
Article
Dynamics of Nucleosome
 Positioning Maturation
following Genomic Replication
Graphical Abstract
Highlights
d Nucleosome positions are determined on newly replicated

DNA

d Transcription reorders nucleosomes in gene bodies after

DNA replication

d The HIR complex tightens nucleosome spacing in gene

bodies following replication

d Nucleosome positions on leading and lagging strands

depend on genes’ orientation
Vasseur et al., 2016, Cell Reports 16, 2651–2665
September 6, 2016 ª 2016 The Author(s).
http://dx.doi.org/10.1016/j.celrep.2016.07.083
Authors

Pauline Vasseur, Saphia Tonazzini,

Rahima Ziane, Alain Camasses,

Oliver J. Rando, Marta Radman-Livaja

Correspondence
marta.radman-livaja@igmm.cnrs.fr

In Brief

Vasseur et al. present a method for

mapping nucleosome positions on

nascent DNA shortly after the passage of

the replication fork in S. cerevisiae. They

show that transcription is involved in

reordering nucleosomes after DNA

replication.
Accession Numbers
GSE74090

GSE79384

mailto:marta.radman-livaja@igmm.cnrs.fr
http://dx.doi.org/10.1016/j.celrep.2016.07.083
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2016.07.083&domain=pdf


Cell Reports

Article
Dynamics of Nucleosome Positioning Maturation
following Genomic Replication
Pauline Vasseur,1,2 Saphia Tonazzini,1,2 Rahima Ziane,1,2 Alain Camasses,1,2 Oliver J. Rando,3

and Marta Radman-Livaja1,2,4,*
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SUMMARY

Chromatin is thought to carry epigenetic information
from one generation to the next, although it is unclear
how such information survives the disruptions of
nucleosomal architecture occurring during genomic
replication. Here, we measure a key aspect of chro-
matin structure dynamics during replication—how
rapidly nucleosome positions are established on
the newly replicated daughter genomes. By isolating
newly synthesizedDNAmarkedwith 5-ethynyl-20-de-
oxyuridine (EdU), we characterize nucleosome posi-
tions on both daughter genomes of S. cerevisiae
during chromatin maturation. We find that nucleo-
somes rapidly adopt their mid-log positions at highly
transcribed genes, which is consistent with a role for
transcription in positioning nucleosomes in vivo.
Additionally, experiments in hir1D mutants reveal a
role for HIR in nucleosome spacing. We also charac-
terized nucleosome positions on the leading and
lagging strands, uncovering differences in chromatin
maturation dynamics at hundreds of genes. Our data
define the maturation dynamics of newly replicated
chromatin and support a role for transcription in
sculpting the chromatin template.
INTRODUCTION

Chromatin is the complex of DNA and histone proteins that pack-

ages eukaryotic DNA into chromosomes. The nucleosome is the

repeating structural subunit of chromatin and consists of 147 bp

of DNA wrapped around a histone octamer core. Translational

positioning of nucleosomes along the DNA sequence influences

the accessibility of regulatory sequences to the transcriptional

machinery and can thereby regulate gene expression levels

(for review, see Hughes and Rando, 2014; Radman-Livaja and

Rando, 2010).

The average nucleosome-positioning profile over all yeast

genes consists of a nucleosome-depleted region (NDR) of
Cell Repo
This is an open access article under the CC BY-N
�150 bp, with well positioned�1 and +1 nucleosomes upstream

and downstream of the NDR, respectively. The transcription start

site (TSS) is located in the +1 nucleosome, there is a regularly

spaced nucleosomal array over the first kb of the gene body,

and nucleosome positions become fuzzier toward the middle

and end of the coding sequence (Brogaard et al., 2012; Tsankov

et al., 2010; Weiner et al., 2010; Vaillant et al., 2010). Because

NDRs are thought to facilitate transcriptional activation by

enabling accessof regulatory proteins to their binding sequences,

NDR formation or loss can lead to gene activation or silencing,

respectively. The distribution of nucleosomes along the genome

depends in part on the underlying DNA sequence, with promoter

regions enriched in poly A tracts mostly excluding nucleosomes

(Kaplan et al., 2009; Yuan et al., 2005). In addition to poly A tracts

that passively disfavor nucleosome assembly, NDRs can also be

formed through active nucleosome removal from promoter

regionsby remodelers, suchasRSC (Parnell et al., 2008), or nucle-

osome displacement by general transcription factors (TFs), such

as Abf1 and Rap1 (Yarragudi et al., 2004, 2007).

Whereas DNA sequence composition contributes to nucleo-

some occupancy in yeast, it is the action of chromatin remodel-

ers and the transcriptional machinery that establishes precise

nucleosome positioning over genes (Gkikopoulos et al., 2011;

Hughes et al., 2012; Lieleg et al., 2015; Pointner et al., 2012;

Weiner et al., 2010). Indeed, in vitro assembly of nucleosomes

onto purified yeast genomic DNA results only in nucleosome

depletion over poly A tracts but little evidence for nucleosome

positioning, whereas addition of yeast extract to such reconstitu-

tions yields a more-accurate recapitulation of nucleosome posi-

tioning patterns observed in vivo (Zhang et al., 2011). Purified

ATP-dependent remodelers, such as CHD1 and SWI/SNF fam-

ily members, can generate NDRs at promoters and regularly

spaced nucleosomal arrays over gene bodies similar to those

seen in vivo, even in the absence of transcription (Lieleg et al.,

2015). However, such in vitro nucleosome reconstitutions do

not perfectly match nucleosome positions observed in vivo

(Hughes et al., 2012). In vivo, the process of transcription plays

a key role in nucleosome positioning, due both to the direct

effects of RNA polymerase on nucleosomes and to the effects

of remodelers that are recruited to target genes during transcrip-

tional activation or elongation (Bintu et al., 2011; Radman-Livaja

et al., 2011; Studitsky et al., 1997; Weiner et al., 2010).
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Contrary to the steady-state landscape of nucleosome posi-

tioning, chromatin structure dynamics over the cell cycle, during

which chromosomes are subject to dramatic perturbations

caused by replication and mitosis, are not well characterized.

DNA replication initiates the disassembly of maternal nucleo-

somes ahead of the replication fork and their reassembly in its

wake on one or the other daughter chromatid (Alabert and Groth,

2012). As nucleosomes can influence transcription, depending

on their precise locations, replication provides an opportunity

for the cell either to re-establish the same nucleosome-posi-

tioning profiles or to rearrange the nucleosomal landscape and

thereby maintain or change its gene expression program,

respectively. The process of nucleosome re-positioning after

the disruption caused by replication is not well understood. Spe-

cifically, it is not known how and where nucleosomes re-position

themselves on newly replicated DNA and how long it takes them

to reconstitute the canonical mid-log positioning pattern. This is

related to the questions of when transcription resumes after the

disruption caused by DNA replication, whether both new gene

copies are transcribed, and whether transcription re-activa-

tion is a cause or a consequence of nucleosome positioning

maturation.

In order to address these questions, we have developed a

method for genome-wide mapping of nucleosome positions on

recently replicated DNA in budding yeast: nascent chromatin

avidin pull-down (NChAP). In this method, we isolate newly

synthesized DNA at varying times after a pulse of the nucleotide

analog 5-ethynyl-20-deoxyuridine (EdU), which, along with

micrococcal nuclease (MNase) digestion, allows us to follow

genome-wide nucleosome-positioning dynamics after the pas-

sage of the replication fork on both leading and lagging DNA

copies. We find that nucleosomes assume their mid-log posi-

tions with varying rates at different genomic loci. Because we

find that highly transcribed genes exhibit a rapid return to their

canonical chromatin architecture, we hypothesized that tran-

scription participates in the regular phasing of nucleosomes in

the gene body minutes after the passage of the fork. Consistent

with this, treatment with the RNA polymerase inhibitor thiolutin

interferedwith chromatinmaturation over coding regions. Exper-

iments in deletion mutants reveal a role for CHD1 and ISW1a in

nucleosome phasing relative to the TSS and a role for HIR in

determining the linker length between nucleosomes. In contrast

to transcription-dependent maturation of gene body chromatin,

aspects of promoter packaging, such as the NDR midpoint and

the position of the +1 nucleosome, appear to be determined

earlier, possibly in the absence of transcription elongation.

Together, our data illuminate the genomic landscape of chro-

matin maturation following replication, and our methodology

enables future genetic interrogation of the mechanisms respon-

sible for chromatin maturation.

RESULTS

A Method for Mapping Nucleosome Positions on
Recently Replicated DNA
In order to map the positions of nucleosomes on recently repli-

cated DNA, we developed NChAP, which combines EdU label-

ing of nascent DNA (Sirbu et al., 2011; Wirges et al., 2007) with
2652 Cell Reports 16, 2651–2665, September 6, 2016
MNase digestion of chromatin. EdU is a thymidine analog that

is incorporated during the synthesis of new DNA, and MNase

is an endonuclease that preferentially cleaves DNA in the linker

regions between nucleosomes. Figure 1A outlines NChAP steps

for an experiment in a synchronized culture. Cells are arrested in

G1 with a factor and released into S phase in the presence of

EdU. Aliquots are taken at regular intervals following release

into S phase, and cells are fixed with formaldehyde. Fixed cells

are then treated with MNase, and nucleosome-protected DNA

is isolated after cross-link reversal. EdU from purified �150-bp

fragments is conjugated to biotin azide in a click reaction, and

biotinylated DNA fragments are isolated using streptavidin-

coatedmagnetic beads. Illumina paired end sequencing libraries

are prepared (adapted from Borodina et al., 2011) from the

nascent DNA attached to beads. In order to differentiate be-

tween the lagging and the leading strand copies, the EdU-con-

taining nascent strand is separated from its template using

primer extension from one end of the adaptor-ligated fragment

(Figure 1A). Consequently, sequencing reads that map to the

Watson strand ‘‘upstream’’ of efficient replication origins will

originate from the lagging strand copy, whereas the complemen-

tary Crick reads will be from the leading copy. The opposite is

true for reads located downstream of efficient origins.

Several controls validate the ability of NChAP to identify newly

replicated DNA in relatively unperturbed cells. First, flow cytom-

etry profiling of DNA content shows that S phase progression is

not impaired in the presence of EdU (Figure S1A). Second, we

tested the ability of our protocol to specifically capture the single

EdU-bearing strand of DNA, using in-vitro-generated fragments

that have incorporated EdU in only one strand (Figure S2). EdU

was incorporated into one strand of a PCR fragment. This frag-

ment was then subjected to the same procedure that we used

to generate NChAP libraries as outlined in Figures 1A, S2A,

and S2B. Following streptavidin pull-down of these test libraries,

qPCR with strand-specific primers showed that the fraction of

fragments with the EdU-containing strand in the expected orien-

tation was 70%–85%. Finally, we also generated DNA fragments

in which only one strand has incorporated EdU in vivo, taking

advantage of the 50–30 resection and gap-filling steps that occur

during the repair of a double-strand break at the MATalpha1 lo-

cus (reviewed in Haber, 2012), which we induced in the presence

of EdU (Figure S2C). Here, we observe a �10-fold enrichment

of the EdU-containing strand in the expected orientation. Over-

all, our tests show that our strand-specific library construction

protocol can efficiently isolate the nascent DNA strand and

thus differentiate between leading and lagging strand copies of

the genome.

We next applied NChAP to cells released from G1 arrest into

S phase for varying lengths of time. The results are shown in

Figure 1B. NChAP data at early time points reveal strong peaks

surrounding known origins of replication (autonomously repli-

cating sequence [ARS]; Nieduszynski et al., 2007; Yabuki et al.,

2002), validating the ability of our protocol to specifically map

nucleosomes assembled on newly synthesized DNA. The enrich-

ment of NChAP data (blue peaks) around origins is not due to

MNase bias toward replicated regions, because read density

distributions from MNase-digested input fractions (before bio-

tinylation and streptavidin pull-down) exhibit the relatively even



Figure 1. Nascent Chromatin Avidin Pull-Down

(A) Diagram of nascent chromatin avidin pull-down (NChAP). For synchronized cells, after arrest in G1, cells are released into fresh media in the presence of EdU

and aliquots are fixed at regular time intervals. In asynchronous populations, cells are pulsed with EdU, followed by a thymidine (T) chase. Chromatin is digested

with MNase, and the isolated DNA fragments are subject to a click reaction that adds biotin to the incorporated EdU. Biotinylated DNA is purified with strep-

tavidin-conjugated magnetic beads, and NGS libraries are constructed on DNA fragments attached to the beads. cDNA strands are separated with primer

extension in the presence of dUTP. The dUTP-containing strand is then digested with USER enzymes prior to PCR. This ensures that only nascent strands are

sequenced.

(B) Density distribution of DNA content measured by flow cytometry before arrest (mid-log) in G1 and at indicated times after release from G1 arrest (left panel).

Nascent chromatin Watson (W) strand read distribution on chromosome 2 at indicated times after release (blue bars) and total chromatin input are shown (total

MNase-digested chromatin isolated prior to the click reaction; 32.5-, 40-, and 55-min time points, pink bars). Replication origins (ARS) are shown in the two

bottom rows: ARS from this study (first) and previously documented ARS (second) are shown. Read counts were grouped in 400-bp bins and first normalized to

the genome average read count and then to the highest peak value in each chromosome.
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Figure 2. Transcription Influences Nucleosome Positioning Maturation Rates

(A) Heatmap of Pearson correlations between nucleosome profiles from nascent chromatin (5- and 20-min EdU pulse) or total chromatin input (5-min EdU pulse)

and total chromatin from log phase cells (mid-log standard) for every yeast gene (rows) at indicated time points after the thymidine chase (columns). 0.5 was

subtracted from the actual correlation to obtain higher contrast. Correlation values were corrected for variability in total sequencing read numbers between time

points (Supplemental Experimental Procedures).Correlation profiles were sorted by maturation index (increasing average correlation over the time course) in the

20-min EdU pulse. Mid-log RNA Pol2 occupancy is shown as a 50-gene moving window average (middle graph) and as an average for each correlation quintile

(right bar graph). Only Watson strand reads analysis is shown (Crick reads analysis is comparable). The plot below the heatmap shows the evolution of median

correlations for each time point over time, indicating that nascent chromatin from both datasets (5- and 20-min EdU pulse) mature at similar rates whereas total

chromatin does not change.

(B) Scatterplot of maturation indices for the 20-min EdU versus the 5-min EdU pulse datasets. All genes (6,226): red. Genes within a deviation of 0.25 or 0.1 from

the regression line (y = 0.85x): green (82% of all genes) and blue (41% of all genes), respectively. Gene maturation indices from these two datasets are overall

correlated. Variance from the regression line for individual genes likely reflects experimental technical variability, to which the Pearson correlation metric is

sensitive. As shown in the corresponding correlation heatmaps on the right, the correlation between maturation indices and RNA Pol2 occupancy is preserved in

robustly correlated genes from the two time courses.

(legend continued on next page)

2654 Cell Reports 16, 2651–2665, September 6, 2016



occupancy expected of the nucleosome landscape in yeast (pink

peaks). Average nucleosome profiles from the nascent chro-

matin fraction resemble classic average nucleosome profiles,

indicating that EdU incorporation does not interfere with MNase

digestion or nucleosome assembly (Figure S3A). Together, these

data validate the ability of NChAP to accurately identify nucleo-

some-protected regions of recently replicated DNA in a strand-

specific manner.

Pulse-Chase Strategy to Characterize Chromatin
Maturation Dynamics
During cell-cycle arrest and release, asynchrony among individ-

ual cells in the timing of G1 release and entry into S phase results

in heterogeneity in the location of the replication fork in any given

cell, meaning that, even for early firing regions of the genome,

NChAP will capture DNA that has been replicated from �1 to

asmany as�20min prior. Consequently, in order to characterize

the dynamics of chromatin maturation following replication, we

carried out NChAP across a time course in which asynchronous

yeast was subject to a brief pulse of EdU followed by a thymidine

chase for varying lengths of time. An asynchronous population

by definition contains cells at all stages of the cell cycle, including

�15%–40% of cells that are in S phase and which, as a popula-

tion, will have replication forks located at every location along the

genome. As a result, a relatively short pulse of EdU will label

short stretches of replicating DNA covering the entire genome

over the whole cell population. The thymidine chase stops

further incorporation of EdU, and subsequent fixation at regular

time intervals provides snapshots of simultaneous nucleosome

positioning changes shortly after replication in all replicating

cells.

In order to capture times as close as possible to the moment

immediately after the passage of the replication fork, we sought

to identify the minimal duration of the EdU pulse that provided

appreciable incorporation into replicated DNA. We used flow

cytometry profiling of cells labeled with fluorescein (FAM)-conju-

gated EdU to monitor the kinetics of EdU incorporation in asyn-

chronous cells (Figure S4). EdU labeling is detectable within

15 min of its addition to the culture (Figure S4A), and the majority

of replicating cells have incorporated EdU after�25–30min (Fig-

ure S4). EdU incorporation could be delayed and slowed by

growing yeast at suboptimal temperatures to extend the length

of the cell cycle (Figure S4B). At 30�C, an initial lag phase of

�15min is followed by a gradual increase in the numbers of cells

that have incorporated EdU, as well as an increase in EdU-FAM

fluorescence intensity per cell as genome replication progresses

and more EdU is incorporated in each S phase cell (Figure S4C).

A slower increase in the average cellular EdU-FAM intensity over
(C) Average nucleosome profiles from the 20-min EdU pulse dataset at indicat

standard (pink), for the slow- and fast-maturing first and fifth quintiles (1,245 gen

(D) The change in the average peak/trough ratio (diagram on top) for nucleosomes

from (C) (top) and (E) (bottom).

(E) As in (C), but for the 5-min EdU pulse dataset. Nascent and total input chromati

faster stabilization of the average peak/trough ratio compared to the 20-min EdU

population. In the 5-min EdU pulse experiment, we are detecting a subpopulat

consequently, our time course somewhat counterintuitively detects chromatin m

20-min EdU pulse experiment, in which most cells have incorporated EdU much
time at 25�C and 37�C compared to 30�C is consistent with

slower or stalled replication forks, delayed S phase entry, and/

or slower EdU uptake and processing (Figure S4C). Because

the fraction of EdU-positive cells in the asynchronous cell popu-

lation increases gradually and cells need to be incubated with

EdU for 25, 40, or 50 min (if grown at 30�C, 37�C, or 25�C,
respectively) before all cells that were in S phase at the moment

of EdU addition become EdU positive (Figure S4B), we conclude

that the rates of EdU import and processing can vary widely

among different cells in the population, possibly due to variable

expression of the EdU transporter (hENT1) and thymidine kinase

(TK) that were introduced into our yeast strain. All subsequent

experiments were performed at 30�C.
To assess whether we could effectively halt EdU incorpora-

tion using an excess of cold thymidine, we pulsed asynchro-

nous yeast with EdU for 20 or 5 min and then assayed

EdU-FAM at varying times after thymidine addition (Figure S5).

Both the levels of EdU-FAM across the population and the frac-

tion of EdU-FAM-positive cells stay constant up to 25 min after

the thymidine chase (Figures S5B and S5C), and then as cells

enter a new round of replication, the fraction of EdU-positive

cells decreases, as expected for a successful thymidine chase.

Moreover, the average EdU-FAM intensity per cell remains low

throughout the chase, consistent with EdU being incorpo-

rated into only a small fraction of the genome, as intended

(Figure S5E).

Nucleosome Positioning Maturation Indices Correlate
with Global RNAPol2 Occupancy
We carried out two separate pulse-chase time course experi-

ments: one with a 20-min and another with a 5-min EdU pulse

(Figure S5).

We calculated the Pearson correlation between the nucleo-

some-positioning profile for each gene in the yeast genome

(from 500 bp upstream of the TSS to the stop codon; Xu et al.,

2009) in our NChAP data and the corresponding profile from a

mid-log total chromatin standard (Weiner et al., 2010) for each

time point (Figure 2A; Table S1). For each gene, we define its

‘‘maturation index’’ as the average correlation over the time

course between the nucleosome profiles from nascent chro-

matin and the total chromatin standard, with individual genes ex-

hibiting a wide range of maturation indices (Figures S3B and

S3C). Importantly, data for total chromatin consistently exhibit

higher correlations to the standard than do nascent chromatin

data (Figure 2A; plot below the heatmap), demonstrating that

the wide range of maturation indices in nascent chromatin is

not an artifact of variability in MNase digestion across the time

course. Progressive changes in nucleosome positioning on
ed time points after thymidine incubation: nascent chromatin (blue); mid-log

es each), respectively (as defined in A).

+2 to +7 in the average nascent and total chromatin profiles of the two quintiles

n fractions are shown in the top and bottom panels, respectively. The seemingly

pulse experiment is likely due to heterogeneous EdU incorporation rates in the

ion of cells that incorporates EdU very rapidly after addition (Figure S5), and

aturation events that are taking place later after EdU incorporation than in the

later after addition.
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Figure 3. Transcription Inhibition Impairs Chromatin Maturation

(A) Heatmap of Pearson correlations between nucleosome profiles of the mid-log standard (as in Figure 2) and nascent chromatin or total chromatin input (5-min

EdU pulse) from thiolutin-treated and untreated cells (lines) at indicated time points after EdU addition (columns). 0.5 was subtracted from actual correlations for

higher contrast. Correlation profiles were sorted by increasing maturation index from the 20-min EdU pulse experiment as in Figure 2. Only Watson reads are

shown.

(B) Evolution of median correlations over time. Maturation indices are on average 35% lower in thiolutin-treated cells.

(C) Change in average peak/trough ratios for nucleosomes +2 to +7 in the fifth and first quintiles from Figure 2.

(D) Scatterplot of maturation indices for the 20-min EdU versus the 5-min EdU pulse in thiolutin-treated (red) or untreated (blue) cells. Plots are shown for all genes

from nascent chromatin (top left), robustly measured genes from nascent chromatin (top right), and total chromatin input (bottom right). The difference between

maturation indices of �thiolutin and +thiolutin cells is at least +0.1 in 73% of genes (top left) or 70% of genes (top right) represented on the plots. There is no

difference in maturation indices in total chromatin between thiolutin-treated and untreated cells, suggesting that transcription-governed chromatin maturation is

specific for newly replicated chromatin (bottom right).

(legend continued on next page)
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nascent DNA are also evident from whole-genome pairwise cor-

relation analysis (Figure S6A; Table S2).

What distinguishes genes that rapidly adopt their mature chro-

matin state following replication? Sorting genes according to

their maturation index from the 20-min EdU pulse experiment,

we find that genes that have the highest maturation index are

also generally highly transcribed during active growth in rich me-

dium (Kim et al., 2010). This trend is shown via a 50-gene running

window average of RNA Pol2 occupancy and is even more

evident when genes are divided into quintiles (1,245 genes

each) of maturation indices: the average RNA Pol2 occupancy

in the highest quintile (5) is �10-fold higher than in the lowest

quintile (1; Figure 2A, top middle and right panels). This suggests

that the process of transcription plays a role in re-establishing

nucleosome positions over genes after chromatin disruptions

caused by DNA replication. Box plot and pairwise t test analysis

of correlations to the standard for quintiles 1 and 5 from two bio-

logical replicates of the 20-min EdU pulse experiment show that

the two quintiles are significantly different in all time points from

both replicates (p value of t test% 0.05) and that most of the vari-

ability between replicates comes from early time points in the

first quintile (Figures S6B and S6C). Although data from the

5-min EdU time course differ quantitatively from data from

the 20-min EdU time course (Figure 2B), in both datasets,

nascent chromatin increasingly matches the mid-log standard

as the time course progresses (Figures 2A, bottom, and S7),

and this trend is also replicated in the second 20-min EdU pulse

experiment (Figure S7). Moreover, the correlation of maturation

indices in each quintile (defined above) with average RNA Pol2

occupancy is also preserved in both time courses when focusing

on robustly measured genes (Figure 2B).

To examine the process of chromatin maturationmore closely,

wecompared theaverage TSS-alignednucleosomeprofiles from

nascent chromatin to the same profiles obtained from mid-log

yeast, averaging data according to quintiles of genes grouped

bymaturation index. Visual inspection of these averaged profiles

reveals that nucleosomes becomebetter defined over the first kb

of the gene body over time (Figures 2C–2E). This improvement in

nucleosomephasing can be quantitated using ameasure of peak

to trough for nucleosomes—a lowpeak-to-trough ratio can either

be due to a low average nucleosome occupancy at that position

across the cell population or fuzzy positioning (nucleosomes are

not placed at the same distance from the TSS in all genes and in

all cells). The average peak-to-trough ratios for nucleosomes +2

to +7 on nascent chromatin after a 20-min EdU pulse reach a

plateau between the 4- and 8-min timepoints for rapidlymaturing

(fifth quintile) genes, whereas, in the first quintile, the ratios are

stabilized only �10 min later (Figure 2D, top). Similar rates of

average peak/trough increase were confirmed in a second bio-

logical replicate of the 20-min EdU pulse experiment (Figure S8).

A quadratic fit to the curves from Figure 2D (top) reveals that

genes in the first and fifth quintiles reach their half-maximal

peak/trough 20 and 7 min after the chase, respectively. Consis-
(E) Maturation indices of highly transcribed genes are more affected by thiolu

between maturation indices in non-treated and thiolutin-treated cells (red; D

pol2 occupancy; blue). Only genes with log2(RNA pol2) % �1 (poorly transcrib

analysis.
tent results were obtained using the data from the 5-min EdU

pulse (Figure 2E), albeit with somewhat more-rapid apparent

rates of nucleosome phasing over gene bodies (Figures 2D, bot-

tom, and 2E). As the genes that exhibit comparatively rapid

phasing of nucleosomes over gene bodies (the fifth quintile) are

relatively highly transcribed, we propose that the regular phasing

of nucleosomes downstream of the TSS is a consequence of

transcription elongation.

In contrast to the relatively slow chromatin maturation

observed over gene bodies, the +1 nucleosome and the

midpoint of the NDR are already in place at the beginning of

our time course for the majority of genes (Figures 2C and 2E).

This is consistently observed for both the 20-min and 5-min

EdU experiments. Thus, the positions of the +1 nucleosome

and the NDR are determined early after the passage of the repli-

cation fork. Indeed, promoter chromatin architecture is estab-

lished so rapidly that it is impossible to pinpoint its exact kinetics

using our assay, as even for the 5-min EdU pulse time course,

there is a 10-min window between EdU addition and the first

recorded time point, during which time EdU is incorporated

into DNA at different moments in different cells (Figure S4).

Nucleosome Phasing over Coding Regions Is
Transcription Dependent
To directly test the involvement of transcription in nucleosome

positioning maturation, we treated cells with the RNA polymer-

ase inhibitor thiolutin in a parallel experiment with the 5-min

EdU pulse time course shown in Figure 2 (Figure S9). Chromatin

maturation is greatly impaired upon treatment with the inhibitor

(Figures 3, S6, and S7), thus providing experimental support to

our hypothesis that transcription elongation is involved in the

reordering of nucleosomes on nascent DNA. Importantly, thiolu-

tin specifically affects nascent chromatin maturation, as total

chromatin fractions from thiolutin-treated and untreated cells

are nearly indistinguishable (Figures 3, S6, and S7). Note that

thiolutin has been added after the EdU pulse to avoid negative

effects of the inhibitor on replication and EdU incorporation. As

expected, the average peak/trough ratios in thiolutin-treated

cells are lower than in non-treated cells. We can still detect

slow nucleosome phasing maturation, with peak/trough ratios

increasing at a similar rate in the first and fifth quintiles, even in

the absence of transcription (Figure 3C), suggesting that there

is also a transcription-independent mechanism responsible for

nucleosome reorganization. Still, we cannot exclude the possi-

bility that some residual transcription occurs in thiolutin-treated

cells and accounts for the observed slow chromatin maturation.

In any case, we conclude that transcription plays a central role in

establishing chromatin architecture over gene bodies.

HIR Is Involved in Nucleosome Spacing Readjustment
after Replication
In order to better understand the mechanisms involved in

nucleosome positioning maturation, we repeated the 5-min
tin. The plot shows the 25-gene moving window average of the difference

correlation((�thiolutin) � (+thiolutin))) for 551 genes ordered by log2 (RNA

ed genes) or log2(RNApol2) R 1 (highly transcribed genes) were used in the
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Figure 4. Nucleosome Positioning Maturation in Chromatin Remodeler Mutants

(A) Average TSS-aligned nucleosome profiles for all yeast genes in WT and mutant backgrounds (blue lines) from nascent (top row) and total chromatin (bottom).

Profiles for the earliest and latest time point after the 5-min EdU pulse and 5-min thymidine chase (marked in green) are shown for nascent profiles. The last time

point from the corresponding total chromatin input fraction is shown for replicate 1 of WT and replicates 1 and 2 of hir1D cells. The total chromatin profiles for

chd1D and ioc3D are from asynchronous log phase cultures without EdU. The WT mid-log standard profile (pink) is the same as in Figure 2. The WT replicate 1

profiles are from the 5-min EdU pulse dataset from Figures 2 and 3. WT replicate 2 is a repeat of the 5-min EdU pulse experiment.

(B) Average peak/trough ratios (for nucleosomes +2 to +7; left) and average linker length (values in the center of the bar; between nucleosomes +1 and +2, +2

and +3, and +3 and +4; right). The error bars represent the SDbetween time points in the EdU pulse-chase experiment: hir1D replicate 1 nascent (0, 2, 4, 6, 15, and

25 min); hir1D replicate 2 nascent (0, 2, 4, 6, 8, 15, and 25 min); hir1D replicate 1 total (0, 8, 15, and 25 min); hir1D replicate 2 total (2, 6, 8, and 25 min); ioc3D

nascent (0, 2, 4, 6, 8, 15, and 25min); chd1D replicates 1 and 2 nascent (0, 2, 4, 6, 8, 15, and 25min);WT replicate 1 nascent and total (4, 8, 12, and 16min); andWT

replicate 2 nascent (0, 2, 4, 6, 8, 15, and 25 min).
EdU pulse-chase experiment in mutants with deletions of hir1,

chd1, or ioc3 (Isw1a; Figure 4A). CHD1 and ISW1a are both

ATP-dependent chromatin remodelers that associate with the

gene body during transcription and are involved in nucleosome

array organization over coding sequences (Gkikopoulos et al.,

2011; Radman-Livaja et al., 2012; Smolle et al., 2012). Hir1 is a
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subunit of the HIR nucleosome assembly complex, which partic-

ipates in histone turnover and replication-independent nucleo-

some assembly (Green et al., 2005; Lopes da Rosa et al.,

2011; Ray-Gallet et al., 2002). Nucleosome phasing is globally

reduced in all three mutants (although to a somewhat lesser

extent in hir1D) compared to wild-type (WT) profiles (Figure 4B,



left). The level of disorganization of nucleosomal arrays in gene

bodies is comparable between nascent and total chromatin pro-

files, suggesting that perturbations caused by DNA replication

persist after S phase in the absence of these chromatin remod-

elers. More striking, however, is the difference in linker lengths

between nascent and total chromatin profiles (Figure 4B, right).

Nucleosomes appear to be less densely packed shortly after

replication, with an average linker length of �20 bp compared

to 13 bp in total chromatin in WT, chd1D, and ioc3D cells alike.

In hir1D cells, total and nascent chromatin have the same

�20-bp linker length, suggesting that HIR activity tightens

the spacing between nucleosomes after replication, consistent

with a recent report on hir1D effects on nucleosome positioning

in nascent chromatin (Fennessy and Owen-Hughes, 2016).

Differential Nucleosome Positioning on Leading and
Lagging Strand Copies Is Linked to Genic Orientation
As detailed above, the strand separation step in our library-

generation protocol enables us to distinguish between nucleo-

some-positioning profiles on the leading and lagging daughter

chromatids. The leading or lagging copy annotation is assigned

according to the position of a gene relative to its closest replica-

tion origin and whether its reads map to the Watson or the Crick

strand—Watson reads upstream and downstream of an origin

will be lagging and leading copies, respectively. The converse

applies to Crick reads. However, due to varying efficiencies of

yeast origins (every origin is not activated in every S phase cell;

Yang et al., 2010), leading and lagging annotations can only be

unambiguously assigned to genes located near efficient origins

of replication, leaving us with a set of 1,064 genes (Figures

S10A and S10B; Experimental Procedures).

Nucleosome profiles of lagging and leading copies of each

gene in this set and from every time point were compared to

the corresponding profiles from the final (22 min) time point in

the 20-min EdU pulse-chase experiment (Figure 2). The resulting

correlation profiles were ordered according to the average differ-

ence (for all three experiments) inmaturation indices between the

lagging and the leading strand copies of each gene (Figure 5A;

Table S3). We could detect comparable differences in nucleo-

some positioning maturation on leading and lagging copies in

the three datasets at 433 genes out 1,064, with �200 genes

showing significant differences between leading and lagging

copies (Figures 5B and S11), suggesting that nucleosome re-

positioning can occur independently on the two daughter chro-

matids. There is no global effect of leading or lagging strand repli-

cation on nucleosome re-positioning becausematuration indices

are higher on the leading or the lagging copy in equal proportions.

Lagging and leading profiles from total chromatin also show

asymmetry in their correlations, albeit to a lesser extent than

the nascent profiles (Figures 5A and 5E). This is not due toMNase

sequence bias toward theWatson or the Crick strands of individ-

ual genes, asall geneswerecompared to thecorrespondingWat-

son or Crick profiles from the 22-min time point standard. It is

more likely that the asymmetryweobserve in total chromatin pro-

files comes from the substantial fraction of Sphase cells, which in

this experiment represents�40%of the population (Figure S9B).

What features unite those genes subject to asymmetric matu-

ration processes? The relatively slower-maturing copies in the
top and bottom quartile of the heatmap in Figure 5A are enriched

for genes in which the newly synthesized strand also serves as

the template for transcription (Figure 5C). This observation is

consistent with at least two hypotheses: (1) EdU incorporation

on the template strand potentially interferes with RNA Pol2 initi-

ation or elongation, thus delaying transcription-coupled chro-

matin maturation (Figures S10C and S10D) or (2) asymmetric

recruitment of chromatin remodeling enzymes and/or TFs to

one copy, resulting in the preferential transcription of that gene

copy. For example, asymmetric transcription following replica-

tion could result from transcription preferentially occurring on

the leading strand copy when the newly synthesized copy of a

gene’s promoter and the replication fork are oriented in the

same direction, potentially as a result of the underassembly of

chromatin on the lagging strand immediately behind the fork.

Several observations suggest that asymmetric chromatin

maturation results from differential expression of the two gene

copies after replication. First, differences between maturation

indices of the leading and lagging copies are substantially

reduced in the presence of thiolutin, suggesting that differences

in chromatin maturation dynamics on the two copies of a gene

may be due to differences in transcription rates of the two

copies, i.e., when neither gene copy is transcribed, chromatin

maturation is equally slow on either copy (Figures 5D and S11).

Second, to test whether EdU interferes with transcription when

it is incorporated in the template strand, we compared steady-

state mRNA levels in mid and late S phase of EdU-treated and

untreated synchronized cells using gene expression microarrays

in two independent biological replicates (Figure 6). Consistent

with recent studies (Voichek et al., 2016), we find that RNA levels

of 95%of cell-cycle-independent genes do not change frommid

to late S phase, which could be a consequence of either a 2-fold

decrease in transcription rates on both copies or the expression

of only one gene copy. For this group of genes, EdU also had no

effect on RNA levels (Figures 6A and 6B), arguing against the

hypothesis that asymmetric chromatin maturation is an artifact

of EdU effects on transcription. Moreover, although a small

group of 343 genes (whose expression was not buffered after

S phase) exhibited EdU-dependent inhibition of transcription

(Figures 6B and 6C), these genes are not enriched for genes

that show differences in chromatin maturation between the lead-

ing and the lagging gene copies. The non-buffered gene set is

enriched for ribosomal genes and genes involved in translation

(Figure 6D).

We propose that, for the majority of genes, RNA production is

buffered after genome replication by the suppression of tran-

scription in one of the two copies (probably the one with the

nascent strand as the transcription template), which we detect

as a difference in transcription-dependent chromatin maturation

between the two gene copies (Figure 5). Future studies will focus

on the mechanisms that regulate gene expression levels in the

genome after replication, which should clarify whether the two

gene copies are differentially transcribed following replication.

DISCUSSION

Chromatin features change throughout the cell cycle, with the

biggest perturbations occurring during DNA replication and
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Figure 5. Nucleosome Positioning Maturation Is Impaired if the Nascent Strand Is the Transcription Template Strand

(A) Heatmap of Pearson correlations between nascent or total chromatin profiles and the 22-min time point of the 20-min EdU pulse experiment (Figure 2) for the

lagging and leading strand copies of 433 genes replicated from efficient origins. Genes (lines) and time points (columns) are shown. 0.5 was subtracted from the

correlations as in Figures 2 and 3. Correlation profiles were sorted by the increasing average difference between the nascent chromatin maturation indices

(Dcorrelation) of the lagging and the leading copies from three experiments—one 5-min EdU and two 20-min EdU pulse experiments. 433 genes out of the 1,064

genes replicated from efficient origins have consistent Dcorrelations in all three experiments. In other words, the lagging copy has a bigger or smaller maturation

index than the leading copy, respectively, in all experiments. Note that lagging and leading copy profiles are composed of a mixture of Watson and Crick strand

profiles, depending on the relative position of the gene with respect to its closest efficient origin.

(B) Ten-genes moving window average of Dcorrelations from the 20-min and the 5-min EdU pulse experiments ordered as in (A).

(C) log2 of enrichment (compared to the whole gene set in the heatmap) for genes in which the lagging nascent strand is also the transcription template for each

Dcorrelation quartile. p values from the hypergeometric distribution test are shown on the left. Quartiles 1 and 4 are significantly enriched for genes in which the

nascent strand is the transcription template or is transcribed, respectively.

(D) Distribution of Dcorrelations from (A) (lagging index� leading index) from different datasets for quartiles 1 and 2 (left; 216 genes) and 3 and 4 (right; 217 genes)

of the 433 gene set defined in (A). The difference in nascent chromatin maturation between the lagging and the leading gene copies is reduced upon thiolutin

addition, i.e., theDcorrelation distribution is shifted to the right or left in the left or right panels, respectively. This is consistent with the hypothesis that transcription

elongation is higher on the copy with the higher maturation index, and when transcription is inhibited with thiolutin, the differences in chromatinmaturation indices

on the two copies are eliminated.

(E) Ten-genes moving window average of Dcorrelations from the 5-min EdU pulse experiment without thiolutin, total chromatin input (orange), and nascent

chromatin (purple), ordered as in (A) and (B).
mitosis. Histone proteins on the maternal genome are removed

from the DNA ahead of the replication fork and are recycled on

one or the other daughter chromatid, with newly synthesized

histones restoring a full complement of nucleosomes to both

daughter genomes. Here, we describe a method for following

nucleosome positioning dynamics on newly replicated DNA,
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which we call NChAP. NChAP allows us to isolate nascent chro-

matin and follow in parallel changes in nucleosome positioning

on the leading and lagging strand chromatids shortly after the

passage of the replication fork. Whereas other studies have

concentrated on proteomic analysis of bulk nascent chromatin

(Alabert et al., 2014, 2015; Sirbu et al., 2011), we provide a



(legend on next page)
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genome-wide locus-specific timeline of nucleosome footprint

changes after replication.

An earlier study, which mapped Okazaki fragments, reported

an enrichment of Okazaki fragment ends at the positions of

nucleosome dyad axes (Smith andWhitehouse, 2012). However,

it is not clear whether nucleosome assembly on the lagging

strand precedes Okazaki fragment ligation, as proposed. Given

that we find that nucleosomematuration is not significantly faster

on leading or lagging strand genomes (Figure 5), we conclude

that any lagging strand-specific nucleosome deposition pro-

cessesmust occur rapidly relative to the�10-min time resolution

achieved here and that the nucleosome positioning maturation

process described here takes place after Okazaki fragment

maturation.

We propose that gene expression programs are maintained

from one cell generation to the next by the formation of NDRs

on daughter chromatids very early after the passage of the repli-

cation fork (Figure 7A). Due to the heterogeneous rates of EdU

import in the population, we can only conclude that promoter

maturation happens within 10 min after replication fork passage,

and this process most likely occurs independently of transcrip-

tional elongation, because transcription-dependent nucleosome

phasing is detected later on in our time course.

The precise mechanism of NDR formation is probably locus

specific. It may involve a DNA sequence that ‘‘repels’’ nucleo-

somes (such as poly A tracts) and consequently favors the (re)

binding of TFs, chromatin remodelers, and other components

of the transcription machinery that were probably present at

the locus before replication. Or an initially bound nucleosome

may be evicted through the action of a chromatin remodeler re-

cruited to the site by a sequence-specific TF, or the bound TF it-

self may prevent nucleosome binding. These TFs/remodelers

presumably then help establish the positions of the +1 and �1

nucleosomes. A similar model was recently proposed for

promoter architecture re-establishment after replication in

Drosophila cells (Ramachandran and Henikoff, 2016).

In regions without nucleosome-repelling sequences or without

sequences for available TFs, nucleosomes are deposited at reg-

ular intervals shortly after the passage of the replication fork. At

this stage, nucleosomes are slightly delocalized (i.e., not exactly

in the same position), both on the two nascent copies within the
Figure 6. Effect of EdU on Steady-State mRNA Levels

(A) Heatmap of a gene expression two-channel microarray. Each line represents

(40 min) S phase versus genomic DNA isolated from G1-arrested cells from two b

are grouped by cell-cycle expression and ordered by replication timing. Note th

on, respectively, in late S phase, whereas S and M/G1 genes are on and off, respe

Cell-cycle-independent genes were also ordered by the normalized average (from

late (40 min) and mid (32 min) S phase time points from cells not treated with EdU

difference for all cell-cycle-independent genes from the difference for each gene

(B) Fifty (top left) and ten (bottom right) genes moving window averages of the av

(green) or non-treated (red) cells, all cell-cycle-independent genes (top); genes w

higher (non-buffered genes) in non-treated cells (343 genes; bottom). Genes are

(C) Distribution of average log2 (RNA/DNA) late S (40 min) � log2 (RNA/DNA) mi

Figure 5 that showed differences in chromatin maturation between the leading and

and yellow for EdU-treated and non-treated cells, respectively, and genes with l

buffered genes) are shown in dark blue and orange for EdU-treated and non-treat

in genes that ‘‘escape’’ buffering and are probably transcribed from both copies

(D) GO annotations analysis for 343 non-buffered genes (FuncAssociate 2.1b).
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same cell and in different cells in the population, resulting in

average nucleosome profiles with low peak-to-trough ratios.

Nucleosomes become better phased after transcription re-

sumes. Remodelers that accompany the elongating RNA Pol2

(CHD1 or ISW1a) reorder nucleosomes in its wake and position

them at more-regular intervals. Consequently, nucleosomes on

genes with higher RNA Pol2 occupancy will be better phased

over the whole population. Concomitantly, HIR reduces the

spacing between nucleosomes from on average 20 bp (found

in nascent chromatin) to 13 bp (measured in total chromatin).

We nevertheless found a significant number of genes with low

RNA Pol2 occupancy and high maturation indices, which, as

suggested by our results with thiolutin-treated cells, is probably

due to a transcription-independent chromatin maturation pro-

cess. This could be a consequence of the action of transcrip-

tion-independent chromatin remodelers, although it is not clear

why these remodelers only act on a subset of poorly transcribed

genes. It is also possible that, in the absence of transcription, nu-

cleosomes are reorganized passively through statistical posi-

tioning within discrete domains located between boundaries

akin to chromosomal interaction domains (CIDs) recently

observed in yeast (Hsieh et al., 2015). Alternatively, a transient

burst of transcription right after replication could also be respon-

sible for high maturation indices on these genes. A detailed anal-

ysis of RNA Pol2 occupancy kinetics on nascent DNA will be

necessary to distinguish between these possibilities.

Because the nascent strand in the slower-maturing copy

tends to be the transcription template strand, observed differ-

ences in maturation rates between leading and lagging gene

copies could be a consequence of gene expression buffering.

Whereas RNA Pol2 progression may be impaired when it en-

counters EdU in the template strand, transcription of both copies

of the gene after replication in the absence of EdU is only seen at

343 mostly highly transcribed genes (note that these are not the

same genes that exhibit copy-specific maturation behaviors).

The reason there is no detectable EdU effect on steady-state

RNA levels inmost genes could be a consequence of recently re-

ported buffering effects of H3K56 acetylation by Rtt109 (Voichek

et al., 2016) that potentially operate via the preferential expres-

sion of only one gene copy after replication. We propose that

the suppressed copy would generally be the one with the
average log2 ratios (two probes per gene) of mRNA from mid (32 min) and late

iological replicates with two dye flip technical replicates each. All yeast genes

at, as expected for S phase cells, G1 and mitotic genes are turning off and

ctively. Cell-cycle expression annotations were taken from the SGD database.

four microarrays shown on the left) difference in mRNA enrichment between

(right panel). The average differences were normalized by subtracting the mean

.

erage difference in mRNA levels between mid and late S phase in EdU-treated

ith an average RNA level difference between late and mid S phase of 0.5 and

ordered by replication timing (black line).

d S (32 min) of all 5,072 cell-cycle-independent genes (left) and of genes from

the lagging gene copies (right). All genes from each set are shown in light blue

og2 (RNA/DNA) late S (40 min) � log2 (RNA/DNA) mid S (32 min) R 0.5 (non-

ed cells, respectively. EdU interference with transcription can only be detected

like the �343 genes from (C).



Figure 7. Models of Chromatin Maturation and Asymmetric TF

Distribution

(A) Model for a timeline of nucleosome positioning maturation in the wake of

the replication fork. Replication forks from two different cells are shown: cell 1

(black) and cell 2 (blue).

(B and C)Models for asymmetric distribution of TFs. (B) It is less likely that RNA

pol2 ahead of the fork (red triangle) and the replication fork (blue triangle) will

collide when replication and transcription travel in the same direction. As the

fork travels unhindered, Okazaki fragment ligation lags behind the fork, and

TFs (star) bound to the promoter (magenta rectangle) ahead of the fork are

more likely to rebind to the leading copy after replication of the promoter
nascent strand as the transcription template strand. Conse-

quently, differences in maturation rates between the two gene

copies might be caused by asymmetric H3K56 acetylation and

recruitment of chromatin-remodeling enzymes and/or TFs to

one of the copies, which would cause differences in transcription

rates and nucleosome positioning maturation rates. Interest-

ingly, when the lagging nascent strand is the transcription tem-

plate, the replication fork and RNA polymerase advance in the

same direction. Conversely, replication and transcription travel

in opposite directions when the transcription template strand is

the leading nascent strand. It is therefore possible that TFs

bound to promoters ahead of the fork rebind preferentially to

the leading or lagging copy after replication as a consequence

of the differential rates of Okazaki fragment ligation and fork

speed. As illustrated in Figure 7B, it is less likely that RNA Pol2

(on the yet un-replicated promoter) and the replication fork will

collide when replication and transcription travel in the same di-

rection. As the fork travels unhindered, Okazaki fragment ligation

may lag behind the fork and TFs bound to the promoter ahead of

the fork are more likely to rebind to the leading copy, thus favor-

ing transcription and consequently chromatin maturation of the

leading copy as observed. On the other hand, when the two

travel in opposite directions, a head-on collision of the fork and

RNA Pol2 that is ahead of the fork is more likely. The fork then

possibly stalls and slows down, and Okazaki fragment ligation

now happens almost simultaneously with synthesis, which al-

lows TFs to bind to the leading or lagging copy of the promoter.

It is, however, difficult to imagine why there would be a bias to-

ward the lagging copy as our results predict. Future studies will

test whether only one gene copy is transcribed after replication

and consequently find out which copy is suppressed.

Taken together, our data demonstrate that chromatin archi-

tecture is rapidly established after genomic replication. Future

studies should further illuminate the mechanisms responsible

for rapid establishment of nucleosome positions and could

potentially identify subtle consequences of slow maturation on

genome function.

EXPERIMENTAL PROCEDURES

Detailed protocols are available in the Supplemental Experimental

Procedures.

Yeast Strains

All experiments (except those in Figure S2C) were done with the strain PV1

(MATa ade2-1 trp1-1 can1-1000 leu2-3,112 his3-11,15 GAL psi+ RAD5+

ura3::URA3/GPD-TK(7x) AUR1c::ADH-hENT1 Dbar1::KanR).

The experiment in Figure S2C was done with the CvY61HO strain (MATa

ade2-1 his3-11,15 trp1-1 leu2-3,112 can1-100 Dbar1::hisG TRP1::BrdU–Inc

[BrdU = HSV-TK +hENT1] pJH132 [Gal::HO URA3]).

Mutant strains from Figure 4 are as follows:

hir1D: strain AC5 (MATa ade2-1 his3-11,15 leu2-3,112 ura3-1 TRP+ can1-

100 GAL psi+ RAD5+ URA3::GDP-TK(7x) AUR1c::ADH-hENT1 Dhir1::Nat

Dbar1::kanR);
sequence. (C) A head-on collision of the fork and RNA pol2 traveling toward

each other may cause fork stalling or slowing down, and Okazaki fragment

ligation can happen almost simultaneously with synthesis, which allows TFs to

bind to either the leading or lagging copy of the promoter.
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chd1D: strain RZ12 (MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1

can1-100 GAL psi+ RAD5+ URA3::GDP-TK(7x) AUR1c::ADH-hENT1

Dchd1::LEU2); and

ioc3D: strain RZ15 (MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1

can1-100 GAL psi+ RAD5+ URA3::GDP-TK(7x) AUR1c::ADH-hENT1

Dioc3::KanR).

Yeast Culture

For the synchronization experiment in Figure 1, cells were arrested in G1with a

factor and then transferred into preheated media containing 10 mM EdU and

pronase. Aliquots were taken and fixed with 1% formaldehyde right before

release and then at regular intervals after release starting at 25 min frommedia

change. In the EdU-thymidine pulse-chase experiments, exponentially

growing cells were transferred to media with 10 mM EdU preheated at 30�C.
Thymidine was added after 5 or 20 min and incubated for another 5 or

10 min. Cells were then pelleted and transferred into fresh media with thymi-

dine (and thiolutin when indicated), and aliquots were taken at indicated

time points and fixed as above.

MNase Digestion

Cells from frozen pellets were spheroplasted by bead beating in the Bullet

Blender (Next Advance). Spheroplasts were treated with MNase, which was

adjusted to the cell density in each tube in order to obtain 80%–90%mononu-

cleosomal-sized fragments after 20 min at 37�C. After cross-link reversal, DNA
was extracted with phenol- chloroform-iso amyl alcohol (PCI), and 150-bp

mono-nucleosomal sized fragments were subsequently purified from 2%

agarose gels.

Biotin Conjugation to EdU with the Click Reaction

Purified 150-bp fragments were mixed with biotin azide in a CuBr solution.

After a 2-hr incubation at 37�C, DNA was precipitated with sodium acetate

and ethanol.

Deep-Sequencing Library Construction

Biotinylated DNA was incubated with streptavidin-coated magnetic beads

(blocked with salmon sperm DNA). All the subsequent steps were done with

DNA attached to the beads. DNA fragments were blunt ended and phosphor-

ylated. Adenosine overhangs were added with exo-Klenow. Following ligation

with Illumina Genome sequencing adaptors with in-line barcodes, DNA was

subjected to primer (Illumina PE primer 2.0) extension with 2’deoxyuridine

50-triphosphate (dUTP) to separate the nascent strand from its complement.

After degradation of the dUTP-containing strand with USER enzyme, the

nascent DNA strand was PCR amplified. Libraries were gel purified and mixed

in equimolar amounts. Paired-end sequencing was done on a HiSeq 2000

(Illumina; CNAG) or on a Next Seq sequencer (Illumina) in O.J.R.’s laboratory.

Flow Cytometry Profiling

Cells were fixed with 70% EtOH. 2.5 million cells were used for fluorescent la-

beling of incorporated EdU with click chemistry. Another 2.5 million cells were

stained with Sytox Green for monitoring DNA content. Measurements were

made with FACSCalibur (BD Biosciences; FL-1 filter; forward scattered light

[FCS] size cutoff: 70).

Gene Expression Microarray Hybridization

PV1 cells were arrested in G1 as above. Genomic DNA was isolated from

G1-arrested flash-frozen cell pellets and sonicated with the Bioruptor Pico

cup sonicator. Cells were released into S phase in media with or without

10 mMEdU, as above. Fifty-milliliter aliquots were flash frozen in liquid nitrogen

32 and 40 min after release for RNA isolation.

Total RNA was isolated from frozen PV1 cell pellets with Trizol and treated

with DNase I. RNA was reverse transcribed using oligodT as primers. The re-

sulting cDNA was dye coupled with Cy5 or Cy3 N-hydroxysuccinimide (NHS)

esters and purified as described previously (Liu et al., 2005).

The Cy5- or Cy3-labeled cDNA was mixed with Cy3- or Cy5-labeled

genomic DNA, respectively, and hybridized to Agilent 8x15K yeast gene

expression arrays. Images were scanned with the InnoScan 710 MicroArray

scanner (Innopsys) and processedwith theMapix software. Data were normal-
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ized by dividing the Cy5/Cy3 ratio for each probe with the average Cy5/Cy3 ra-

tio for the whole array.

Data Analysis

Sequences were aligned to the S. cerevisiae genome using BLAST-like align-

ment tool (BLAT). We kept reads that had at least one uniquely aligned 100%

match in the paired-end pair. Read count distributionwas normalized to one by

dividing each base pair count with the genome-wide average base-pair count.

Forward and reverse reads were treated separately.

Genes that are replicated from efficient origins were filtered as follows: (1)

efficient origins were defined as origins whose read density peak heights

wereR 0.6 at the 25-min time point in the experiment from Figure 1. Read den-

sities were normalized to the maximum peak height per chromosome. (2)

Genes that were within the boundaries of the read density area around efficient

origins at the 25-min time point were considered as being replicated from that

particular origin in most cells.

Analysis was done using in-house Perl and R scripts (available upon

request).

Statistical Analysis

The analysis in Figures S6, S7, and S11 was performed using Perl (Statis-

tics::Ttest) and R scripts as detailed in the Supplemental Experimental Pro-

cedures and Figures S6, S7, and S11.

ACCESSION NUMBERS

The accession numbers for the sequencing and gene expression microarray

data are GEO: GSE74090 and GSE79384, respectively.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

eleven figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2016.07.083.
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