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a b s t r a c t

We present a Uzawa block relaxation method for the numerical resolution of contact
problems with or without friction, between elastic solids in small deformations. We
introduce auxiliary unknowns to separate the linear elasticity subproblem from the
unilateral contact and friction conditions. Applying a Uzawa block relaxationmethod to the
corresponding augmented Lagrangian functional yields a two-step iterative method with
a linear elasticity problem as a main subproblem while auxiliary unknowns are computed
explicitly. Numerical experiments show that the method are robust and scalable with a
significant saving of computational time.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The contact problem is a very common problem in engineering (rails, gear, forming, etc.). The presence of unilateral
and friction constraints poses a serious challenge compared with the classical linear elasticity problem. Various numerical
methods for solving unilateral contact problems with or without friction have been developed during the past decades. For
frictionless unilateral contact problems, we refer, e.g., to [1–3] and the references therein. For the unilateral contact problem
with the Coulomb friction, two main approaches can be considered:

• the direct approach, i.e. the system of discretized equations is solved; see e.g. [4–11].
• The Coulomb friction as the limit of a sequence of the Tresca friction problems; see e.g. [12–14,7,1,15].

Direct approaches are based on finite-dimensional problems and their implementation can be complicated. The second
approach is more commonly used and requires fast methods for solving the Tresca friction problems; see e.g. [13–15,2].

The method proposed in this paper is related to the augmented Lagrangian operator-splitting methods; see e.g. [16,17].
The main idea is to separate the linear part of the problem (i.e. linear elasticity) from the nonlinear part (i.e. unilateral
contact and friction conditions) by introducing auxiliary variables. Applying a Uzawa block relaxation type method to the
corresponding augmented Lagrangian leads to a simple two-step iterativemethod. In the first step a linear elasticity problem
is solved. In the second step, the auxiliary variables are computed explicitly using the duality theory. The main advantage of
our method is that the matrix of the linear elasticity problem solved in the first step is constant during the iterative process,
saving computational time due to matrix factorizations.

The paper is organized as follows. In Section 2 the model problem is presented followed by its augmented Lagrangian
formulation in Section 3. The Uzawa block relaxation algorithms for frictionless and friction cases are presented in Sections 4
and 5, respectively. The convergence theorem of the algorithm is presented in Section 6. Numerical experiments on two
model examples are presented in Section 7.
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2. The model problem

We consider an elastic body occupying in its initial (undeformed) configuration a bounded domain Ω of R2 with a
boundary Γ = ΓD ∪ Γc . We assume that the elastic body is fixed along ΓD with meas(ΓD) > 0. Γc denotes a portion of
Γ which is a candidate contact surface between Ω and a rigid foundation. The normalized gap between Γc and the rigid
foundation is denoted by g . In this paper, we consider the small strain hypothesis so that the strain tensor is ϵ(u) =
(∇u+∇ut)/2, where u = (u1(x), u2(x)) is the displacement field. Hooke’s law is assumed, i.e. the stress tensor is linked to
the displacement through the linear relation

σ(u) = Cϵ(u)

where C = (Cijkl) is the (fourth order) elastic moduli tensor, assumed to be symmetric positive definite. Let n be the outward
unit normal to Ω on Γ . It is usual to decompose the displacement field and the stress tensor in normal and tangential
components:

un = u · n, ut = u− unn, (2.1)
σn(u) = (σ (u)n) · n, σt(u) = σ(u)− σnn. (2.2)

The unilateral contact problem with Coulomb friction consists, for a given volume force f , of finding the displacement
field u satisfying

(i) the equilibrium equations

−div σ(u) = f in Ω, (2.3)
u = 0 on ΓD, (2.4)

(ii) the contact (i.e. non-penetration) conditions

un − g ≤ 0, σn(u) ≤ 0, (un − g)σn(u) = 0, on Γc, (2.5)

(iii) the Coulomb friction conditions

|σt(u)| ≤ νf |σn(u)|, |σt(u)| < νf |σn(u)| H⇒ ut = 0 on Γc, (2.6)

|σt(u)| = νf |σn(u)| H⇒ ∃λ ≥ 0, ut = −λσt(u) on Γc . (2.7)

In (2.6)–(2.7), νf stands for the (positive) friction coefficient.
If the normal stress σn(u) on Γc is known, the Coulomb friction conditions (2.6)–(2.7) can be replaced by the Tresca

friction conditions

s = νf |σn(u)|, |σt(u)| < s H⇒ ut = 0 on Γc, (2.8)

|σt(u)| = s H⇒ ∃λ ≥ 0, ut = −λσt(u) on Γc . (2.9)

In this paper, we approximate the Coulomb friction (2.6)–(2.7) by solving a sequence of Tresca friction problems. Uzawa
block relaxation algorithms are therefore designed for the unilateral frictionless contact problems (2.3)–(2.5) and the
unilateral contact problem with Tresca friction (2.3)–(2.5), (2.8)–(2.9).

3. Augmented Lagrangian formulation

The contact problem with Tresca friction can be stated as an optimization problem allowing the use of arguments from
convex analysis and duality theory to show the existence of a unique solution and to design numerical algorithms. Let us
introduce space of functions

V =

v ∈ H1(Ω)2, v = 0 on ΓD


and the set of admissible displacements

K = {v ∈ V , vn − g ≤ 0 on Γc} .

Let a(·, ·) be the symmetric, continuous and coercive bilinear form which corresponds to the virtual work in the elastic
body

a(u, v) =

∫
Ω

σij(u)ϵij(v)dx.

We denote by f (·) the linear form of external forces

f (v) =

∫
Ω

f · vdx.
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In addition, we define the friction functional j : V −→ R by

j(v) =

∫
Γc

s|vt |dΓ , (3.1)

where | · | is the Euclidean norm.
Using the above notations, the unilateral contact problem with Tresca friction can be formulated in the variational form.
Find u ∈ K such that

a(u, v − u)+ j(v)− j(u) ≥ f (v − u), ∀v ∈ K . (3.2)

To formulate (3.2) as a constrained minimization problem, let us introduce the potential energy functional due to non-
frictional effects

J(v) =
1
2
a(v, v)− f (v).

The quadratic functional J is strictly convex, coercive and Gâteau-differentiable on V . Moreover, the friction functional j is
convex and lower semi-continuous on V . We can replace the variational inequality (3.2) by the minimization problem.

Find u ∈ K such that

J(u)+ j(u) ≤ J(v)+ j(v), ∀v ∈ K . (3.3)

Since the functional J+j is strictly convex and coercive (mes(ΓD) > 0), there exists a unique solution to (3.3); see e.g. [1, 10.3].
Note that j being a non-differentiable functional, standard optimization methods cannot be used for solving (3.3).

We can define an augmented Lagrangian to (3.3) but this leads us to Uzawa type algorithmswithmatrix factorizations in
every iteration. To achieve a solution of (3.3) by a Uzawa block relaxation type method, we need additional steps. Following
Glowinski and Le Tallec [17], we introduce the set

C =

ϕ ∈ L2(Γc), ϕ − g ≤ 0 on Γc


and its characteristic functional IC : L2(Γc)→ R ∪ {+∞} defined by

IC (ϕ) =


0 if ϕ ∈ C,
+∞ if ϕ ∉ C .

Let us introduce auxiliary variables φc (contact) and φf (friction), defined on Γc . To simplify, we set φ = (φc, φf ). It is clear
that (3.3) is equivalent to the following constrained minimization problem.

Find (u, φ) ∈ V × (L2(Γc))
2 such that

J(u)+ j(φf )+ IC (φc) ≤ J(v)+ j(ϕf )+ IC (ϕc) ∀(v, ϕ) ∈ V × (L2(Γc))
2, (3.4)

un − φc = 0 on Γc, (3.5)
ut − φf = 0 on Γc, (3.6)

where we have set ϕ = (ϕc, ϕf ). In (3.4), to simplify the presentation, we have implicitly assumed that IC (v) = IC (vn) and
j(v) = j(vt) to avoid using (linear and continuous) operators from V to L2(Γc). A more rigorous formulation will be given
in Section 6. To introduce an augmented Lagrangian functional, multipliers must belong to L2(Γc). We then assume that
f ∈ L2(Ω), s ∈ L2(Γc) and Γc is sufficiently regular with the additional property that the contact zone is strictly contained
inΓc ; see [18].We can associate to (3.4)–(3.5) the augmented Lagrangian functionalLr defined overV×(L2(Γc))

2
×(L2(Γc))

2

by

Lr(v, ϕ;µ) = J(v)+ j(ϕf )+ IC (ϕc)+ (µc, vn − ϕc)Γc + (µf , vt − ϕf )Γc +
r
2
‖vn − ϕc‖

2
0,Γc
+

r
2
‖vt − ϕf ‖

2
0,Γc

(3.7)

where r > 0 is the (constant) penalty or augmentation parameter and µ = (µc, µf ). Since the functional J + j is strictly
convex and the constraints (3.5)–(3.6) are linear, a saddle point of Lr exists and is the solution of the saddle-point problem.

Find ((u, φ), λ) ∈ V × (L2(Γc))
2
× (L2(Γc))

2 such that

Lr(u, φ;µ) ≤ Lr(v, ϕ;µ) ≤ Lr(v, ϕ;λ), ∀((v, ϕ), µ) ∈ V × (L2(Γc))
2
× (L2(Γc))

2,

where we have set λ = (λc, λf ). Equivalently, ((u, φ), λ) is the solution of the min–max problem

max
µ

min
(v,ϕ)

Lr(v, ϕ;µ) = min
(v,ϕ)

max
µ

Lr(v, ϕ;µ).

The Lagrange multipliers λc and λf have the following mechanical interpretation:
• λc is the negative normal boundary stress, i.e. λc = −σn(u);
• λf is the negative tangential boundary stress, i.e. λf = −σt(u).

It suffices to eliminate auxiliary unknowns, using (3.5)–(3.6), so that λc and λf become classical Lagrange multipliers
associated with the non-penetration and friction conditions, respectively. An advantage of Uzawa type methods is that
the normal and the tangential boundary stress are available, in the form of Lagrange multipliers, at the end of the algorithm
without additional calculations.



2346 J. Koko / Journal of Computational and Applied Mathematics 235 (2011) 2343–2356

4. Uzawa block relaxation method: frictionless case

In this section we consider the augmented Lagrangian functional

Lr(v, ϕc;µc) = J(v)+ IC (ϕc)+ (µc, vn − ϕc)Γc +
r
2
‖vn − ϕc‖

2
0,Γc

(4.1)

i.e. the frictionless version of (3.7). A saddle point of Lr can be determined by a standard Uzawa method for augmented
Lagrangian; see e.g. [19]. The main difficulty of the standard Uzawa method is the coupling of unknowns u and φc , i.e. the
‘‘linear part’’ and the ‘‘nonlinear part’’ of the problem. A quite natural procedure consists of using the following Uzawa block
relaxation method [16,17].

Initialization. φ−1c and λ0
c are given.

Iteration k ≥ 0. Compute successively uk, φk
c and λk+1

c as follows

• Find uk
∈ V such that

Lr(uk, φk−1
c ; λ

k
c) ≤ Lr(v, φk−1

c ; λ
k
c), ∀v ∈ V . (4.2)

• Find φk
c ∈ L2(Γc) such that

Lr(uk, φk
c ; λ

k
c) ≤ Lr(uk, ϕ; λk

c), ∀ϕ ∈ L2(Γc). (4.3)

• Update the Lagrange multiplier

λk+1
c = λk

c + r(uk
n − φk

c ). (4.4)

We detail in the next subsections subproblems (4.2) and (4.3).

4.1. Solution of subproblem (4.2)

The functional v → Lr(v, φk−1
c ; λ

k
c) is Gâteau-differentiable on V , then the solution of (4.2) can be characterized by the

Euler–Lagrange equation

∂

∂v
Lr(uk, φk−1

c ; λ
k
c) · v = 0, ∀v ∈ V .

A straightforward calculation yields

a(uk, v)+ r(uk
n, vn)Γc = f (v)+ (rφk−1

c − λk
c, vn)Γc , ∀v ∈ V . (4.5)

Subproblem (4.5) is the variational formulation of the problem

−div(σ (uk)) = f in Ω, (4.6)

σn(uk)+ ruk
n = rφk−1

c − λk
c on Γc, (4.7)

uk
= 0 on ΓD. (4.8)

Note that the above problem always has a unique solution even without the Dirichlet condition (4.8). This property is useful
for solving problems allowing rigid body motions.

4.2. Solution of subproblem (4.3)

Over C the functional ϕ → Lr(uk, ϕ; λk
c) can be simplified

Lr(uk, ϕ; λk
c) =

r
2
‖ϕ‖20,Γc

− (λk
c + ruk

n, ϕ)Γc + J(uk)+
r
2
‖uk

n‖
2
0,Γc
+ (λk

c, u
k
n)Γc .

If we denote by α the constant part of Lr(uk, ϕ; λk
c) and we set

F(ϕ) =
r
2
‖ϕ‖20,Γc

− (λk
c + ruk

n, ϕ)Γc + α,

the minimization problem (4.3) becomes
Find φk

c ∈ L2(Γc) such that

F(φk
c ) ≤ F(ϕ), ∀ϕ ∈ L2(Γc), (4.9)

φk
c − g ≤ 0 on Γc . (4.10)
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Since (4.9)–(4.10) is a constrained minimization problem, we can apply saddle-point theory to compute its solution
explicitly. The solution φk

c of (4.9)–(4.10) satisfies the saddle-point equations

r(φk
c , ϕ)Γc − (ruk

n + λk
c, ϕ)Γc + (γ k, ϕ)Γc = 0, ∀ϕ ∈ L2(Γc), (4.11)

(γ k, φk
c − g)Γc = 0, (4.12)

where γ k
≥ 0 is the Lagrange multiplier for (4.10) (see e.g. [20]). Since φk

c − g ≤ 0 and γ k
≥ 0, Eq. (4.12) is equivalent to

the statement that γ k may be nonzero at a point of Γc if the corresponding constraint is active, i.e. φk
c − g = 0.

From (4.11) we deduce that

φk
c =

1
r


λk
c + ruk

n − γ k . (4.13)

Substituting this result into (4.12), we obtain
γ k,

1
r


λk
c + ruk

n − γ k
− g


Γc

= 0.

If γ k > 0, we must have

λk
c + ruk

n − γ k
− rg = 0.

We deduce that the Lagrange multiplier is

γ k
= max(0, λk

c + r(uk
n − g)) =


λk
c + r(uk

n − g)
+

. (4.14)

Substituting (4.14) into (4.13) we get the solution of the contact minimization subproblem

φk
c = uk

n +
1
r


λk
c −


λk
c + r(uk

n − g)
+

. (4.15)

Remark 4.1. Note that if γ k(x) > 0, then φk
c (x) = g(x), i.e. the contact constraint is active. If γ k(x) = 0, then from

(4.14)–(4.15) we have λk
c + ruk

n ≤ rg and φk
c = (λk

c + ruk
n)/r . We then deduce that

φk
c − g =

1
r
(λk

c + ruk
n)− g ≤ 0

i.e. constraint (4.10) is satisfied.

4.3. Algorithm

With the above preparations, we can nowpresent our Uzawa block relaxation (UBR)method for the unilateral frictionless
contact problem.
Algorithm UBR-C

Initialization. φ−1c and λ0
c are given.

Iteration k ≥ 0. Compute successively uk, φk
c and λk+1

c as follows

• Find uk
∈ V such that

a(uk, v)+ r(uk
n, vn)Γc = f (v)+ (rφk−1

c − λk
c, vn)Γc , ∀v ∈ V .

• Compute the auxiliary contact variable

φk
c = uk

n +
1
r


λk
c −


λk
c + r(uk

n − g)
+

.

• Update the Lagrange multiplier

λk+1
c = λk

c + r(uk
n − φk

c ).

We iterate until the relative error on uk and φk
c is ‘‘sufficiently’’ small, i.e.

‖uk
− uk−1

‖
2
0,Ω + ‖φ

k
c − φk−1

c ‖
2
0,Γc

‖uk‖20,Ω + ‖φ
k
c‖

2
0,Γc

< ε2
c . (4.16)

Note that for the linear elasticity subproblem, the corresponding matrix is constant during the iterative process.
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5. Uzawa block relaxation method: Tresca friction case

Wenow consider the augmented Lagrangian functional (3.7). Using the block relaxation strategy, we obtain the following
algorithm.

Initialization. φ−1 = (φ−1c , φ−1f ) and λ0
= (λ0

c , λ
0
f ) are given.

Iteration k ≥ 0. Compute successively uk, φk
= (φk

c , φ
k
f ) and λk+1

= (λk+1
c , λk+1

f ) as follows

• Find uk
∈ V such that

Lr(uk, φk−1
;λk) ≤ Lr(v, φk−1

;λk), ∀v ∈ V . (5.1)

• Find φk
∈ (L2(Γc))

2 such that

Lr(uk, φk
;λk) ≤ Lr(uk, ϕ;λk), ∀ϕ ∈ (L2(Γc))

2. (5.2)

• Update the Lagrange multipliers

λk+1
c = λk

c + r(uk
n − φk

c ),

λk+1
f = λk

f + r(uk
t − φk

f ).

Since v → Lr(v, φk−1
;λk) is Gâteau-differentiable, the solution of problem (5.1) can be characterized by the Euler–

Lagrange equation

a(uk, v)+ r(uk
n, vn)Γc + r(uk

t , vt)Γc = f (v)+ (rφk−1
c − λk

c, vn)Γc + (rφk−1
f − λk

f , vt)Γc , ∀v ∈ V . (5.3)

The subproblem in φ = (φc, φf ) (5.2) is uncoupled. The subproblem in φc has been solved in Section 4 and the solution
is (4.15). The subproblem in φf is equivalent to the minimization of the following functional

F(ϕ) =
r
2
‖ϕ‖20,Γc

+

∫
Γc

s|ϕ|dΓ − (λk
f + ruk

t , ϕ)Γc + α, (5.4)

where α is a constant which does not count in the minimization. The infimum of the functional (5.4) is attained at (see
e.g. [21, ch. 4.3])

φk
f =


|λk

f + ruk
t | − s

r|λk
f + ruk

t |


λk
f + ruk

t


if |λk

f + ruk
t | > s,

0 if |λk
f + ruk

t | ≤ s.

(5.5)

Gathering the results (5.3), (4.15) and (5.5), we obtain the following Uzawa block relaxation algorithm for a unilateral
contact problem with the Tresca friction.

Algorithm UBR-TF

Initialization. φ−1 = (φ−1c , φ−1f ) and λ0
= (λ0

c , λ
0
f ) are given.

Iteration k ≥ 0. Compute successively uk, φk
= (φk

c , φ
k
f ) and λk+1

= (λk+1
c , λk+1

f ) as follows

• Find uk
∈ V such that

a(uk, v)+ r(uk
n, vn)Γc + r(uk

t , vt)Γc = f (v)+ (rφk−1
c − λk

c, vn)Γc + (rφk−1
f − λk

f , vt)Γc , ∀v ∈ V .

• Compute the auxiliary contact and friction variables

φk
c = uk

n +
1
r


λk
c − (λk

c + r(uk
n − g))+


,

φk
f =


|λk

f + ruk
t | − s

r|λk
f + ruk

t |


λk
f + ruk

t


if |λk

f + ruk
t | > s,

0 if |λk
f + ruk

t | ≤ s.

• Update the Lagrange multipliers

λk+1
c = λk

c + r(uk
n − φk

c ),

λk+1
f = λk

f + r(uk
t − φk

f ).
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We iterate until the relative error on uk, φk
c and φk

f is sufficiently ‘‘small’’, i.e.

‖uk
− uk−1

‖
2
0,Ω + ‖φ

k
− φk−1

‖
2
0,Γc

‖uk‖20,Ω + ‖φ
k
‖
2
0,Γc

< ε2
f . (5.6)

As for the frictionless case, the matrix of the linear elasticity subproblem is constant during the iterative process.
With the solution (u, φ, λ) obtained using Algorithm UBR-TF we can update the friction functional j in (3.1) by replacing

s by the newly computed contact pressure, i.e. s = νf |λc |. This process is repeated until the difference between two
consecutive values of s becomes sufficiently ‘‘small’’. Then the corresponding displacement field u can be identified with
the solution of the original unilateral contact problem with Coulomb friction (2.3)–(2.7). This idea is commonly used to
calculate the solution of the Coulomb friction problem by a sequence of Tresca friction problems; see e.g. [12–14,22,1,15].
The corresponding fixed-point algorithm is as follows.
Algorithm CF-FP

Iteration m = 0. Initialization: s0 given in L2(Γc).
Iteration m ≥ 0. Compute successively (um, φm, λm) and sm+1 as follows

• Compute (um, φm
;λm) solution of the Tresca friction problem (3.3) with sm the normal stress.

• Update the friction functional with sm+1 = νf |λ
m
c |.

The fixed-point iteration terminates if the relative error on sm becomes sufficiently ‘‘small’’, i.e.

‖sm − sm−1‖20,Γc

‖sm‖20,Γc

< ε2
fp. (5.7)

Note that, the matrix of the linear elasticity subproblem is constant during the fixed-point iterations. For the first steps
of Algorithm CF-FP, we do not need high accuracy in solving the Tresca friction subproblems. Indeed, we only need an
approximate value of the normal stress.

6. Convergence results

In this section, we show the convergence of the Uzawa block relaxation algorithm presented in the previous section. Let
us set

G(v) = J(v) and F(ϕ) = j(ϕf )+ IC (ϕc)

and introduce the linear and continuous operator B, from V to L2(Γc)× L2T (Γc), defined by

Bv =


vn
vt


where

L2T (Γc) =

v ∈ (L2(Γc))

2
| vn = 0


.

The decomposition v→ (vn, vt) is an isomorphism from (L2(Γc))
2 onto L2(Γc)× L2T (Γc), [1, ch. 5]. It is obvious that (3.3) is

equivalent to
Find u ∈ V such that

G(u)+ F(Bu) ≤ G(v)+ F(Bv), ∀v ∈ V .

The functional G is convex, proper and lower semi-continuous while F is strictly convex and continuous. Furthermore,
G is uniformly convex on the bounded sets of V . Algorithm UBR-TF is therefore equivalent to the operator-splitting
standard Algorithm ALG 2 described, e.g., in [17, ch. 3] or [16, ch. 3]. We have the following convergence theorem; see
e.g. [17, ch. 3,Theorem 4.2].

Theorem 6.1 (Convergence). The sequence (uk, φk, λk) generated in Algorithm UBR-TF is such that

uk
→ u in V , φk

→ φ in (L2(Γc))
2, λk ⇀ λ in (L2(Γc))

2,

(u, φ, λ) being a saddle point of Lr .

In the generic operator-splitting Algorithm ALG 2, the convergence is proved by assuming the multiplier update of the
form

λk+1
c = λk

c + ρ(uk
n − φk

c ), λk+1
f = λk

f + ρ(uk
t − φk

f ),

and 0 < ρ < r(1+
√
5)/2. But numerical experiments indicate that the best choice for the step size is ρ = r .



2350 J. Koko / Journal of Computational and Applied Mathematics 235 (2011) 2343–2356

7. Numerical experiments

Algorithms UBR-C, UBR-TF and CF-FP of the previous sections were implemented in MATLAB 7 on a Linux workstation
with 2.67 GHz clock frequency and 12 GB RAM. The test problems used are designed to illustrate the behavior of the
algorithms more than to model contact actual phenomena.

We compare Algorithm UBR-C with the semi-smooth Newton method; see e.g. [2,23] which can be expressed as the
following active set strategy with respect to the inequality un − g ≤ 0:
Algorithm SSN-C
(1) Choose u0

∈ V and set k← 0.
(2) Determine

Ak+1
=


x ∈ Γc λ̂+ r(uk

n − g) > 0


,

Ik+1
= Γc \Ak+1

(3) if k ≥ 1 and Ak+1
= Ak stop, else

(4) Solve

a(uk+1, v)+ (λ̂+ r(uk+1
n − g), χ k+1vn)Γc = f (v), ∀v ∈ V . (7.1)

Set λk+1
c =


λ̂+ r(uk+1n − g) on Ak+1

0 on Ik+1

and k← k+ 1 and go to Step 2.

In Algorithm SSN-C, λ̂ ∈ L2(Γc), and χ k+1
= χAk+1 is the characteristic function of Ak+1

⊂ Γc . In numerical experiments,
we use λ̂ = 0. The convergence of Algorithm SSN-C is locally superlinear [24,2]. But since the active set changes from one
iteration to another in (7.1), the matrix of the linear system must be factorized at each iteration.

Implementation: Implementation of all algorithms are done inMatlab using piecewise linear finite element and vectorized
codes [25]. Since the matrix of the linear elasticity subproblem is symmetric positive definite, we use the Cholesky
factorization (Matlab function chol) after column and row permutations (Matlab function symamd) to reduce fill-in. The
Cholesky factorization is performed in the first iteration for UBR-C, UBR-TF and CF-FP; so that, during the iterative process,
the linear elasticity subproblems reduce to forward/backward substitutions. For the semi-smooth Newton Algorithm SSN-C,
a column and row permutation is performed in the first iteration since the locations of nonzero entries of the matrix do not
change.

Stopping criteria: The tolerances in the stopping criteria (4.16), (5.6) and (5.7) are
εc = 10−5, εf = 10−5, εfp = 10−4,

respectively. To make sure that the algorithms converge, we also check if the L2-norm of the residual is less than 10−3. This
value is sufficient and choosing a higher accuracy for the residual increases excessively the number of iterations. For the
Tresca friction subproblems solved in Algorithm CF-FP we use the following variable tolerance strategy

εm
f = max{(0.1)m, 10−5},

wherem is the corresponding fixed-point iteration.
Initialization: For the initialization of UBR algorithms, we simply set φ−1 = 0 and λ0

= 0. In the first example
(Section 7.1), the problem allows rigid body motions in the vertical direction. Fortunately, in our Uzawa block relaxation
algorithm the mass terms provided by normal and tangential integrals in (4.5) and (5.3) prevent infinite displacements at
the initial step. For Algorithm SSN-C, we have set λ0

c = 0 and u0
= (0,−0.01) in the initialization step to prevent infinite

displacements.

7.1. Example 1: a Hertz problem

A classical test in the numerical simulation of unilateral contact problems is the Hertz contact problem; see e.g. [26,1]. Let
us consider an infinitely long cylinder resting in a rigid foundation, and subjected to a uniform load along its top of intensity
g = (0,−1600) (units of force per unit area). The radius of the cylinder is R = 8. The cylinder is made from a homogeneous,
isotropic, elastic material with Young’s modulus E = 2000 and Poisson’s ratio ν = 0.3. The Hertz solution yields a contact
pressure of

p(x) =
2|g|
πb2


b2 − x21, (7.2)

where b is the half-width of the contact surface defined by

b = 2

|g|R(1− ν2)/(πE).

For symmetry reasons, only quarter of the cylinder section is consider in the finite element discretization; see Fig. 1. The
contact surface is Γc = (0, 8)× {0} and we prescribed u1 = 0 on ΓD = {0} × (0, 8) for symmetry.
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Fig. 1. Sample mesh of a Hertz contact problem.
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Fig. 2. Number of iterations versus penalty parameter.
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Fig. 3. Deformed configuration and the von Mises stress distribution.

7.1.1. Frictionless case

The Uzawa type algorithms are very sensitive to the choice of the penalty (or augmentation) parameter r . For elasticity
problems, we can assume that the penalty parameter is of the form r = αE, where α > 0 and E is Young’smodulus.We then
run Algorithm UBR-C with various values of α using a mesh with 1692 nodes and 3236 triangles. Fig. 2 shows the number
of iterations versus the penalty parameter r . The ‘‘optimal’’ penalty value is r ≈ 220 = 0.11E. Choosing larger values for
r increases the number of iterations without improving the final result. Fig. 3 shows the deformed configuration. The gray
tones visualize the von Mises effective stress distribution in Ω .
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Fig. 4. Relative error qk of the Lagrange multiplier versus k for Algorithm UBR-C on the frictionless Hertz contact problem.

Table 1
Performances of Algorithms UBR-C (r = 0.11E) and SSN-C (r = 103E) on a
Hertz problem without friction.

Mesh nodes Ω/Γc UBR-C SSN-C
Iterations CPU (s) Iterations CPU (s)

442/35 47 0.04 7 0.06
1692/69 40 0.54 8 0.760
6619/137 46 1.34 9 4.72
26 181/271 45 6.83 10 23.270
37 473/329 47 8.90 10 36.190

Table 2
‖λk

c − p‖L2(Γc ) for UBR-C and SSN-C.

UBR-C r 1 0.11E E 10E
‖λc − p‖0,Γc 24.9455 23.9717 18.5664 17.7830

SSN-C r E 103E 105E 108E
‖λc − p‖0,Γc 187.0743 35.0988 35.9586 35.9572

We now investigate the rate of convergence of Algorithm UBR-C. In Fig. 4, we plot the relative error of the Lagrange
multiplier

qk =
‖λk

c − p‖0,Γc

‖λk−1
c − p‖0,Γc

versus the iteration number k for various penalty parameters, using the Hertz contact pressure (7.2) as the exact Lagrange
multiplier. In Fig. 4, the limit values, for qk, are 0.9985 (for r = 0.025E), 0.9950 (for r = 0.11E) and 1.0000 (for r = E). We
observe a linear rate of convergence of Algorithm UBR-C (as predicted in [16, chap. 9]), for ‘‘small’’ values of r . For ‘‘large’’
values of r (e.g. r = E), the convergence of Algorithm UBR-C becomes sublinear.

We now compare the Uzawa block relaxation algorithm for frictionless contact problems (UBR-C) and the semi-smooth
Newton algorithm (SSN-C). For Algorithm SSN-C, we made the following observations relative to the Hertz problem under
consideration.

• The active set does not change any more for r ≥ 2.5× 104
= 12.5E.

• The number of iterations increases moderately with r and the number of mesh nodes.

Ito and Kunisch [27, Section 4] observe the same behavior for several exampleswith smooth problemdata. For these reasons,
we do not use specific techniques such as path following [23] for this class of problems. We report in Table 1 the number of
iterations and CPU time of both algorithms for different mesh sizes. We first notice that, for AlgorithmUBR-C, the number of
iterations required for convergence is virtually independent of the mesh size. We also notice that Algorithm SSN-C requires
more CPU time than Algorithm UBR-C, because of matrix factorizations in every iteration. The saving of computational cost
obtainedwith AlgorithmUBR-C is therefore significant. For the largest problem, AlgorithmUBR-C ismore than 4 times faster
than Algorithm SSN-C.

Fig. 5 shows numerical and analytical contact pressure distributions on Γc . We notice that the contact pressure obtained
with both algorithms coincide except at the boundary of the contact area. In Table 2 we report L2-norm of the difference
between λk

c (obtained with UBR-C or SSN-C) and the Hertz contact pressure (7.2). We can notice that Algorithm UBR-C is
more robust and accurate. The robustness of Algorithm UBR-C follows from Theorem 6.1 which is valid for any r > 0. For
r = 1, Algorithm UBR-C requires 8977 iterations while the number of iterations is only 40 for r = 0.11E. But in both cases,
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Fig. 5. Contact pressure distributions for a Hertz problem.
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Fig. 6. Stress distributions for a Hertz problem with the Tresca friction.

Table 3
Performances of Algorithm UBR-TF on a Hertz
problem with the Tresca friction.

Mesh nodes
Ω/Γc

Iterations CPU (in s)

442/35 57 0.04
1692/69 47 0.55
6619/137 51 1.68
26 181/273 50 7.54
37 473/329 48 9.79

the solution obtained is an approximate solution of the original contact problem. This is not the case for Algorithm SSN-C
since it converges towards the solution of the regularized problem.

7.1.2. Friction case
We now study, the behavior of Algorithm UBR-TF on a Hertz problem with the Tresca friction. The friction coefficient

is νf = 0.6 and the known normal stress is the Hertz contact pressure (7.2). Using a mesh with 1692 nodes and studying
the evolution of the number of iterations versus the penalty parameter, we determine the ‘‘optimal’’ penalty parameter
r ≈ 260 = 0.13E.

In Table 3 we report the performances of Algorithm UBR-TF. We notice that the number of iterations is virtually
independent of the mesh size. Fig. 6 shows the stress distributions on Γc . One can notice that, compared to the frictionless
case, the maximum contact pressure increases while the contact area is reduced. The sticking zone (|λf | < νf |p|) and the
sliding zone (|λf | = νf |p|) are clearly identified. Note that the tangential stress has a sort of singular point at the end of
the sticking zone as observed e.g. by [1]. It is interesting to notice that, for the largest problem, the computational cost of
Algorithm UBR-TF is only (about) 10% higher than the frictionless case.

We now study the behavior of the fixed-point Algorithm CF-FP on the Hertz problem with the Coulomb friction. The
penalty parameter is r = 580 = 0.29E in Algorithm UBR-TF used as the Tresca friction solver. We report in Table 4 the
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Table 4
Performances of Algorithm CF-FP on a Hertz problem with the Coulomb
friction.

Mesh nodes Fixed-point iterations Tresca iterations CPU (in s)

442 9 109 0.08
1692 8 106 0.81
6619 13 122 2.51

26181 11 115 14.41
37473 10 114 20.53
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Fig. 7. Stress distributions for a Hertz problem with the Coulomb friction.
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performances of Algorithm CF-FP in terms of inner/outer iterations and CPU time. One can notice again that the number of
iterations (inner or outer) is virtually independent of the mesh size. Fig. 7 shows the stress distribution on Γc with the same
properties as for the Tresca friction case, Fig. 6.

7.2. Example 2: a three-dimensional problem

In this example, we study the behavior of a three-dimensional rectangular elastic body pressed onto a solid
hemisphere, [23]. The elastic body occupies the domain Ω = (−0.5, 0.5) × (−1, 1) × (−0.5, 0.5) with elastic constants
E = 106 and ν = 0.45. The obstacle is a half-ball with radius r = 0.5 and center (−0.3, 0,−1). Fig. 8 shows the geometry of
the problem. A displacement uD = (0, 0,−0.2) is prescribed on the upper surface ΓD = (−0.5, 0.5)× (−1, 1)× {0.5}. The
contact surface is the lower surface Γc = (−0.5, 0.5)× (−1, 1)×{−0.5}with un = u3 and ut = (u1, u2, 0)T . Then, in (5.5),
| · | stands for the Euclidean norm.

Using the same procedure as in Section 7.1, we obtain as ‘‘optimal’’ penalty parameters r ≈ 4E (for the frictionless case),
r ≈ 2.75E (for the Tresca friction case) and r = 6.25E (for the Coulomb friction case), using a mesh with 739 nodes and
3284 tetrahedrons.

7.2.1. Frictionless case
Algorithm UBR-C stops after 40 iterations using a mesh with 739 nodes and 3284 tetrahedrons; see Fig. 8. Fig. 9 shows

the deformed mesh, gray tones visualize the vertical component of the second order Cauchy stress tensor, i.e. σ33(u) in the
three-dimensional case. Fig. 10 shows the normal stress (σn) distribution on the contact surface Γc .
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Fig. 10. Normal stress (σn(u)) distribution on Γc .

Table 5
Performances of Algorithm UBR-C on the three-
dimensional problem.

Mesh nodes Ω/Γc Iterations CPU (in s)

198/45 36 0.15
739/122 37 0.87
2357/260 40 4.22
10 761/769 40 58.33
17 887/1042 40 129.94

To study the scalability of Algorithm UBR-C, we consider several meshes of different sizes. We report in Table 5 the
performances of Algorithm UBR-C. We observe that the number of iterations is virtually independent of mesh size. Note
that the timing results in Table 5 do not include the time to assemble the matrix systems; this time is quite significant for
three-dimensional systems.

7.2.2. Friction case
An analytical normal pressure is not known for this example. We then use the Lagrange multiplier λk

c obtained with
Algorithm UBR-C as normal stress and the corresponding approximate friction bound sh = νf |λ

k
c |. We report in Table 6 the

performances of the Uzawa block relaxation Algorithm UBR-TF and the fixed-point Algorithm CF-FP. We can observe again
that the number of iteration is virtually independent of the mesh size. For the largest problem, the computational cost of
Algorithm UBR-TF is only (about) 14.5% higher than the frictionless case.

8. Conclusion

We have studied a Uzawa Block Relaxation (UBR) method for a unilateral contact problem with or without friction. The
method is developed in the continuous level and easy to implement since both cases (frictionless or the Tresca friction),
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Table 6
Performances of Algorithms UBR-TF and CF-FP on the three-dimensional problem.

Mesh nodes Ω/Γc Algorithm UBR-TF Algorithm CF-FP
Iterations CPU (in s) Iterations fixed point/Tresca CPU (in s)

198/45 49 0.23 6/92 0.38
739/122 50 0.90 6/91 1.06
2357/260 45 4.08 6/92 8.83
10 761/769 47 68.42 6/93 122.56
17 887/1042 48 148.66 6/94 266.72

can be incorporated in the same procedure. The main advantage of our method is that the matrix of the linear elasticity
subproblem is constant during the iterative process and, therefore, can be factorized only once in the initialization step.
Numerical experiments have shown that this property leads to a significant saving of computational cost for large scale
problems. In fact, for our largest problem, Algorithm UBR-C is more than 4 times faster than the semi-smooth Newton
algorithm SSN-C which exhibits a superlinear rate of convergence but requires a matrix factorization at each iteration.

Even though the Uzawa block relaxation algorithms presented in this paper converge for any r > 0, its practical
implementation still faces the problem of the optimal choice of the regularization parameter r . Further work is underway
for an automatic penalty adjustment procedure.
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