V is (u, v)-tight (in J ) if there exists a partition (X,Q,Y ) of V + s with u ∈ X, v ∈ Y , and
Q ⊆ S such that |Q| + dJ (X,Y ) = λS

J (u, v). Note that s /∈ S, and that if λS
J (u, v) � rmax − 1 then s ∈ Y .

Proposition 2.8. The intersection and union of two (u, v)-tight sets are also (u, v)-tight. Thus an inclusion-minimal
(u, v)-tight set is unique.

Proof. Let X′ and X′′ be two (u, v)-tight sets with the corresponding partitions (X′,Q′, Y ′) and (X′′,Q′′, Y ′′), re-
spectively, with Q′,Q′′ ⊆ S (see Fig. 2). Then

|Q′| + dJ (X′, Y ′) = |Q′′| + dJ (X′′, Y ′′) = λS
J (u, v).

Let Q∩ = V − [(X′ ∩ X′′) ∪ (Y ′ ∪ Y ′′)] and Q∪ = V − [(X′ ∪ X′′) ∪ (Y ′ ∩ Y ′′)] (see the dashed arcs in Fig. 2). It is
easy to see that Q∩,Q∪ ⊆ Q′ ∪ Q′′ ⊆ S and that |Q∩| + |Q∪| = |Q′| + |Q′′|. We claim that (X′ ∩ X′′,Q∩, Y ′ ∪ Y ′′)
and (X′ ∪ X′′,Q∪, Y ′ ∩ Y ′′) are the corresponding partitions for X′ ∩ X′′ and X′ ∪ X′′, respectively. Namely, that:

|Q∩| + dJ (X′ ∩ X′′, Y ′ ∪ Y ′′) = |Q∪| + dJ (X′ ∪ X′′, Y ′ ∩ Y ′′) = λS
J (u, v).

We have |Q∩|+dJ (X′ ∩X′′, Y ′ ∪Y ′′) � λS
J (u, v) and |Q∪|+dJ (X′ ∪X′′, Y ′ ∩Y ′′) � λS

J (u, v), by Proposition 2.6.
On the other hand,

dJ (X′, Y ′) + dJ (X′′, Y ′′) � dJ (X′ ∩ X′′, Y ′ ∪ Y ′′) + dJ (X′ ∪ X′′, Y ′ ∩ Y ′′).
The later inequality is easily verified by counting the contribution of every edge to each side of the inequality (see
Fig. 2). Edges in Fig. 2(a) have the same contribution for both sides: every edge in δ(X′ ∩ X′′, Y ′ ∩ Y ′′) contributes 2
to both sides, while any other edge in Fig. 2(a) contributes 1 to both sides. Edges in Fig. 2(b) contribute only to the
left-hand side. Other edges (that are not shown in Fig. 2(a,b)) have no contribution. Thus we have:

λS
J (u, v) + λS

J (u, v) = (|Q′| + dJ (X′, Y ′)
) + (|Q′′| + dJ (X′′, Y ′′)

)

�
(|Q∩| + dJ (X′ ∩ X′′, Y ′ ∪ Y ′′)

) + (|Q∪| + dJ (X′ ∪ X′′, Y ′ ∩ Y ′′)
)

� λS
J (u, v) + λS

J (u, v).

Consequently, equality holds everywhere, and the statement follows. �
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(a) (b)

Fig. 2. Illustration to the proof of Proposition 2.8.

Fig. 3. Illustration to the proof of Corollary 2.9.

Corollary 2.9. Let Xu be the unique minimal (u, v)-tight set in J and let e be any link from Xu to s. If λS
J (u, v) �

rmax − 1 then λS
J+e(u, v) = λS

J (u, v) + 1.

Proof. Clearly, λS
J+e(u, v) = λS

J (u, v) + 1 or λS
J+e(u, v) = λS

J (u, v), and suppose to the contrary that the later
holds. By Proposition 2.6 there exists a partition (X,Q,Y ) of V + s with u ∈ X, v ∈ Y , and Q ⊆ S so that
|Q| + dJ+e(X,Y ) = λS

J (u, v) (see Fig. 3). Note that Xu ⊆ X, and that s ∈ Y (s /∈ Q since Q ⊆ S and s /∈ S,
and s /∈ X since λS

J (u, v) � rmax − 1, and since in J there are rmax edges from s to any node in V ). This implies
|Q| + dJ (X,Y ) = |Q| + dJ+e(X,Y ) − 1 = λS

J (u, v) − 1, which is a contradiction to Proposition 2.6. �
We now finish the proof of Lemma 2.5. Let t = λS

J+F (u, v) − λS
J (u, v). Then at least t links in F must connect Xv

with s. Thus, each one of these t links contributes 1 to
∑

e∈F (λS
J+e(u, v) − λS

J (u, v)).
This finishes the proof of Lemma 2.5, and thus also the proof of the theorem.
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