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Abstract-The method of matched ssymptotic expansions is applied to a problem which is of 
importance in the modelling of high-pressure gas-discharge arcs. In the solution domain, three dif- 
ferent regions are distinguished, in each of which an asymptotic solution can be given. These match 
smoothly in two regions of common validity. The results are used in a companion paper [l]. 

1. INTRODUCTION 

In [2] we studied the solution of the problem defined by 

(1) 

with 

Q=O, g=O at Z=O, (2) 

in the limit E 1 0. The parameter ‘1 is assumed to be larger than unity. This problem arose from 
the study of the temperature distribution in a high-pressure gas-discharge arc. A more detailed 
description of the background of the model and its motivation can be found in [l]. The analysis 
of [2] aimed at clarifying the structure of the solution of (1) and (2) for E 1 0 which, as was shown 
there, is characterized by three layers. A singular perturbation technique was used to elucidate 
this structure. However, in that paper, we restricted ourselves to presenting the leading-order 
terms only. The purpose of this note is to go one step further and show how one can derive more 
and more accurate solutions. Since small values of E are not at all uncommon in research into 
arcs, a more accurate solution may be of practical importance. In fact, the results of this paper 
are utilized in [l]. CI 

2. REGION I 

As was shown in [2], the first region, which includes the boundary point 2 = 0, is characterized 
by small values of Q. Introducing Q = EP and expanding, we find 

1 d dP -_ 
Z dZ ’ dZ 

--(l)-l)P=l+e $1 - v2)P2 - VP} + O(2), 

which can be solved by the series expansion P = PO + &PI + ... . Clearly, PO, PI, etc., must 
satisfy (2). The solution for PO was obtained in [2]: 

p. = lo{ Z(v - 1)‘/2 ) - 1 
V-1 ’ 
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where IO is a modified Bessel function. We are interested in the behaviour of P for 2 -+ 00, since 
that is where the expansion of Region I breaks down, thus defining its outer boundary. We can 
show that the asymptotic behaviour of PI for Z + co is determined by a term on the right-hand 
side which is proportional to Pi. Using Eq: 9.7.1. of [3], we find 

Q 
- = P N (7 - 1)--l eX(2nX)4 
& { 

1+ ix-1 + &x-2 +0(X-3) > + 0 ($)! (5) 

when 

Inverting (5), we have 

x = Z(rI - 1)4 + 00. (6) 

X- L+flog(L)+c+log(Q)+0(Q)+~~+{~log(Q)+~c-;+O(Q)}; 

---+ 

+ f+... , 

where 

c = f log(2n) + log(rI - 1) (3) 

and 

L =log i 
0 

> I. 

Eq. (7) applies in the region where Q is still much smaller than unity, but with Q/E >> 1. The 
terms O(Q) result from the last term on the right of Eq. (5). 

3. REGION II 

Interchanging the roles of Q and X as dependent and independent variables, respectively, we 
find after a single integration and an application of one of the boundary conditions: 

1 f2(Q) 
2(x’)z=-- 

Q dq 
11-l J 0 WdWq) ’ (9) 

where a prime stands for differentiation with respect to Q. The term of O(e), which appears on 
the right-hand side of (l), can be disregarded in Region II, since its contribution is asymptotically 
equal to zero in comparison with the terms included in the expansion. Furthermore, 

f(Q) = { I- e-0 - ’ - ;-“}* . 
Eq. (9) will be used in Region II which adjoins Region I. In Region II we have X = 0 (log(l/E)). 
Therefore, the integral appearing in (9) is small in comparison with the first term on the right 
of (9). Thus we may expand this equation as follows: 

(11) 
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In view of (7) we shall try to solve this equation with 

15 

1 l%W x=L+;log(L)+Co(Q)+~~ 

+cl(Q&~ l 1og2(L) +Ca(Q)7 +c3$+ *** * log(L) 
(12) 

The solution for Cc has already been given in [2]: 

b= (;)'Q +a+jy { (5>” - (#(*)-l}d*, 
where 

# = c - (q/2)4 + lW {(#(Y-)-i - (4)‘) dc 

J 
1 + 

0 

The equation for <r reads 

(13) 

1 

Cl = ef(Q)-" 7 

2 

where, according to (7), (1 should satisfy the condition 

t ---, +g(Q)+;-:+0(Q) when &JO. 

This leads to the following solution 

+log(Q)+;-;+ * 
I{ 0 

+(qy3 1’ f(Odi - 

(15) 

(16) 

(17) 

Again, we are interested in the behaviour of <r for Q + 00. After some manipulations, we find 

Cl - rlQ2 - - PQ + 7 + exponentially small terms , 
4 (Q 4 001, (18) 

where 

P 

t1312 
= -+- 1)-i/2 J om {foa - f(q)) & (19) 

and 

c 1 1 

Y’Yj-s 4 -l+P+ I{ 0 
+(q)-3 lq f(i)di - ;I-‘} dq 

+ 
O” 7I-1 I{ -f(q)-3 hq f(i) dt - ; rlq + B} 

2 dq. (20) 
1 

Although the analysis becomes increasingly cumbersome, we shall proceed a few steps further 
and present partial solutions of the next few perturbations. The reason is that we wish to use our 
results elsewhere in a practical context. In view of this, it is desirable to have a final result which 
is as accurate as one is able to make it. We shall restrict our calculations to the first derivatives 
of the functions <Z and (3. The equation for the first of these is simple enough 

($ = -fc. (21) 
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The next equation is 

G =; ($J2W2f(Q)- (q)s’2fo-3 I” (cll+$) 2. (22) 

What we need is the behaviour of <3 for Q + 00. After a lengthy calculation, we obtain 

1 7 312 2 
G-, 5 

0 Q - Q + 6 + exponentially small term, (Q -+ oo), (23) 

where 

4. REGION III 

4tr2 f(q) - 11 dq } 

In Region III the differential equation is (see [2]): 

(25) 

which has the solution 

Q=Alog $ . 
0 

(26) 

It was shown in [2] that, to a leading order, the constants A and B are both O(L). Expanding (26) 
for O(Q) < O(L), we have 

X I+!?+‘c+... 
A 2A2 

. 
(27) 

According to (12), (13), (18), (21) and (23) this must be equal to 

X - L+;log(L)+{(;)1’2Q+a}+~~+(;~Q2-flQ+7)+ 

(28) 

+[$(;)3'2Q3-{/3(;)1'2+;rp}Q2+6Q+0(1)] f+..., 

or, rearranging 

Comparing (27) and (29) , and matching the terms which are O(1) and O(Q), we find 

B= L+;log(L)+a+,T t 1 l%(L) + 7 + . . . , 
(39) 

(31) 
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where 
2 r/s 

s=(Y+ - 
0 rl 

P (32) 

and 

(33) 

It can easily be shown that the coefficients of Q2 and Q3 match automatically, which may serve 
aa a useful check. 

5. RESULTS 

Referring to the analysis of [l], we know that the asymptotic behaviour of Q for Z --) oo is 
important. Indeed, to describe this behaviour as accurately as possible is the main purpose of 
this note. Using the notation [l], we have 

Q - 91 log(Z) - a, for Z--,00. (34) 

Comparing this with (22), using (6), we have 

a= A, (35) 

log(B) - ; log(v - 1) . 

Both A and B are available as expansions in terms of known functions of E. The dependence 
on q appears through the parameter functions o, p, 7 and 6, some parameter functions derived 
from these (K and A), and some explicit terms. For further usage in [l], we list values of these 
parameter functions in Table 1. For reasons explained in [l] we restrict ourselves to the interval 
1 < q 5 2. For 17 = 2 the function f(Q) reduces to (1 - e-Q)/21i2. The integrals can then be 
evaluated analytically, which provides another useful check, in this case for the correctness of the 
numerical computations. The results are: 

42) = 2 
1 log(2*), P(2) = I, 

r(2) = 4 
13 172 

f log(2r) + s + 6, 6(2) = ; + ; log(27r). 

Another quantity needed in [l] is 

J 
co 

93 = Z e-Q(Z) & = A 
0 

2 Om Z2(Q) eBQ dQ, J 

(37) 

where we derived the second integral through partial integration, using the monotinicity of Q 
as a function of Z and the boundary conditions Q(0) = 0 and Q + 00 when Z -P 00. It 
was argued in [2] that, in an asymptotic sense, the value of the integral is fully determined by 
the representation of the function Z(Q) in the transition Region II. Therefore, substituting (12) 
in (38), using (6) we have 

gs = f(g- 1)-‘{L2+Llog(L)+2/JL+ flo&L)+ p+; log(L)+v+ ***}, 
( > 

(32) 

where 

cc= J om b’o(Q) es* dQ, (40) 

U= 

J 
om {C:(Q) + f&(Q)) e-*dQ. (41) 
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Table 1. Some characteristic parameters for various vahxs of T]. 

r) (x P Y 6 ic x P Y 

1.05 -1.8394 0.6888 1.8789 -9.2848 -0.8888 1.4270 -2.2689 6.0971 

1.10 -1.1683 0.7055 2.2207 0.1825 -0.2170 1.7682 -1.5654 4.1687 

1.15 -0.7833 0.7222 2.4231 0.4660 0.1691 1.9696 -1.1497 3.5217 

1.20 -0.5145 0.7388 2.5705 0.6769 0.4393 2.1156 -0.8517 3.2899 

1.25 -0.3088 0.7554 2.6890 0.8493 0.6466 2.2325 -0.6183 3.2473 

1.30 -0.1428 0.7719 2.7901 0.9983 0.8146 2.3318 -0.4257 3.3064 

1.35 -0.0038 0.7884 2.8799 1.1318 0.9558 2.4195 -0.2614 3.4258 

1.40 0.1156 0.8048 2.9618 1.2544 1.0776 2.4991 -0.1177 3.5836 

1.45 0.2202 0.8213 3.0381 1.3696 1.1847 2.5730 0.0103 3.7667 

1.50 0.3133 0.8376 3.1102 1.4777 1.2805 2.6424 0.1258 3.9673 

1.55 0.3971 0.8540 3.1790 1.5817 1.3671 2.7085 0.2312 4.1891 

1.60 0.4733 0.8703 3.2454 1.6822 1.4463 2.7719 0.3283 4.4017 

1.65 0.5433 0.8866 3.3098 1.7798 1.5194 2.8333 0.4184 4.6296 

1.70 0.6079 0.9029 3.3726 1.8752 1.5872 2.8930 0.5026 4.8622 

1.75 0.6686 0.9191 3.4341 1.9687 1.6506 2.9514 0.5816 5.0981 

1.80 0.7243 0.9353 3.4946 2.0607 1.7102 3.0086 0.6561 5.3366 

1.85 0.7771 0.9515 3.5543 2.1515 1.7664 3.0649 0.7267 5.5767 

1.90 0.8269 0.9677 3.6132 2.2414 1.8198 3.1203 0.7938 5.8182 

1.95 0.8741 0.9839 3.6716 2.3305 1.8705 3.1752 0.8578 6.0604 

2.00 0.9189 1.0000 3.7294 2.4189 1.9189 3.2294 0.9189 6.3033 

Values of p and v are listed in Table 1. Again, the integrals can be evaluated analytically for 
Q = 2: 

P(2) = f log(2r), Y(2) = 1+ ${1+ log(27C)}2 + $ (42) 

Finally, we need an asymptotic expression for the important efficiency parameter W defined 
in [2] as 

w= 
(1 

cm ze-%fz) (1” ze-Qcq. (43) 

It can be shown that W can be expanded as follows: 

W=l-2(77--l) ; 
112 1 

0 ( z l-2 

2 112 
l’“go+{a+p a 

L 0 
-2p}$+... . 

) 
(44 

Alternatively, it can be shown that 

Wzl-F 

Using (31), (35) and (39), we may derive an even more accurate expansion for W. 

1. 

2. 

3. 
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