
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Journal of Algebra 304 (2006) 557–576

www.elsevier.com/locate/jalgebra

Mullineux involution and twisted affine Lie algebras

Jun Hu

Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, PR China

Received 11 July 2005

Available online 24 April 2006

Communicated by Leonard L. Scott, Jr.

Abstract

We use Naito and Sagaki’s work [S. Naito, D. Sagaki, Lakshmibai–Seshadri paths fixed by a diagram
automorphism, J. Algebra 245 (2001) 395–412; S. Naito, D. Sagaki, Standard paths and standard monomials
fixed by a diagram automorphism, J. Algebra 251 (2002) 461–474] on Lakshmibai–Seshadri paths fixed by
diagram automorphisms to study the partitions fixed by Mullineux involution. We characterize the set of
Mullineux-fixed partitions in terms of crystal graphs of basic representations of twisted affine Lie algebras

of type A
(2)
2�

and of type D
(2)
�+1. We set up bijections between the set of symmetric partitions and the set of

partitions into distinct parts. We propose a notion of double restricted strict partitions. Bijections between
the set of restricted strict partitions (respectively, the set of double restricted strict partitions) and the set of
Mullineux-fixed partitions in the odd case (respectively, in the even case) are obtained.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let n, e ∈ N. Let k be a field and 0 �= q ∈ k. Suppose that either e > 1 and q is a primitive
eth root of unity; or q = 1 and chark = e.1 Let Hk(Sn) be the Iwahori–Hecke algebra associ-
ated to the symmetric group Sn with parameter q and defined over k. The Mullineux involution
M is a bijection defined on the set of all e-regular partitions of n, which arises naturally when
one twists irreducible modules (labeled by e-regular partitions) over Hk(Sn) by a k-algebra au-
tomorphism # (see Section 2 for definition of #). If q = 1 and e is an odd prime number, the
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1 In the latter case, e is necessarily to be a prime number.
0021-8693/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2006.03.025

https://core.ac.uk/display/82483559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


558 J. Hu / Journal of Algebra 304 (2006) 557–576
involution M determines which simple module splits and which remains simple when restrict-
ing to the alternating subgroup An. In that case, the set of partitions which are fixed by the
involution M parameterizes the irreducible modules of kSn which split on restriction to An.
In [21], Kleshchev gave a remarkable algorithm for computing the involution M. A crystal bases
approach to Kleshchev’s algorithm of the involution M was given in [24, (7.1)].

The purpose of this paper is to study the partitions fixed by Mullineux involution for arbi-
trary e. We find that the set of Mullineux-fixed partitions is related to the twisted affine Lie
algebras of type A

(2)
2� and of type D

(2)
�+1, which reveals new connection between the theory of

affine Lie algebra and the theory of modular representations. Our main tool are Naito and Sa-
gaki’s work [29,30] on Lakshmibai–Seshadri paths fixed by diagram automorphisms, which was
also used in [16,17] to derive explicit formulas for the number of modular irreducible represen-
tations of the cyclotomic Hecke algebras of type G(r,p,n), see [13–15] for related work. We
characterize the set of Mullineux-fixed partitions in terms of crystal graph of basic representa-
tions of twisted affine Lie algebras of type A

(2)
2� and of type D

(2)
�+1 (Theorem 3.7). We set up

bijections (Theorems 3.15 and 3.17) between the set of Mullineux-fixed partitions in the odd
case (respectively, the set of symmetric partitions) and the set of restricted strict partitions (re-
spectively, the set of partitions into distinct parts). As an application, we obtain new identities on
the cardinality of the set of Mullineux-fixed partitions in terms of the principal specialized char-
acters of the basic representations of these twisted affine Lie algebras (Theorems 3.13 and 3.20).
Furthermore, we propose a notion of double restricted strict partitions (Definition 3.21), which
is a direct explicit characterization of Kang’s reduced proper Young wall of type D

(2)
�+1 [19]. We

obtain a bijection (Theorem 3.24) between the set of Mullineux-fixed partitions in the even case
and the set of double restricted strict partitions. Our main results shed some new insight on the
modular representations of the alternating group and of Hecke–Clifford superalgebras as well as
of the spin symmetric group (see Remarks 3.25 and 3.18), which clearly deserves further study.

2. Preliminaries

In this section, we shall first review some basic facts about the representation of the Iwahori–
Hecke algebras associated to symmetric groups. Then we shall introduce the notion of Mullineux
involution, Kleshchev’s e-good lattice as well as Kleshchev’s algorithm of Mullineux involution.

Let Sn be the symmetric group on {1,2, . . . , n}, acting from the right. Let A = Z[v, v−1],
where v is an indeterminate. The Iwahori–Hecke algebra HA(Sn) associated to Sn is the asso-
ciative unital A-algebra with generators T1, . . . , Tn−1 subject to the following relations

(Ti − v)(Ti + 1) = 0, for 1 � i � n − 1,

TiTi+1Ti = Ti+1TiTi+1, for 1 � i � n − 2,

TiTj = TjTi, for 1 � i < j − 1 � n − 2.

For each integer i with 1 � i � n − 1, we define si = (i, i + 1). Then S := {s1, s2, . . . , sn−1}
is the set of all the simple reflections in Sn. A word w = si1 · · · sik for w ∈ Sn is a reduced
expression if k is minimal; in this case we say that w has length k and we write �(w) = k. Given
a reduced expression si1 · · · sik for w ∈ Sn, we write Tw = Ti1 · · ·Tik . The braid relations for
generators T1, . . . , Tn−1 ensure that Tw is independent of the choice of reduced expression. It is
well known that HA(Sn) is a free A-module with basis {Tw | w ∈ Sn}. For any field k which
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is an A-algebra, we define Hk(Sn) := HA(Sn) ⊗A k. Then Hk(Sn) can be naturally identified
with the k-algebra defined by the same generators and relations as HA(Sn) above. Specializing
v to 1 ∈ k, one recovers the group algebra kSn of Sn over k.

We recall some combinatorics. A partition of n is a non-increasing sequence of positive in-
tegers λ = (λ1, . . . , λr ) such that

∑r
i=1 λi = n. For any partition λ = (λ1, λ2, . . .), the conjugate

of λ is defined to be a partition λt = (λt
1, λ

t
2, . . .), where λt

j := #{i | λi � j} for j = 1,2, . . . .

We define �(λ) := max{i | λi �= 0}. For any partition λ of n, we denote by tλ (respectively, tλ)
the standard λ-tableau in which the numbers 1,2, . . . , n appear in order along successive rows
(respectively, columns). The row stabilizer of tλ, denoted by Sλ, is the standard Young subgroup
of Sn corresponding to λ. Let

xλ =
∑

w∈Sλ

Tw, yλ =
∑

w∈Sλ

(−v)−�(w)Tw.

Let wλ ∈ Sn be such that tλwλ = tλ. Following [6, Section 4], we define zλ = xλTwλyλt .

Definition 2.1. The right ideal zλH is called the right Specht module of H = HA(Sn) corre-
sponding to λ. We denote it by Sλ.

For any field k which is an A-algebra, let Sλ
k := Sλ ⊗A k. There is a natural bilinear form 〈 , 〉

on each Sλ (and hence on each Sλ
k ). Let Dλ

k := Sλ
k / rad〈 , 〉. Let “�” be the dominance order on

the set of all partitions as defined in [28, (3.1)].

Lemma 2.2. [6] With the above notations, we have

(1) the set of all the non-zero Dλ
k (where λ runs over partitions of n) forms a complete set of

pairwise non-isomorphic simple Hk(Sn)-modules. Moreover, if Hk(Sn) is semisimple, then
Dλ

k = Sλ
k �= 0 for every partition λ of n;

(2) if D
μ
k �= 0 is a composition factor of Sλ

k then λ � μ, and every composition factor of Sλ
k is

isomorphic to some D
μ
k with λ� μ. If Dλ

k �= 0 then the composition multiplicity of Dλ
k in Sλ

k

is 1.

Henceforth, let k be a fixed field which is an A-algebra. We assume that v is specialized
to q ∈ k such that 1 + q + q2 + · · · + qa−1 = 0 for some positive integer a. We define

e = min
{
1 < a < ∞ ∣∣ 1 + q + q2 + · · · + qa−1 = 0 in k

}
.

Clearly, e = chark if q = 1; and otherwise e is the multiplicative order of q . For simplicity, we
shall write Hk instead of Hk(Sn).

A partition λ is called e-regular if it contains at most e − 1 repeating parts, i.e., λ =
(1m12m2 · · · jmj · · ·) with 0 � mi < e for every i. By [6], for any partition λ of n, Dλ

k �= 0 if
and only if λ is e-regular. Let Kn be the set of all the e-regular partitions of n. Let # (see [6], [28,
(2.3)]) be the k-algebra automorphism of Hk which is defined on generators by T #

i = −vT −1
i

for each 1 � i < n. For each Hk(Sn)-module V , we denote by V # the Hk(Sn)-module ob-
tained by twisting V by #. That is, V # = V as k-linear space, and v · h := vh# for any v ∈ V

and h ∈Hk(Sn). Let ∗ be the algebra anti-automorphism on Hk which is defined on generators
by T ∗ = Ti for any 1 � i < n.
i
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Definition 2.3. [3,27] Let M be the unique involution defined on the set Kn such that
(Dλ

k )# ∼= D
M(λ)
k for any λ ∈ Kn. We call the map M the Mullineux involution, and λ a Mullineux-

fixed partition if M(λ) = λ.

An algorithm which compute the involution M was first proposed by Mullineux in 1979,
when he constructed an involution on the set of e-regular partitions and conjectured its coinci-
dence with the above M. Mullineux worked in the setup that q = 1 and e being a prime number,
though his combinatorial algorithm does not really depend on e being prime. In [21], Kleshchev
gave a quite different remarkable algorithm of the involution M based on his work of branching
rules for the modular representations of symmetric groups. In [9], Ford and Kleshchev proved
that Kleshchev’s algorithm is equivalent to Mullineux’s original algorithm and thus proved
Mullineux’s conjecture. The validity of Kleshchev’s algorithm of M for arbitrary e is proved
in [3].

Note that the Mullineux involution M depends only on e. Henceforth, we refer to the case
when e is odd as the odd case; and to the case when e is even as the even case. By [7, (3.5)]
and [28, (5.2), (5.3)], (Sλ)# ∼= (Sλt

)∗. If Hk(Sn) is semisimple, then (Sλt

k )∗ ∼= Sλt

k , hence in that
case the involution M degenerates to the map λ 
→ λt . In this paper, we do not need Mullineux’s
original combinatorial algorithm [27] for defining M, but we do need Kleshchev’s algorithm [21]
of the involution M. To this end, we have to recall the notion of Kleshchev’s e-good lattice.

Let λ be a partition of n. The Young diagram of λ is the set

[λ] = {
(a, b)

∣∣ 1 � b � λa

}
.

The elements of [λ] are nodes of λ. Given any two nodes γ = (a, b), γ ′ = (a′, b′) of λ, say that
γ is below γ ′, or γ ′ is above γ , if a > a′. The residue of γ = (a, b) is defined to be res(γ ) :=
b − a + eZ ∈ Z/eZ, and we say that γ is a res(γ )-node. Note that we can identify the set
{0,1,2, . . . , e − 1} with Z/eZ via i 
→ ī for each 0 � i � e − 1. Therefore, we can also think that
the res(?) function takes values in {0,1,2, . . . , e − 1}.

A removable node is a node of the boundary of the Young diagram [λ] which can be removed,
while an addable node is a concave corner on the rim of [λ] where a node can be added. If μ is
a partition of n + 1 with [μ] = [λ] ∪ {γ } for some removable node γ of μ, we write λ → μ. If
in addition res(γ ) = x, we also write that λ

x−→ μ. For example, suppose n = 42 and e = 3. The
nodes of λ = (92,8,7,5,3,1) have the following residues

λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0̄ 1̄ 2̄ 0̄ 1̄ 2̄ 0̄ 1̄ 2̄

2̄ 0̄ 1̄ 2̄ 0̄ 1̄ 2̄ 0̄ 1̄

1̄ 2̄ 0̄ 1̄ 2̄ 0̄ 1̄ 2̄

0̄ 1̄ 2̄ 0̄ 1̄ 2̄ 0̄

2̄ 0̄ 1̄ 2̄ 0̄

1̄ 2̄ 0̄

0̄

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It has six removable nodes. Fix a residue x and consider the sequence of removable and addable
x-nodes obtained by reading the boundary of λ from the top down. In the above example, if
we consider residue x = 0̄, then we get a sequence AARRRR, where each “A” corresponds to
an addable 0̄-node and each “R” corresponds to a removable 0̄-node. Given such a sequence
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of letters A, R, we remove all occurrences of the string “AR” and keep on doing this un-
til no such string “AR” is left. The “R”s that still remain are the normal 0̄-nodes of λ and
the rightmost of these is the good 0̄-node. In the above example, the two removable 0̄-nodes
in the last two rows survive after we delete all the string “AR.” Therefore, the removable
0̄-node in the last row is the good 0̄-node. If γ is a good x-node of μ and λ is the parti-

tion such that [μ] = [λ] ∪ γ , we write λ
x
� μ. The Kleshchev’s e-good lattice is, by defini-

tion, the infinite graph whose vertices are the e-regular partitions and whose arrows are given

by λ
x
� μ ⇔ λ is obtained from μ by removing a good x-node. It is well known that, for each

e-regular partition λ, there is a path (not necessary unique) from the empty partition ∅ to λ in
Kleshchev’s e-good lattice.

Kleshchev’s e-good lattice in fact provides a combinatorial realization of the crystal graph of
the basic representation of the affine Lie algebra of type A

(1)
e−1 (which we denote by ŝle). To be

more precise, let {α0, α1, . . . , αe−1} be the set of simple roots of ŝle , let {α∨
0 , α∨

1 , . . . , α∨
e−1} be

set of simple coroots, let⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1
−1 0 0 · · · −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
e×e

if e � 3;

or (
2 −2

−2 2

)
2×2

if e = 2.

be the corresponding affine Cartan matrix. Let d be the scaling element. Then the set
{α∨

0 , α∨
1 , . . . , α∨

e−1, d} forms a basis of the Cartan subalgebra of ŝle , let {Λ0,Λ1, . . . ,Λe−1, δ}
be the corresponding dual basis, where δ denotes the null root. The integrable highest weight
module of highest weight Λ0, denoted by L(Λ0), is called the basic representation of ŝle. It is
a remarkable fact ([26], [1, (2.11)]) that the crystal graph of L(Λ0) is exactly the same as the
Kleshchev’s e-good lattice if one use the embedding L(Λ0) ⊂ F(Λ0), where F(Λ0) is the Fock
space as defined in [24, §4.2]. In particular, an explicit formula for the number of irreducible
Hk(Sn)-modules, i.e., #Kn, is known (see [1]), which was expressed in terms of principal spe-
cialized character of the basic representation L(Λ0).

Now we can state Kleshchev’s algorithm of the Mullineux involution M. Here we follow
Lascoux–Leclerc–Thibon’s reformulation in [24, (7.1)].

Lemma 2.4. [21] Let λ ∈ Kn be an e-regular partition of n, and let

∅ r1� · r2� · . . . · rn� λ

be a path from ∅ to λ in Kleshchev’s e-good lattice. Then, the sequence

∅ e−r1� · e−r2� · . . . · e−rn� ,

also defines a path in Kleshchev’s e-good lattice, and it connects ∅ to M(λ).
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Note that the Mullineux involution M gives rise to an equivalence relation on Kn. That is,
λ ∼ μ if and only if λ = M(μ) for any λ,μ ∈ Kn. Let An be the alternating group, which is a
normal subgroup in Sn of index 2. In the special case where q = 1 and e is an odd prime number,
the involution M is closely related to the modular representation of the alternating group An, as
can be seen from the following lemma.

Lemma 2.5. [8, (2.1)] Suppose that q = 1 and e is an odd prime number. In particular, chark = e.
Assume that An is split over k. Then:

(1) for any λ ∈ Kn with M(λ) �= λ, Dλ ↓An remains irreducible;
(2) for any λ ∈ Kn with M(λ) = λ, Dλ ↓An is a direct sum of two irreducible, non-equivalent,

representations of kAn, say Dλ+ and Dλ−;
(3) the set {

Dλ+,Dλ−
∣∣ λ ∈Kn/∼,M(λ) = λ

}�{
Dλ ↓An

∣∣ λ ∈Kn/∼,M(λ) �= λ
}

forms a complete set of pairwise non-isomorphic irreducible kAn-modules.

As a consequence, we get that

# Irr(kAn) = 1

2

(
#Kn − #

{
λ ∈Kn

∣∣ M(λ) = λ
}) + 2#

{
λ ∈Kn

∣∣ M(λ) = λ
}

= 1

2

(
#Kn + 3#

{
λ ∈Kn

∣∣ M(λ) = λ
})

.

3. The orbit Lie algebras

In this section, we shall first determine the orbit Lie algebras corresponding to the Dynkin
diagram automorphisms arising from the Mullineux involution. Then we shall use Naito and
Sagaki’s work [29,30] to study the set of Mullineux-fixed partitions in terms of crystal graphs
of basic representations of the orbit Lie algebras, which are some twisted affine Lie algebras of
type A

(2)
2� or of type D

(2)
�+1. The main results are given in Theorems 3.7, 3.13, 3.15, 3.17, 3.20

and 3.24.
Let g be the Kac–Moody algebra over C associated to a symmetrizable generalized Cartan

matrix (ai,j )i,j∈I of finite size, where I = {0,1, . . . , e − 1}. Let h be its Cartan subalgebra,
and W be its Weyl group. Let {α∨

i }0�i�e−1 be the set of simple coroots in h. Let X := {Λ ∈ h∗ |
Λ(α∨

i ) ∈ Z, ∀0 � i < e} be the weight lattice. Let X+ := {Λ ∈ X | Λ(α∨
i ) � 0, ∀0 � i < e} be

the lattice of integral dominant weights. Let XR := X ⊗Z R, where R is the field of real numbers.
Assume that Λ ∈ X+. P. Littelmann introduced [22,23] the notion of Lakshmibai–Seshadri paths
(LS paths for short) of class Λ, which are piecewise linear, continuous maps π : [0,1] → XR

parameterized by pairs (ν, a) of a sequence ν: ν1 > ν2 > · · · > νs of elements of WΛ, where >

is the “relative Bruhat order” on WΛ, and a sequence a: 0 = a0 < a1 < · · · < as = 1 of rational
numbers with a certain condition, called the chain condition. The set B(Λ) of all LS paths of class
Λ is called the path model for the integrable highest weight module L(Λ) of highest weight Λ

over g. It is a remarkable fact that B(Λ) has a canonical crystal structure isomorphic to the crystal
(in the sense of [20]) associated to the integrable highest weight module of highest weight Λ over
the quantum algebra U ′

v(g) .
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Now let g be the affine Kac–Moody algebra of type A
(1)
e−1. Let ω : I → I be an involution

defined by ω(0) = 0 and ω(i) = e − i for any 0 �= i ∈ I .

Lemma 3.1. ω is a Dynkin diagram automorphism in the sense of [30, §1.2]. That is aω(i),ω(j) =
ai,j , ∀i, j ∈ I .

Proof. This follows from direct verification.
By [11], ω induces a Lie algebra automorphism (which are called diagram outer automor-

phism) ω ∈ Aut(g) of order 2 and a linear automorphism ω∗ ∈ GL(h∗) of order 2. Following
[10] and [30, §1.3] (where they work with an arbitrary Kac–Moody algebra g and a Dynkin dia-

gram automorphism ω), we set ci,j := ∑Nj −1
t=0 ai,ωt (j), where Nj := #{ωt(i) | t � 0}, i, j ∈ I .

We choose a complete set Î of representatives of the ω-orbits in I , and set Ǐ := {i ∈ Î |
ci,i > 0}. We put âi,j := 2ci,j /cj for i, j ∈ Î , where ci := cii if i ∈ Ǐ , and ci := 2 otherwise.
Then (âi,j )i,j∈Î

is a symmetrizable Borcherds–Cartan matrix [2], and (if Ǐ �= ∅) its submatrix
(âi,j )i,j∈Ǐ

is a generalized Cartan matrix. Let ĝ be the generalized Kac–Moody algebra over C

associated to (âi,j )i,j∈Î
, with Cartan subalgebra ĥ, Chevalley generators {x̂i , ŷi}i∈Î

. The orbit

Lie algebra ǧ is defined to be the subalgebra of ĝ generated by ĥ and x̂i , ŷi for i ∈ Ǐ , which is a
usual Kac–Moody algebra. �
Lemma 3.2. With the above assumptions and notations, we have that in our special case, ǧ is
isomorphic to the twisted affine Lie algebra of type A

(2)
2� if e = 2� + 1; and ǧ is isomorphic the

twisted affine Lie algebra of type D
(2)
�+1 if e = 2�.

Proof. We divide the proof into two cases:

Case 1. e = 2� + 1. The involution ω is given by

ω:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 
→ 0,

1 
→ 2�,
...

� − 1 
→ � + 2,

� 
→ � + 1,

⎧⎪⎪⎨⎪⎪⎩
� + 1 
→ �,
...

2� − 1 
→ 2,

2� 
→ 1.

It is easy to check that ci,i = 2 for any 0 � i < � and c�,� = 1. We shall take Î = {0,1, . . . , l}. By
direct verification, we get that Ǐ = Î and

(âi,j )i,j∈Î
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −2 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −2

0 0 0 · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
if � � 2;
(�+1)×(�+1)
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or (
2 −4

−1 2

)
2×2

if � = 1.

Clearly this is an affine Cartan matrix of type A
(2)
2� , hence in this case ǧ is isomorphic to the

twisted affine Lie algebra of type A
(2)
2� .

Case 2. e = 2�. The involution ω is given by

ω:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 
→ 0,

1 
→ 2� − 1,
...

� − 1 
→ � + 1,

� 
→ �,

⎧⎪⎪⎨⎪⎪⎩
� + 1 
→ � − 1,
...

2� − 2 
→ 2,

2� − 1 
→ 1.

It is easy to check that ci,i = 2 for any 0 � i � �. We shall take Î = {0,1, . . . , l}. By direct
verification, we get that Ǐ = Î and

(âi,j )i,j∈Î
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −2 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −1

0 0 0 · · · 0 −2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(�+1)×(�+1)

if � � 2;

or (
2 −2

−2 2

)
2×2

if � = 1.

Clearly this is an affine Cartan matrix of type D
(2)
�+1, hence in this case ǧ is isomorphic to the

twisted affine Lie algebra of type D
(2)
�+1.

We define (h∗)◦ := {Λ ∈ h∗ | ω∗(Λ) = Λ}. W̃ := {w ∈ W | ω∗w = wω∗}. We indicate
by ˇ the objects for the obit Lie algebra ǧ. For example, ȟ denotes the Cartan subalgebra of ǧ,
W̌ the Weyl group of ǧ, {Λ̌i}0�i�� the set of fundamental dominant weights in ȟ∗. There ex-
ists a linear automorphism P ∗

ω : ȟ∗ → (h∗)◦ and a group isomorphism Θ : W̌ → W̃ such that
Θ(w̌) = P ∗

ωw̌(P ∗
ω)−1 for each w ∈ W̌ . By [11, §6.5], for each 0 � i � �,

P ∗
ω(Λ̌i) =

Ni−1∑
Λωt(i) + Cδ,
t=0
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where Ni denotes the number of elements in the ω-orbit of i, C ∈ Q is some constant depending
on ω, δ denotes the null root of g. It follows that P ∗

ω(Λ̌0) = Λ0 + C′δ, for some C′ ∈ Q.
Let B(Λ0) (respectively, B(P ∗

ω(Λ̌0))) be the set of all LS paths of class Λ0 (respectively, of
class P ∗

ω(Λ̌0)). Let πΛ0 (respectively, π
P ∗

ω(Λ̌0)
) be the straight path joining 0 and Λ0 (respec-

tively, 0 and P ∗
ω(Λ̌0)). For each integer 0 � i � e − 1, let Ẽi , F̃i denote the raising root operator

and the lowering root operator with respect to the simple root αi . �
Lemma 3.3. The map which sends π

P ∗
ω(Λ̌0)

to πΛ0 extends to a bijection β from B(P ∗
ω(Λ̌0)) onto

B(Λ0) such that

β
(
F̃i1 · · · F̃is πP ∗

ω(Λ̌0)

) = F̃i1 · · · F̃is πΛ0,

for any i1, . . . , is ∈ {0,1, . . . , e − 1}.

Proof. This follows from the fact that P ∗
ω(Λ̌0)−Λ0 ∈ Qδ and the definitions of B(P ∗

ω(Λ̌0)) and
B(Λ0) (see [22]).

Henceforth we shall identify B(P ∗
ω(Λ̌0)) with B(Λ0). The action of ω∗ on h∗ naturally extends

to the set B(P ∗
ω(Λ̌0)) (and hence to the set B(Λ0)). By [29, (3.1.1)], if F̃i1 F̃i2 · · · F̃is πΛ0 ∈ B(Λ0),

then

ω∗(F̃i1 F̃i2 · · · F̃is πΛ0

) = F̃ω(i1)F̃ω(i2) · · · F̃ω(is )πΛ0 . (3.4)

We denote by B◦(Λ0) the set of all LS paths of class Λ0 that are fixed by ω∗. For ǧ, for each
integer 0 � i � �, we denote by ẽi , f̃i the raising root operator and the lowering root operator
with respect to the simple root αi . Let π

Λ̌0
be the straight path joining 0 and Λ̌0. By [30, (4.2)],

the linear map P ∗
ω naturally extends to a map from B̌(Λ̌0) to B◦(Λ0) such that if f̃i1 f̃i2 · · ·

f̃is πΛ̌0
∈ B̌(Λ̌0), then (in the above two cases)

P ∗
ω

(
f̃i1 f̃i2 · · · f̃is πΛ̌0

) = ω
(
F̃i1

)
ω

(
F̃i2

) · · ·ω(
F̃is

)
πΛ0,

where

ωF̃it ) :=

⎧⎪⎨⎪⎩
F̃it F̃ω(it ), if cit ,it = 2 and Nit = 2,

F̃it , if cit ,it = 2 and Nit = 1,

F̃ω(it )F̃
2
it
F̃ω(it ), if cit ,it = 1.

Note that the case cit ,it = 1 only happens when e = 2� + 1 and it = �. �
Lemma 3.5. [30, (4.2), (4.3)] B◦(Λ0) = P ∗

ω(B̌(Λ̌0)).

Note that both B̌(Λ̌0) and B(Λ0) have a canonical crystal structure with the raising and low-
ering root operators playing the role of Kashiwara operators. They are isomorphic to the crystals
associated to the integrable highest weight modules Ľ(Λ̌0) of highest weight Λ̌0 over U ′

v(ǧ)

and the integrable highest weight modules L(Λ0) of highest weight Λ0 over U ′
v(g), respectively.

Henceforth, we identify them without further comments. Let v ˇ (respectively, vΛ0 ) denotes the

Λ0
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unique highest weight vector of highest weight Λ̌0 (respectively, of highest weight Λ0) in B̌(Λ̌0)

(respectively, in B(Λ0)). Therefore, by (3.4) and Lemma 3.5, we get that

Corollary 3.6. With the above assumptions and notations, there is an injection η from the
set B̌(Λ̌0) of crystal bases to the set B(Λ0) of crystal bases such that

η
(
f̃i1 f̃i2 · · · f̃is vΛ̌0

) ≡ ω
(
F̃i1

)
ω

(
F̃i2

) · · ·ω(
F̃is

)
vΛ0

(
mod vL(Λ0)A

)
,

where i1, . . . , is are integers in {0,1,2, . . . , �}, and A denotes the ring of rational functions
in Q(v) which do not have a pole at 0. Moreover, the image of η consists of all crystal basis ele-
ment F̃i1 · · · F̃is vΛ0 + vL(Λ0)A satisfying F̃i1 · · · F̃is vΛ0 ≡ F̃ω(i1) · · · F̃ω(is )vΛ0 (mod vL(Λ0)A).

Let K := ⊔
n�0 Kn. We translate the language of crystal bases into the language of partitions,

we get the following combinatorial result.

Theorem 3.7. With the above notations, there is a bijection η from the set B̌(Λ̌0) of crystal bases
onto the set {λ ∈K | M(λ) = λ}, such that if

v
Λ̌0

r1� · r2� · . . . · rs� f̃rs · · · f̃r1vΛ̌0

is a path from v
Λ̌0

to f̃rs · · · f̃r1vΛ̌0
in the crystal graph of Ľ(λ̌0), then the sequence

∅ r1� ·︸︷︷︸
ω acts

r2� ·︸︷︷︸
ω acts

. . . · rs� λ︸︷︷︸
ω acts

:= η
(
f̃rs · · · f̃r1vΛ̌0

)
,

where

rt� ·︸︷︷︸
ω acts

:=

⎧⎪⎪⎨⎪⎪⎩
rt� · e−rt� , if crt ,rt = 2 and Nrt = 2,
rt�, if crt ,rt = 2 and Nrt = 1,
�+1
� · �

� · �
� · �+1

� ·, if e = 2� + 1 and rt = �,

defines a path in Kleshchev’s e-good lattice which connects ∅ and e-regular partition λ satisfying
M(λ) = λ.

Proof. This follows from Lemmas 2.4, 3.5 and Corollary 3.6. �
For each partition λ of n, and each integer 0 � i � e − 1, we define

Σi(λ) : = {
γ ∈ [λ] ∣∣ res(γ ) = ī

}
,

Ni(λ) : = #Σi(λ).
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Theorem 3.7 also implies that if f̃r1 · · · f̃rs vΛ̌0
∈ B̌(Λ̌0), λ := η(f̃r1 · · · f̃rs vΛ̌0

), then

Ni(λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

#{1 � t � s | rt = i}, if i ∈ {0,1,2, . . . , � − 1},
#{1 � t � s | rt = e − i}, if i ∈ {� + 2, � + 3, . . . , e − 1},
#{1 � t � s | rt = � − 1}, if e = 2� and i = � + 1,

#{1 � t � s | rt = �}, if e = 2� and i = �,

2#{1 � t � s | rt = �}, if e = 2� + 1 and i ∈ {�, � + 1}.

(3.8)

Corollary 3.9. Let λ ∈Kn. Suppose that M(λ) = λ.

(1) If e = 2� + 1, then N�(λ) = N�+1(λ). Furthermore, N�(λ) and n − N0(λ) are both even
integers.

(2) If e = 2�, then n − N0(λ) − N�(λ) is an even integer.

For each pair of integers m,m′ with 0 � m + m′ � n, we define

Σ(n,m,m′) : = {
λ ∈ Kn

∣∣ M(λ) = λ,N0(λ) = m,N�(λ) = m′},
N(n,m,m′) : = #Σ(n,m,m′).

Note that when e = 2� + 1, by Corollary 3.9, N(n,m,m′) = 0 unless m + 2m′ � n.
Recall the principle graduation introduced in [18, §1.5, §10.10]. That is, the weight

Λ0 − ∑e−1
i=0 kiαi (where ki ∈ Z for each i) is assigned to degree

∑e−1
i=0 ki . Let cht L(Λ0) :=∑

n�0 dimL(Λ0)nt
n be the principle specialized character2 of L(Λ0), where L(Λ0)n =⊕

degμ=n L(Λ0)μ. Similarly, let L(Λ̌0) denote the integrable highest weight module of highest

weight Λ̌0 over ǧ. We use cht L(Λ̌0) := ∑
n�0 dimL(Λ̌0)nt

n to denote the principle specialized

character of L(Λ̌0). Now applying Lemmas 2.4, 3.5 and Theorem 3.7, we get that

dimL(Λ̌0)n =
∑

0�m+m′�n

N(2n − m + 2m′,m,2m′) (3.10)

if e = 2� + 1; while

dimL(Λ̌0)n =
∑

0�m+m′�n

N(2n − m − m′,m,m′) (3.11)

if e = 2�.
Suppose that e = 2� + 1. That is, we are in the odd case. In this case, ǧ is the twisted affine

Lie algebra of type A
(2)
2� . By [18, (14.5.4)], the principle specialized character of L(Λ̌0) is given

by

cht L(Λ̌0) =
∏

i�1, i odd
i �≡0 (mod e)

1

1 − t i
. (3.12)

2 This is called q-dimension in the book of Kac, see [18, §10.10].
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Hence by (3.10) and (3.12), we get that

Theorem 3.13. With the above notations, we have that∏
i�1, i odd
i �≡0 (mod e)

1

1 − t i
=

∑
n�0

( ∑
0�m+m′�n

N(2n − m + 2m′,m,2m′)
)

tn.

In [19], Kang has given a combinatorial realization of B̌(Λ̌0) in terms of reduced proper
Young walls, which are inductively defined. In our A

(2)
2� case, a direct explicit characterization

can be given in terms of restricted e-strict partitions as follows, see [4,25].
Recall that [4,5] a partition λ is called e-strict if λi = λi+1 ⇒ e | λi for each i = 1,2, . . . . An

e-strict partition λ is called restricted if in addition{
λi − λi+1 � e, if e � λi ,

λi − λi+1 < e, if e | λi ,
for each i = 1,2, . . . .

Let DPRe(n) denote the set of all restricted e-strict partitions of n. Let DPRe := ⊔
n�0 DPRe(n).

It turns out that there is a natural 1-1 correspondence between B̌(Λ̌0) and DPRe. Furthermore,
the crystal structure B̌(Λ̌0) can be concretely realized via some combinatorics of DPRe , which
we now describe.

We recall some notions. Elements of (r, s) ∈ Z>0 × Z>0 are called nodes. Let λ be an e-strict
partition. We label the nodes of λ with residues, which are the elements of Z/(� + 1)Z. The
residue of the node A is denoted resA. The labeling depends only on the column and following
the repeating pattern

0̄, 1̄, . . . , � − 1, �̄, � − 1, . . . , 1̄, 0̄,

starting from the first column and going to the right. For example, let e = 5, � = 2, let λ =
(10,10,6,1) be a restricted 5-strict partition of 27. Its residues are as follows:

0̄ 1̄ 2̄ 1̄ 0̄ 0̄ 1̄ 2̄ 1̄ 0̄

0̄ 1̄ 2̄ 1̄ 0̄ 0̄ 1̄ 2̄ 1̄ 0̄

0̄ 1̄ 2̄ 1̄ 0̄ 0̄

0̄

A node A = (r, s) ∈ [λ] is called removable (for λ) if either

(R1) λA := λ − {A} is again an e-strict partition; or
(R2) the node B = (r, s + 1) immediately to the right of A belongs to λ, res(A) = res(B), and

both λB and λAB := λ − {A,B} are e-strict partitions.

Similarly, a node B = (r, s) /∈ [λ] is called addable (for λ) if either

(A1) λB := λ ∪ {B} is again an e-strict partition; or
(A2) the node A = (r, s − 1) immediately to the left of B does not belong to λ, res(A) = res(B),

and both λA := λ ∪ {A} and λAB := λ ∪ {A,B} are e-strict partitions.
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Note that (R2) and (A2) above are only possible for nodes with residue 0̄. Now fix a residue x

and consider the sequence of removable and addable x-nodes obtained by reading the boundary
of λ from the bottom left to top right. We use “A” to denote an addable x-node and use “R” to
denote a removable x-node, then we get a sequence of letters A, R. Given such a sequence, we
remove all occurrences of the string “AR” and keep on doing this until no such string “AR” is
left. The “R”s that still remain are the normal x-nodes of λ and the rightmost of these is the
good x-node, the “A”s that still remain are the conormal x-nodes of λ and the leftmost of these
is the cogood x-node. Note that3 good x-node is necessarily of type (R1), and cogood x-node is
necessarily of type (A1). We define

εi(λ) = #{i-normal nodes in λ},
ϕi(λ) = #{i-conormal nodes in λ}

and we set

ẽi (λ) =
{

λA, if εi(λ) > 0 and A is the (unique) good i-node,

0, if εi(λ) = 0,

f̃i (λ) =
{

λB, if ϕi(λ) > 0 and B is the (unique) cogood i-node,

0, if ϕi(λ) = 0.

Then, we get an infinite colored oriented graph, whose vertices are e-strict partitions and whose
arrows are given by

λ
i

� μ ⇔ μ = f̃i (λ) ⇔ λ = ẽi (μ).

The sublattice spanned by all restricted e-strict partitions equipped with the functions εi, ϕi

and the operators ẽi , f̃i , can be turned into a colored oriented graph which we denote by RPe .

Lemma 3.14. [19] With the above notations, the graph RPe can be identified with the crystal
graph B̌(Λ̌0) associated to the integrable highest weight ǧ-module of highest weight Λ̌0.

Applying Theorem 3.7 and Lemma 3.14, we get that

Theorem 3.15. With the above notations, there is a bijection η from the set DPRe of restricted
e-strict partitions onto the set {λ ∈K | M(λ) = λ}, such that if

∅ r1� · r2� · . . . · rs� λ̌

3 This is because any removable node γ of type (R2) has an adjacent neighborhood γ ′ in his right, which is another
removable node with the same residue. If γ could survive after deleting all the string “AR,” then γ ′ must also survive. In
that case, γ ′ is a normal node higher than γ . So γ cannot be a good node. For cogood node of type (A2), the reason is
similar.
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is a path from ∅ to λ̌ in the subgraph RPe, then the sequence

∅ r1� · 2�+1−r1� ·︸ ︷︷ ︸
Ñr1 terms

r2� · 2�+1−r2� ·︸ ︷︷ ︸
Ñr2 terms

. . . · rs� · 2�+1−rs� λ︸ ︷︷ ︸
Ñrs terms

:= η(λ̌),

where

rt� · 2�+1−rt� ·︸ ︷︷ ︸
Ñrt terms

:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
rt� · 2�+1−rt� ·, if rt ∈ {1,2, . . . , � − 1},
0
� ·, if rt = 0,
�+1
� · �

� · �
� · �+1

� , if rt = �,

defines a path in Kleshchev’s (2� + 1)-good lattice which connects ∅ and (2� + 1)-regular par-
tition λ satisfying M(λ) = λ.

Remark 3.16. In [4,5], Brundan and Kleshchev investigated the modular representations of
Hecke–Clifford superalgebras at defining parameter a primitive (2� + 1)th root of unity as well
as of affine Sergeev superalgebras over a field of characteristic 2� + 1. Their main result states
that the modular socle branching rules of these superalgebras provide a realization of the crystal
of the twisted affine Lie algebra of type A

(2)
2� . This applies, in particular, to the modular socle

branching rules of the spin symmetric group Ŝn, which is the double cover of the symmetric
group Sn. It would be interesting to know if there is any connection between their results and
ours, at least in the special case where q = 1 and 2� + 1 being a prime number.

Let Pn be the set of all partitions of n. Let P := ⊔
n�0 Pn. Recall that when Hk(Sn) is

semisimple, then Kn = Pn and M degenerates to the map λ 
→ λt for any λ ∈ Pn. Let DPn be the
set of all partitions into distinct parts (i.e., the set all 0-strict partitions). Let DP := ⊔

n�0 DPn.
Let SP be the set of all symmetric partitions, i.e., SP := {λ ∈ P | λ = λt }. We shall now establish
a bijection between the set DP and the set SP. Note that in the special case where q = 1 and
2� + 1 is a prime number, the set DPn parameterizes the ordinary irreducible supermodules
of the spin symmetric group Ŝn, while the set SPn := {λ ∈ Pn | λ = λt } parameterizes those
ordinary irreducible modules of the symmetric group which splits on restriction to the alternating
group An.

For each partition λ = (λ1, λ2, . . . , λs) ∈ DP with �(λ) = s, let λt = (λt
1, λ

t
2, . . . , λ

t
λ1

) be the
conjugate of λ, we define

η̃(λ) = (
λ1, λ2 + 1, λ3 + 2, . . . , λs + s − 1, λt

s+1, λ
t
s+2, . . . , λ

t
λ1

)
.

Theorem 3.17. With the above notations, the map η̃ defines a bijection from the set DP onto the
set SP.

Proof. Let λ ∈ DP. By definition, λ1 > λ2 > · · · > λs , it follows that

λ1 � λ2 + 1 � λ3 + 2 � · · · � λs + s − 1 � λt
s+1 � λt

s+2 � · · · � λt
λ1

.

That is, η̃(λ) ∈ P . We claim that (η̃(λ))t = η̃(λ).
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We use induction on �(λ). Suppose that (η̃(ν))t = η̃(ν) for any partition ν satisfying
�(ν) < �(λ). We write μ = (μ1, . . . ,μλ1) = η̃(λ). Then

μi =
{

λi + i − 1, for 1 � i � s,

λt
i , for s + 1 � i � λ1,

for i = 1,2, . . . , λ1.

By definition, μt
i = #{1 � j � λ1 | μj � i}. It is clear that μt

1 = λ1 = μ1. We remove away the
first row as well as the first column of μ. Then we get a partition μ̂. It is easy to see that

μ̂ = (
λ2, λ3 + 1, . . . , λs + s − 2, λt

s+1 − 1, λt
s+2 − 1, . . . , λt

λ2
− 1

) = η̃(λ̂),

where λ̂ := (λ2, λ3, . . . , λs).
Note that �(λ̂) < �(λ). By induction hypothesis, we know that (μ̂)t = μ̂. It follows that μt = μ

as well. This proves our claim.
Second, we claim that the map η̃ is injective. In fact, suppose that

η̃(λ) = (
λ1, λ2 + 1, λ3 + 2, . . . , λs + s − 1, λt

s+1, λ
t
s+2, . . . , λ

t
λ1

)
= (

μ1,μ2 + 1,μ3 + 2, . . . ,μs′ + s′ − 1,μt
s′+1,μ

t
s′+2, . . . ,μ

t
μ1

) = η̃(μ),

where λ,μ ∈ DP, �(λ) = s, �(μ) = s′, s � s′. Then

λ1 = �
(
η̃(λ)

) = �
(
η̃(μ)

) = μ1.

It follows that λi = μi for i = 1,2, . . . , s. If s < s′, then λt
s+1 = μs+1 + s � s + 1, which is

impossible. Therefore s = s′, and hence λ = μ. This proves the injectivity of η̃.
It remains to show that η̃ is surjective. Let μ ∈ P such that μt = μ. Let A = (r, s) be the

unique node on the boundary of [λ] which sits on the main diagonal of [λ]. We define

λ := (μ1,μ2 − 1,μ3 − 2, . . . ,μr − r + 1).

Then one sees easily that λ ∈ DP and η̃(λ) = μ. This proves that η̃ is surjective, hence completes
the proof of the whole theorem. �
Remark 3.18. We remark that if one consider the special case where q = 1 and 2�+ 1 is a prime
number, it would be interesting to know if the reduced decomposition matrices (in the sense of
[25, (6.2)]) of the spin symmetric groups are embedded as submatrices into the decomposition
matrices of the alternating groups in odd characteristic e via our bijections η and η̃.

Now we suppose that e = 2�. That is, we are in the even case. In this case, ǧ is the twisted
affine Lie algebra of type D

(2)
�+1. By [18, (14.5.4)], the principle specialized character of L(Λ̌0)

is given by

cht L(Λ̌0) =
∏

i�1, i odd

1

1 − t i
. (3.19)

Hence by (3.11) and (3.19), we get that
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Theorem 3.20. With the above notations, we have that

∏
i�1, i odd

1

1 − t i
=

∑
n�0

( ∑
0�m+m′�n

N(2n − m − m′,m,m′)
)

tn.

We propose the following definition.

Definition 3.21. Let f ∈ N with f > 1. An f -strict partition λ is called double restricted if{
λi − λi+1 � 2f, if f � λi ,

λi − λi+1 < 2f, if f | λi ,
for each i = 1,2, . . . .

Here we make the convention that λi = 0 for any i > �(λ).

Let DDPRf (n) denote the set of all double restricted f -strict partitions of n. Let DDPRf :=⊔
n�0 DDPRf (n).

In [19], Kang has given a combinatorial realization of B̌(Λ̌0) in terms of reduced proper
Young walls, which are inductively defined. In our D

(2)
�+1 case, we shall give a direct explicit

characterization in terms of double restricted (� + 1)-strict partitions as follows.
As before, elements of (r, s) ∈ Z>0 ×Z>0 are called nodes. Let λ be an (�+1)-strict partition.

We label the nodes of λ with residues, which are the elements of Z/(� + 1)Z. The residue of the
node A is denoted resA. The labeling depends only on the column and following the repeating
pattern

0̄, 1̄, . . . , � − 1, �̄, �̄, � − 1, . . . , 1̄, 0̄,

starting from the first column and going to the right. For example, let e = 4, � = 2, let λ =
(9,9,7,1) be a double restricted 3-strict partition of 26. Its residues are as follows:

0̄ 1̄ 2̄ 2̄ 1̄ 0̄ 0̄ 1̄ 2̄

0̄ 1̄ 2̄ 2̄ 1̄ 0̄ 0̄ 1̄ 2̄

0̄ 1̄ 2̄ 2̄ 1̄ 0̄ 0̄

0̄

Let λ be an (�+1)-strict partition. A node A = (r, s) ∈ [λ] is called removable (for λ) if either

(R1) λA := λ − {A} is again an (� + 1)-strict partition; or
(R2) the node B = (r, s + 1) immediately to the right of A belongs to λ, res(A) = res(B), and

both λB and λAB := λ − {A,B} are (� + 1)-strict partitions.

Similarly, a node B = (r, s) /∈ [λ] is called addable (for λ) if either

(A1) λB := λ ∪ {B} is again an (� + 1)-strict partition; or
(A2) the node A = (r, s − 1) immediately to the left of B does not belong to λ, res(A) = res(B),

and both λA := λ ∪ {A} and λAB := λ ∪ {A,B} are (� + 1)-strict partitions.
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Now we can define the notions of normal (respectively, conormal) nodes, good (respectively,
cogood) nodes, the functions εi, ϕi and the operators ẽi , f̃i in the same way as in the case where
e = 2� + 1. Note that the definition of residue in the even case is different with the odd case, and
in the even case we deal with (� + 1)-strict partitions instead of e-strict partitions.

Lemma 3.22. Let λ be any given double restricted (� + 1)-strict partition. Then:

(1) there exists good (removable) node as well as cogood (addable) node for λ;
(2) for any good (removable) node A for λ, λ − {A} is again a double restricted (� + 1)-strict

partition. In particular, there is a path (not necessary unique) from the empty partition ∅ to
λ in the lattice spanned by double restricted (� + 1)-strict partitions;

(3) for any cogood (addable) node A for λ, λ ∪ {A} is again a double restricted (� + 1)-strict
partition.

Proof. We write λ = (λ1, . . . , λs), where �(λ) = s. Let B = (s, λs). Then, as λ is double re-
stricted, either λs = 1 or λs > 1 and res(B) �= 0̄. In both cases, one sees easily that B must be a
normal res(B)-node (as there are no addable res(B)-nodes below B). It follows that there must
exist good (removable) res(B)-node for λ. In a similar way, one can show that B ′ = (1, λ1 + 1)

is a conormal res(B ′)-node, which implies that there must exist cogood (addable) res(B ′)-node
for λ. This proves (1).

Now let A = (a,λa) be a good (removable) node for [λ]. Then A is necessarily of type (R1).
If a = 1, then it is easy to check that λ−{A} is again double restricted (�+1)-strict. Suppose that
a > 1. We write res(A) = i. We claim that λa−1 −λa < 2(�+1). In fact, If λa−1 −λa = 2(�+1),
then either λa �≡ 0 (mod � + 1), or λa ≡ 0 (mod � + 1). In the former case, one sees easily
that (a − 1, λa−1) is a removable i-node of type (R1) next to (the right of) A and there is no
addable i-node sitting between them. Now as A survives after deleting all the string “AR,” the
node (a − 1, λa−1) must also survive after deleting all the string “AR.” In other words, it is
in fact a normal i-node of λ higher than A, which is impossible (since A is the unique good
i-node of λ); while in the latter case, it would follows that λa−1 ≡ 0 (mod � + 1), and hence
λa−1 −λa < 2(�+1) because λ is double restricted (�+1)-strict, which is again a contradiction.
This proves our claim. Now there are only five possibilities:

Case 1. i /∈ {0̄, �̄}.

Then either λa−1 �≡ 0 (mod � + 1) or λa−1 ≡ 0 (mod � + 1) and λa−1 − λa < 2� + 1. In both
cases, one checks easily that λ − {A} is again a double restricted (� + 1)-strict.

Case 2. i = �̄ and λa ≡ 0 (mod � + 1).

Since λa−1 − λa < 2(� + 1), it follows that λa−1 − (λa − 1) � 2(� + 1). Now λa ≡ 0
(mod � + 1) implies that either λa−1 �≡ 0 (mod � + 1) or λa−1 = λa + � + 1. In both cases one
sees easily that λ is double restricted (� + 1)-strict must imply that λ − {A} is double restricted
(� + 1)-strict too.

Case 3. i = �̄ and λa ≡ 1 (mod � + 1).
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We know that λa−1 −λa < 2(�+1). We claim that λa−1 −λa < 2�+1. In fact, if λa−1 −λa =
2� + 1, then (a − 1, λa−1) must be another normal �̄-node higher than A, which is impossible.
This proves our claim. Therefore, λa−1 − (λa − 1) � 2� + 1, which implies that λ − {A} is still
double restricted (� + 1)-strict.

Case 4. i = 0̄ and λa ≡ 0 (mod 2(� + 1)).

In this case one proves that λ − {A} is double restricted (� + 1)-strict by using the same
argument as in the proof of Case 2.

Case 5. i = 0̄ and λa ≡ 1 (mod 2(� + 1)).

In this case one proves that λ − {A} is double restricted (� + 1)-strict by using the same
argument as in the proof of Case 3.

This completes the proof of (2). The proof of (3) is similar and is left to the readers. �
Therefore, the lattice spanned by all double restricted (� + 1)-strict partitions equipped with

the functions εi, ϕi and the operators ẽi , f̃i , can be turned into a colored oriented graph which
we denote by R̃P�+1.

Lemma 3.23. The graph R̃P�+1 can be identified with the crystal graph B̌(Λ̌0) associated to
the integrable highest weight ǧ-module of highest weight Λ̌0.

Proof. This follows from Lemma 3.22 and Kang’s combinatorial construction of the proper
Young wall (see [12,19]). Note that our definition of removable and addable node are in accor-
dance with the definition given in [19, pp. 275, 278]. To translate the language of proper Young
walls into the language of double restricted strict partitions, one has to think the columns of the
Young walls in [19] as the rows of our double restricted strict partitions. �

Applying Theorem 3.7, we get that

Theorem 3.24. With the above notations, there is a bijection η from the set DDPR�+1 of double
restricted (� + 1)-strict partitions onto the set {λ ∈K | M(λ) = λ}, such that if

∅ r1� · r2� · . . . · rs� λ̌

is a path from ∅ to λ̌ in the graph R̃P�+1, then the sequence

∅ r1� · 2�−r1� ·︸ ︷︷ ︸
Nr1 terms

r2� · 2�−r2� ·︸ ︷︷ ︸
Nr2 terms

. . . · rs� · 2�−rs� λ︸ ︷︷ ︸
Nrs terms

:= η(λ̌),

where

rt� · 2�−rt� ·︸ ︷︷ ︸
N terms

:=
{

rt� · 2�−rt� ·, if rt ∈ {1,2, . . . , � − 1},
rt� ·, if rt ∈ {0, �},
rt
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defines a path in Kleshchev’s (2�)-good lattice which connects ∅ and (2�)-regular partition λ

satisfying M(λ) = λ.

Remark 3.25. In [25], Leclerc–Thibon conjectured that the decomposition matrices of Hecke–
Clifford superalgebras with parameter q should related to the Fock space representation of
the twisted affine Lie algebra of type A

(2)
2� if q is a primitive (2� + 1)th root of unity;

or of type D
(2)
�+1 if q is a primitive 2�th root of unity. In [4,5], Brundan and Kleshchev

show that the modular irreducible super-representations of Hecke–Clifford superalgebras at
defining parameter q a primitive (2� + 1)th root of unity as well as of affine Sergeev su-
peralgebras over a field of characteristic 2� + 1 are parameterized by the set of restricted
(2� + 1)-strict partitions, which partly verified the idea of [25]. It would be interesting to know
if our notion of double restricted (� + 1)-strict partitions give a natural parameterization of the
modular irreducible super-representations of Hecke–Clifford superalgebras when q is a primitive
(2�)th root of unity.
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