
Truly Concurrent Logic via In-Between

Specification

Harald Fecher1

Christian-Albrechts-University Kiel, Germany
hf@ informatik. uni-kiel. de

Abstract

In order to obtain a formalism for the specification of true concurrency in reactive systems, we
modify the µ-calculus such that properties that are valid during the execution of an action can be
expressed. The interpretation of this logic is based on transition systems that are used to model
the ST-semantics. We show that this logic and step equivalence have an incomparable expressive
power. Furthermore, we show that the logic characterizes the ST-bisimulation equivalence for finite
process algebra expressions that do not contain synchronization mechanisms.
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1 Introduction

Concurrency is a fundamental feature in reactive systems. There are two ways
of handling concurrency: via interleaving, where parallel executions are trans-
formed to nondeterministic sequential ones, or via true concurrency, where
the simultaneity of events is really observable. A typical indication of a truly
concurrent observation is that it can distinguish processes a.b + b.a from a‖b
(where a.b denotes the sequential execution of a and b, + denotes the choice
and ‖ the parallel operator). These two processes are not distinguishable in
an interleaving approach. Formalisms that allow true concurrency are, e.g.,
petri nets [23], event structures [26] and process algebras [12,15].

1 The work started when the author worked at the University of Mannheim, Germany.
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Modal logics are useful formalisms for specification. An example is the µ-
calculus [14], which is based on an interleaving approach, i.e., it cannot express
true concurrency. One possibility to obtain a truly concurrent logic is to use
a different action set in the µ-calculus, e.g., to allow multi-sets of actions,
which corresponds to step semantics [21]. But the step observation is not
always sufficient, e.g., it is not preserved by action refinement [7]. Moving to
more complex action sets, e.g., pomsets [22], makes the logical expression very
complex and unreadable, which is unacceptable for a specification language.

In order to investigate a comprehensible truly concurrent logic that can
be automatically checked, we extend the µ-calculus such that properties that
are valid during the execution of an action can be described. More precisely,
instead of using formulas 〈a〉ϕ1 we take formulas of the form 〈a − φ1〉φ2 with
the meaning that φ2 has to hold after the execution of action a (i.e., after the
start and the immediate termination of a) and φ1 has to hold immediately
after the start of a. This new logic, which is called in-between logic (IB-
logic for short), is interpreted over transition systems corresponding to the
ST-semantics. The IB-logic has the advantages that:

• It is a truly concurrent logic, e.g., 〈a − 〈b − true〉true〉true says that after
the start of action a another action b can be started, which is only possible
if a and b are concurrent.

• Its underlying semantical model is based on the well-understood transition
system paradigm.

• It is an intuitive and comprehensible extension of the well-understood µ-
calculus. In particular, the µ-calculus can be straightforwardly embedded
into the IB-logic, i.e., the IB-logic has more expressive power than the µ-
calculus.

• It can be embedded in the µ-calculus that uses an extended action set.
Hence, all the results and the tools existing for the µ-calculus can be used
for the IB-logic. In particular, validity of IB-formulas can be automatically
checked.

• It is easy to understand and is therefore less error-prone than for example
logic approaches that deal with an extended action set.

An interesting question is the expressive power of this logic. For exam-
ple is it more expressive than step observation? Or how it is related to the
ST-approach [8], which was investigated to obtain the coarsest equivalence
with respect to interleaving bisimulation equivalence that is preserved under
action refinement. In the ST-approach an action is no longer considered to
be atomic and is split into two uniquely related actions corresponding to its
start, respectively, its termination.
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In order to answer these questions, we present an equivalence notion, called
IB-bisimulation, and show that two processes are IB-equivalent iff they satisfy
the same set of IB-formulas. We show that the expressive power of the IB-
equivalence is incomparable to the step bisimulation. We also show that the
ST-bisimulation is strictly more expressive than the IB-equivalence. On the
other hand, we verify that the IB-formulas are expressive enough, indeed,
to characterize ST-equivalence for processes that are obtained from a finite
process algebra and that do not contain action synchronization.

The outline of the paper is as follows: Stack-based transition systems are
introduced in Section 2. A process algebra together with its ST-based seman-
tics in terms of stack-based transition systems is also presented there. Section
3 introduces the IB-logic together with the embedding with respect to the
µ-calculus. In Section 4, IB-bisimulation is introduced and its correspondence
to the ST-bisimulation is examined. Related work is discussed in Section 5
and a conclusion together with a discussion of future work is given in Section
6.

2 Adapted Transition Systems

In order to illustrate the usage of stack-based transition systems in the context
of semantics based on action splitting, we present a process algebra and give
it an ST-based operational semantics. Our processes algebra uses a parallel
operator similar to CSP [12].

2.1 The Syntax of the Process Algebra

Let Act be a set of actions. A relabelling function f is a function from Act
to Act. The set of all relabelling functions is denoted by FL. Furthermore,
we assume a fixed countable set of process variables VarP which is disjoint
from Act. The process algebra expressions EXP are defined by the following
BNF-grammar:

B ::= 0 | a.B | B + B | B‖AB | B[f ] | x,

where f ∈ FL, x ∈ VarP , a ∈ Act and A ⊆ Act. A process with respect to
EXP is a pair 〈decl, B〉 consisting of a declaration decl : VarP → EXP and an
expression B ∈ EXP. Let PA denote the set of all processes. We sometimes
call an expression B ∈ EXP also a process if the decl part is clear from the
context.

The expressions have the following intuitive meaning: 0 is the inactive
process, i.e., it cannot execute any action; a.B is the action prefix process,
which can execute a and evolves to B afterwards. In the following, we write a
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for the process a.0. Process B1 +B2 denotes the choice between the behaviors
described by B1 and B2. As usual, the choice is triggered when actions are
starting, which is contrary to [5], where the choice is triggered by the termina-
tion of actions. Process B1‖AB2 describes the parallel execution of B1 and B2

where both processes have to synchronize on actions from A. The relabelling
process B[f ] executes action f(a) if B executes action a. The behavior of x
is given by the declaration.

Remark 2.1 We only consider an action prefix operator instead of the more
general sequential operator B1; B2 in order to avoid the introduction of process
termination in our setting. This is done to increase readability.

2.2 Stack-Based Transition Systems

In the ST-semantics [8,7] an action is not considered to have an atomic ex-
ecution. More precisely, an action is split into two actions corresponding
to its start, respectively, its termination where additionally to the pure split-
semantics of [10] the termination of an action is uniquely connected to the start
of this action. There are different techniques of encoding the ST-semantics in
terms of transition systems. See [2] for an overview. We choose to use the
stack technique [2], since it has the following advantages:

• It produces finite transition systems for a wide class of processes. Hence, ST-
bisimulation equivalence is decidable for more processes. Moreover, tran-
sition systems obtained from a process algebra expression have less states
when the stack-based technique is used [2].

• It is compositional, i.e., the transition system of a process can be derived
from the transition system of its components. This has the advantage of
simplifying the derivation of an axiomatization [2].

• It yields an appropriate method to handle the operational semantics of the
action refinement operator, as illustrated in [9].

The intuitive idea behind the stack technique is the following, where an
active action denotes an action that has been started but has not terminated
yet: the start of an action a is denoted in the transition system labels by
a+ and the termination of an action a is denoted by a−

n , where the natural
number n indicates that exactly n− 1 many a-actions that were started after
the start of the a+ action corresponding to the a−

n action are still active.
In other words, if an a-action starts at execution position ts and terminates
with a−

n at execution position tf , then the number of the a-actions that were
started after position ts and that are not yet terminated before position tf
is exactly n − 1. An illustration that may help to understand this approach
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Fig. 1. Illustration of the Stack Technique

is given in Figure 1, where the stack-based transition system derived from
process a‖a is presented. Number n is called the relative active number of the
action corresponding to a−

n . In the following, N
+ denotes the set of all natural

numbers different from zero.

Definition 2.2 [Stack-Based Transition System] A stack-based transition sys-
tem over Act is a transition system with labels from L = (Act×{+})∪(Act×
N

+), i.e., a tuple (S,Act,−→) with

• S a non-empty set of states and

• −→⊆ S ×L× S a stack-based transition relation.

We write s
γ

−→ s′ rather than (s, γ, s′) ∈ −→. Furthermore, elements
of Act × {+} are denoted by a+ and elements of Act × N

+ are denoted by
a−

n . The class of all stack-based transition systems is too general for the
description of processes. Useful restrictions are presented informally in the
following definition.

Definition 2.3 A stack-based transition system is:

• atomic sensitive if the start of every action execution can be immediately
terminated,

• interrupt free if every active action can be immediately terminated,

• action termination deterministic if every state can have at most one tran-
sition for every termination action,

• termination disabling free if ’everything’ that can be executed before the
termination of an action is also possible afterwards, e.g., the termination of
an action cannot disable a choice, and
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• start enabling free if ’everything’ that can be executed after the start of
an action is also possible before, e.g., the start of an action cannot be a
causality of another one.

The atomic sensitive and action termination deterministic property usu-
ally hold for all processes. The termination disabling and the start enabling
freeness are satisfied usually by processes derived from process algebras. Inter-
rupt freeness is normally satisfied when no disrupt/interrupt operator exists
in the process algebras.

States that do not have active actions are denoted as non-active states.
More precisely, a state s is defined to be non-active if every state s′ that can
terminate an action and that is reachable from s by an execution sequence
implies that this action must be started during the execution sequences that
lead to s′.

How a transition system that has action labels instead of start and ter-
mination action labels can be derived from a stack-based transition system is
described as follows:

Definition 2.4 Let (S,Act,−→) be a stack-based transition system. Then
its un-splitting transition system is the transition system (S,Act, �−→) with

s
a

�−→ s′ iff there is s′′ such that s
a+

−→ s′′
a−

1−→ s′.

The ST-bisimulation equivalence is defined for stack-based transition sys-
tems as follows:

Definition 2.5 [ST-Bisimilarity] Let (S,Act,−→) be a stack-based transi-
tion system. An ST-bisimulation with respect to this stack-based transition
system is a symmetric relation R ⊆ S × S such that for all (s1, s

′
1) ∈ R and

γ ∈ L we have
∀s2 : s1

γ
−→ s2 ⇒ (∃s′2 : s′1

γ
−→ s′2 ∧ (s2, s

′
2) ∈ R).

Two elements s, s′ ∈ S are ST-bisimilar (or ST-equivalent), written as s ∼ST

s′, if there is an ST-bisimulation R such that (s, s′) ∈ R.

Remark 2.6 The Hennessy-Milner logic [11] and, therefore, also the µ-calculus
[14] can characterize bisimulation over labelled transition systems, in the sense
that two states are bisimilar iff they satisfy the same formulas. Therefore,
these logics can be used to characterize the ST-equivalence just by using
(Act × {+}) ∪ (Act × N

+) as their underlying action set. But then the for-
mulas become very difficult to read, since there are a lot of indices denoting
the relative active numbers and it is hard to see in a formula to which start
action a termination action corresponds. Furthermore, these logics do not
take into account that the natural appearing stack-based transition systems
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Fig. 2. Some Stack-Based Transition Systems

have special features (compare with Definition 2.3). Hence, these logics are
maybe unnecessarily too expressive.

2.3 The ST-Based Operational Semantics of the Process Algebra

The definition of the operational semantics is as in [2]. Here, we only present
examples showing how the operational semantics is derived from a process
algebra expression. The derived stack-based transition system of process
a‖a is given in Figure 1 (where the parallel operator must have the additional
information to which side the different relative active number corresponds).
The derived stack-based transition system of processes a‖b and a.b + b.a are
presented in Figure 2, where it is assumed that a and b are different action
names.

A stack-based transition system derived from an expression of EXP satisfies
all properties introduced in Definition 2.3. Furthermore, the transition system
derived from a process of EXP with pure action execution is the same as the un-
splitting transition system derived from the stack-based operational semantics
of this process (restricted to the reachable states). Moreover, a stack-based
transition system derived from an expression of EXP has finitely many states
iff its transition system obtained by pure action execution has finitely many
states.

2.4 Step Transition System

The step transition system is a transition system with finite multi-sets of
actions as its labels. Formally:

Definition 2.7 [Step Transition System] A step transition system over Act
is a transition system (S,Act, �) with labels from Lstep = {ω : Act → N |
∞ >

∑
a∈Act ω(a)}, and so � ⊆ S ×Lstep × S.

H. Fecher / Electronic Notes in Theoretical Computer Science 128 (2005) 215–230 221



Step-equivalence is similarly defined as ST-equivalence, except that step
instead of stack-based transition systems are used. A corresponding step tran-
sition system is derived from a stack-based transition system as follows:

Definition 2.8 Suppose (S,Act,−→) is a stack-based transition system. Then
its step transition system is the transition system (S,Act, �) with s

ω
� s′ iff

∀a ∈ Act : ω(a) > 0 ⇒ ∃s1, s2 : s
a+

−→ s1
ω[a�→(ω(a)−1)]

� s2
a1−→ s′, where

ω[a �→ (ω(a) − 1) is the function that is everywhere equal to ω except on a
where its value is reduced by 1.

The step transition system derived directly from a process of EXP is the
same as the step transition system derived from the stack-based operational
semantics of this process (restricted to the reachable states).

3 In-Between Logic

In this section, we present a modification of the µ-calculus [14] such that
properties that have to hold during the execution of an action can be described.

3.1 Syntax of the Logic

Let VarL be a set of logic variables. The IB-formulas are generated according
to the following grammar:

φ ::= false | true | X | 〈a − φ〉φ | [a − φ]φ | φ ∧ φ | φ ∨ φ | µX.φ | νX.φ,

where X ∈ VarL and a ∈ Act. The set of all formulas is denoted by F . A
formula is closed if every occurrences of variable X appears inside a formula
of form µX.φ or νX.φ.

The intuition of most of these formulas is the same as for the µ-calculus,
where, e.g., µX.φ denotes the least and νX.φ denotes the greatest fix-point
formula. The intuition of 〈a − φ1〉φ2 is that there is an execution of action
a such that φ2 has to hold after the complete execution of this a whereas φ1

has to hold after the start of this a. In particular, the formula states that
there is an action a that can be started and that can be immediately termi-
nated. Please note that φ2 only has to hold immediately after the termination
of a, i.e., there is no statement which has to hold after the termination of a
when further executions took place during the execution of a. The intuition
of [a − φ1]φ2 is that whenever an action a is started which can be terminated
immediately, then φ1 holds after the start of this a or φ2 holds immediately
after the termination of this a. This definition is on the first sight strange,
since one would expect a definition like ‘after every start φ1 has to hold and

H. Fecher / Electronic Notes in Theoretical Computer Science 128 (2005) 215–230222



immediately after every termination φ2 has to hold’. The presented interpre-
tation of the box formula is chosen, since the box formula yields the dual of
the diamond formula in our interpretation. The above described formula can
be described within our interpretation by ([a−φ1]false)∧ ([a−false]φ2). We
do not introduce a negation formula explicitly, since negation can be modelled
by a duality operator, which will be shown later.

3.2 Semantics of the Logic

Suppose T = (S,Act,−→) is a stack-based transition system. Then the se-
mantics [[ ]]T : F × (VarL → P(S)) → P(S) is defined as follows, where P(S)
denotes the power set of S.

[[false]]ςT = ∅ [[true]]ςT = S [[X]]ςT = ς(X)

[[〈a − φ1〉φ2]]
ς
T = {s ∈ S | ∃s′ ∈ [[φ1]]

ς
T , s′′ ∈ [[φ2]]

ς
T : s

a+

−→ s′
a−

1−→ s′′}

[[[a − φ1]φ2]]
ς
T = {s ∈ S | ∀s′, s′′ ∈ S : (s

a+

−→ s′ ∧ s′
a−

1−→ s′′) ⇒

(s′ ∈ [[φ1]]
ς
T ∨ s′′ ∈ [[φ2]]

ς
T )}

[[φ1 ∧ φ2]]
ς
T = [[φ1]]

ς
T ∩ [[φ2]]

ς
T [[φ1 ∨ φ2]]

ς
T = [[φ1]]

ς
T ∪ [[φ2]]

ς
T

[[µX.φ]]ςT =
⋂

{M ∈ P(S) | [[φ]]
�[X �→M ]
T ⊆ M}

[[νX.φ]]ςT =
⋃

{M ∈ P(S) | [[φ]]
�[X �→M ]
T ⊇ M},

where ς[X �→ M ] denotes the function that is everywhere equal to ς except on
X where it is equal to M . A state s ∈ S is a model of a closed IB-formula φ,
written as s |= φ, if s ∈ [[φ]]ςT for some ς. In the rest of the paper, (S,Act,−→)
denotes a stack-based transition system. Furthermore, we omit the index T
in [[ ]]T if it is clear from the context.

Example 3.1 Consider the IBL-formula φ = 〈a− 〈b− true〉true〉true. Then
the stack-based transition system on the left hand side of Figure 2 satisfies φ,
whereas the stack-based transition system on the right hand side of Figure 2
does not satisfy φ. In other words, a‖b and a.b + b.a can be distinguished by
an IB-formula. Thus the IBL logic can be considered as a truly concurrent
logic.

Example 3.2 The processes a‖b and (a‖b) + a.b, which are step-bisimilar,
are distinguished by the IB-formula 〈a − [b − false]false〉true.

Remark 3.3 The semantics of the diamond (and the box) operator can be

defined differently, e.g., take {s ∈ S | ∃s′ ∈ [[φ1]]
ς : s

a+

−→ s′ ∧ ∀s′′ ∈ S :

s′
a−

1−→ s′′ ⇒ s′′ ∈ [[φ2]]
ς} as the interpretation of 〈a − φ1〉φ2. Nevertheless,
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this definition is equivalent to the presented one if atomic sensitive and action
termination deterministic stack-based transition systems are considered.

In the following, we present the duality operator, which models negation.

Definition 3.4 The duality operator D : F → F is inductively defined as
follows:

D(false) = true D(true) = false D(X) = X

D(〈a − φ1〉φ2) = [a −D(φ1)]D(φ2) D([a − φ1]φ2) = 〈a −D(φ1)〉D(φ2)

D(φ1 ∧ φ2) = D(φ1) ∨ D(φ2) D(φ1 ∨ φ2) = D(φ1) ∧ D(φ2)

D(µX.φ) = νX.D(φ) D(νX.φ) = µX.D(φ)

Proposition 3.5 The duality operator corresponds to negation, i.e., for any
stack-based transition system T = (S,Act,−→) and for any IB-formula φ we

have S \ [[φ]]ςT = [[D(φ)]]
S\ς
T , where S \M = {s ∈ S | s /∈ M} and S \ ς denotes

the function with (S \ ς)(X) = S \ ς(X).

3.3 Correspondence to the µ-Calculus

We describe how the µ-calculus can be embedded in the IB-logic. The syntax
of the µ-calculus is similar to the IB-logic except that the first formulas in the
diamond and box expressions are omitted. The semantics function {[ ]}ς of the
µ-calculus is defined over a transition system (S,Act, �−→). Its interpretation
is similar to the IB-logic interpretation except that {[〈a〉ϕ]}ς = {s ∈ S | ∃s′ ∈
{[ϕ]}ς : s

a
�−→ s′} and {[[a]ϕ]}ς = {s ∈ S | ∀s′ ∈ S : (s

a
�−→ s′ ⇒ s′ ∈ [[ϕ]]ς)}. The

transformation that maps µ-calculus formulas to IB-logic formulas is given as
follows:

Ψ(false) = false Ψ(true) = true Ψ(X) = X

Ψ(〈a〉ϕ) = 〈a − true〉Ψ(ϕ) Ψ([a]ϕ) = [a − false]Ψ(ϕ)

Ψ(ϕ1 ∧ ϕ2) = Ψ(ϕ1) ∧ Ψ(ϕ2) Ψ(ϕ1 ∨ ϕ2) = Ψ(ϕ1) ∨ Ψ(ϕ2)

Ψ(µX.ϕ) = µX.Ψ(ϕ) Ψ(νX.ϕ) = νX.Ψ(ϕ)

Proposition 3.6 The µ-calculus is encoded in the IB-logic via Ψ. More pre-
cisely, for any stack-based transition system T = (S,Act,−→) and any µ-

calculus formula ϕ we have {[ϕ]}ς
eT

= [[Ψ(ϕ)]]ςT , where T̃ denotes the un-splitting
transition system of T .

Proposition 3.6 together with the fact that a‖b cannot be distinguished by
the µ-calculus illustrates that the IB-logic has more expressive power than the
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µ-calculus that has labels from Act. In the following, we present an embedding
transformation of the IB-logic into the µ-calculus that has labels from L:

Φ(false) = false Φ(true) = true Φ(X) = X

Φ(〈a − φ1〉φ2) = 〈a+〉(Φ(φ1) ∧ 〈a−
1 〉Φ(φ2)) Φ(φ1 ∧ φ2) = Φ(φ1) ∧ Φ(φ2)

Φ([a − φ1]φ2) = [a+](Φ(φ1) ∨ [a−
1 ]Φ(φ2)) Φ(φ1 ∨ φ2) = Φ(φ1) ∨ Φ(φ2)

Φ(µX.φ) = µX.Φ(φ) Φ(νX.φ) = νX.Φ(φ)

Proposition 3.7 The IB-logic is encoded in the µ-calculus with labels from
L via Φ. More precisely, for any stack-based transition system (S,Act,−→)
and any IB-formula φ we have [[φ]]ς(S,Act,−→) = {[Φ(φ)]}ς

(S,L,−→).

By Proposition 3.7, all existing results of the µ-calculus, such as decidabil-
ity of finite state systems, can be applied to the IB-logic. Furthermore, the
existing model-checking tools for the µ-calculus can be used for the IB-logic.
As already described in Remark 2.6, it is not in general useful to use the
µ-calculus that has labels from L as a specification language.

4 Characterization of the IB-Logic

4.1 IB-Bisimulation

In this subsection, we introduce a bisimulation approach that characterizes
the equivalence derived from the IB-logic.

Definition 4.1 [IB-Bisimilarity] Let (S,Act,−→) be a stack-based transition
system. An IB-bisimulation with respect to this stack-based transition system
is a symmetric relation R ⊆ S × S such that for all (s1, s

′
1) ∈ R and a ∈ Act

we have

∀s2, s3 : (s1
a+

−→ s2 ∧ s2
a−

1−→ s3) ⇒
(
∃s′2, s

′
3 : s′1

a+

−→ s′2 ∧ (s2, s
′
2) ∈ R ∧

s′2
a−

1−→ s′3 ∧ (s3, s
′
3) ∈ R)

)
.

Two elements s, s′ ∈ S are IB-bisimilar (or IB-equivalent), written as s ∼IB s′,
if there exists an IB-bisimulation R such that (s, s′) ∈ R.

Lemma 4.2 The IB-equivalence follows from the ST-equivalence, i.e., ∼ST

⊆ ∼IB.

Theorem 4.3 Suppose s, s′ ∈ S.

• If s ∼IB s′, then for every closed IB-formulas φ we have s |= φ ⇔ s′ |= φ.

• If for every closed IB-formulas φ we have (s |= φ ⇔ s′ |= φ) and (S,Act,−→
) is finitely branching, then s ∼IB s′.
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Corollary 4.4 Suppose (S,Act,−→) is a stack-based transition system and
s, s′ ∈ S are ST-bisimilar. Then for every closed IB-formula φ we have s |=
φ ⇔ s′ |= φ.

Proof. From Lemma 4.2 we obtain that s and s′ are IB-equivalent. The rest
is an immediate consequence of Theorem 4.3. �

The opposite direction of Corollary 4.4, i.e., “Do the IB-formulas char-
acterize the ST-equivalence?” does not hold, which is shown in the next
subsection. But in Section 4.3 we show that the opposite of Corollary 4.4
holds for a suitable subset of stack-based transition systems.

4.2 Step-Equivalence does not follow from IB-Equivalence

Obviously, the ST-equivalence does not follow from the IB-equivalence if gen-
eral stack-based transition systems are allowed. This results from the fact
that actions which are already active cannot be detected by the IB-semantics.
Consider, for example, the transition system ({s, s′},Act, {(s′, a−, s′)}), where
state s cannot execute any action and state s′ can only execute action a+ and
evolves to itself. Then states s and s′ are IB-equivalent but not ST-equivalent.

This is not problematic, since we are only interested in comparing states
in which no actions are active, i.e., in comparing non-active states. But also
for this case the characterization fails, since the IB-equivalence can only con-
sider the start of actions that can terminate immediately. Just modify the
previous counterexample by choosing action a+ instead of a−, i.e., consider
({s, s′},Act, {(s′, a+, s′)}). Then again s and s′ are IB-equivalent but not
ST-equivalent.

The characterization also fails for stack-based transition systems that are
atomic sensitive, since the IB-equivalence cannot detect disruption or inter-
ruption of active actions. Consider, e.g., the stack-based transition system
given in Figure 3, where, e.g., the already started action a+ is disrupted by
the start of action b. State s̃ of this transition system is IB-equivalent to the
transition system obtained from a‖b, which is shown in Figure 2. But they
are not ST-equivalent.

But what about states that corresponds to processes of our process alge-
bra, where the correspondent stack-based transition systems are, e.g., inter-
rupt free? Unfortunately, a characterization also fails in that case. More-
over, IB-equivalence does not imply step-equivalence, which is implied by ST-
equivalence. Consider the expressions

B̃1 =
((

(a.b.c + d.e)‖{c,d,e}(b.d.e + c)
)
‖{b}b

)
[d �→ a][e �→ c]

B̃2 =(a.(b + c)‖{c}b.(a.c + c))‖{a,b}(a‖∅b)
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Fig. 3. A Stack-Based Transition System with Disruption

Then B̃1 and B̃1 + B̃2 are IB-equivalent, which can be seen as follows:
The only non obvious case is how the execution from B̃2 can be matched.
Suppose B̃2 executes action a. Then the process

(a−.(b + c)‖{c}b.(a.c + c))‖{a,b}(a
−‖∅b)(1)

has to be matched after the start of a and the process

((b + c)‖{c}b.(a.c + c))‖{a,b}(0‖∅b)(2)

has to be matched after the termination of a. Since the IB-equivalence cannot
observe the expression behind an active action, (1) is IB-equivalent to

(0‖{c}b.(a.c + c))‖{a,b}(0‖∅b)

Furthermore, because of the synchronization mechanism (1) is IB-equivalent
to b and (2) is IB-equivalent to b.c + c. On the other hand, it is straight
forwardly seen that the start (and that the start and termination) of action a
in B̃1 also yield an expression that is IB-equivalent to b (respectively b.c + c).
Furthermore, the start of action b in B̃2 yields a process IB-equivalent to a
and after the termination of b it yields a process IB-equivalent to (a.c‖{c}(a.c+
c))‖{a}a, which is IB-equivalent to a + a.c. Moreover, the start and the start

and finishing of b in B̃1 yields a and respectively
(
(a + d.e)‖{c,d,e}d.e

)
[d �→

a][e �→ c], which is IB-equivalent to a + a.c. Hence B̃1 and B̃1 + B̃2 are
IB-equivalent.

On the other hand, B̃1 and B̃1+B̃2 are not step equivalent, which is argued
as follows: The execution of {a, b} in B̃1 yields 0. But the execution of {a, b}
in B̃1 yields a process step equivalent to c.

The possibility for synchronization of actions is essential in the above coun-
terexample. We can prove that the IB-equivalence and the ST-equivalence
coincide for finite process algebra expressions that do not contain synchro-
nization mechanism. This is done in the following subsection.
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4.3 IB Characterizes ST for a Finite Process Algebra without Synchroniza-
tion

The expressions EXP
fp of a finite process algebra without synchronization are

defined by the following BNF-grammar, where a ∈ Act:

P ::=0 | a.P | P + P | P‖P

The meaning of these expression is obtained by straightforward embedding
into the expression of EXP from Section 2.1, where ‖ is interpreted as ‖∅.
For this process algebra, we obtain that the IB-logic characterizes the ST-
equivalence:

Theorem 4.5 Let P, P ′ ∈ EXP
fp. Then P ∼ST P ′ iff P ∼IB P ′.

Corollary 4.6 Let P, P ′ ∈ EXP
fp. Then P ∼ST P ′ iff for every closed IB-

formula φ we have s |= φ ⇔ s′ |= φ.

5 Related Work

We are not aware of any truly concurrent logic that is based on the splitting
of actions. There are logics defined over partial orders taking causality and
concurrency into account. They do not distinguish between different inter-
leavings of the same partially ordered execution. This property can be used
to reduce state spaces by applying so-called partial order reductions [18]. The
TLC - Temporal Logic of Concurrency [1], which is interpreted over causal
structures, is such a logic. Other temporal logics exist, for which expressive
completeness for Mazurkiewicz’s traces has been shown; these are either local
logics, interpreted at the events of a trace [3,4,6], or global logics interpreted
at its cuts [24,25]. There are also approaches that interpret logics on event
structures, e.g., [16,20].

Another reason of introducing logics on partial orders is that these allow a
direct representation of properties involving causality and concurrency: Logics
that are interpreted on trace systems (or runs) are presented, e.g., in [13,17]
the logic ISTL is interpreted over partially ordered runs of global states. The
logic CTL is extended by a past operator, called CTLP, in [19], where it is
interpreted over global states of trace systems.

6 Conclusion and Future Work

We have presented an extension of the µ-calculus, called IB-logic, that can
specify some truly concurrent properties. Its semantics is based on stack-
based transition systems, which are used as a model of the ST-semantics.
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Tool support of the IB-logic is achieved by embedding the IB-logic into the
µ-calculus that uses a start/termination-action label set. We give a charac-
terization of the equivalence introduced by the IB-logic via IB-bisimulation.
We showed that the IB-logic characterizes the ST-bisimulation equivalence
for processes obtained form a finite process algebra without synchronization.
Furthermore, we showed that the IB-logic and step execution have an incom-
parable expressiveness.

Future work will be the investigation of a more detailed distinction of the
IB- from the ST-semantics, e.g., to clarify whether IB- and ST-bisimulation
coincide on general process algebra expressions without synchronization. It is
also of interest whether more efficient tools than the transformation into the
µ-calculus can be investigated for the IB-logic. And the most interesting work
will be to find a comprehensible logic that characterizes the ST-bisimulation
for general processes.
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