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In a previous paper, we explored the idea of parameter augmentation for basic
hypergeometric series, which provides a method of proving q-summation and
integral formula based special cases obtained by reducing some parameters to
zero. In the present paper, we shall mainly deal with parameter augmentation for
q-integrals such as the Askey�Wilson integral, the Nassrallah�Rahman integral, the
q-integral form of Sears transformation, and Gasper's formula of the extension of
the Askey�Roy integral. The parameter augmentation is realized by another
operator, which leads to considerable simplications of some well known q-summa-
tion and transformation formulas. A brief treatment of the Rogers�Szego� poly-
nomials is also given. � 1997 Academic Press

1. INTRODUCTION

Since the umbral calculus was developed by G.-C. Rota and his
collaborators [30, 31], there has been extensive interest in an operator
approach to basic hypergeometric series, as in the work of Goldman and
Rota [16, 17], Andrews [2], and Roman [29]. Instead of aiming at a
general approach to polynomials of q-binomial type, we focus our attention
on some specific operators which can be simply defined as certain exponen-
tial operators. It turns out that such simple operators play a fundamental
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role in the theory of basic hypergeometric series. In the present paper we
continue the study of parameter augmentation based on an exponential
operator which is dual to the operator introduced in a previous paper
[12]. By using an augmentation operator an identity on basic hyper-
geometric series with multiple parameters may be recovered from its special
case obtained by setting some parameters to zero. Many important results
on q-summations and q-integrals naturally fall into the framework of this
augmentation operator such as the Askey�Wilson integral, the Nassrallah�
Rahman integral, the q-integral form of Sears transformation, Gasper's
formula of the extension of the Askey�Roy integral, the q-Gauss 2,1 sum-
mation formula, the q-Pfaff�Saalschu� tz formula, Jackson's q-analogue of
the Euler transform, some identities on Rogers�Szego� polynomials, or their
equivalent forms for the q-Hermite polynomials, and an identity of
Andrews generalizing the Lebesgue identity.

We shall follow the notation and terminology in [15]. Let |q|<1 and
the q-shifted factorial be defined by

(a; q)0=1, (a; q)n= `
n&1

k=0

(1&aqk), (a; q)�= `
�

k=0

(1&aqk). (1.1)

Clearly,

(a; q)n=(a; q)��(aqn ; q)� . (1.2)

Throughout we shall adopt the following notation of multiple q-shifted
factorials:

(a1 , a2 , ..., am ; q)n=(a1 ; q)n(a2 ; q)n } } } (am ; q)n ,

(a1 , a2 , ..., am ; q)�=(a1 ; q)�(a2 ; q)� } } } (am ; q)� .

The q-binomial coefficient is defined by

_n
k&=

(q; q)n

(q; q)k (q; q)n&k
.

The basic hypergeometric series r+1,r is defined by

r+1 ,r \a1 , ..., ar+1

b1 , ..., br
; q, x+= :

�

n=0

(a1 , ..., ar+1 ; q)n xn

(q, b1 , ..., br ; q)n
.

In this paper, we will frequently use the Cauchy identity and its special
cases [15]:
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(ax; q)�

(x; q)�
= :

�

n=0

(a; q)n xn

(q; q)n
, (1.3)

1
(x; q)�

= :
�

n=0

xn

(q; q)n
, (1.4)

(&x ; q)�= :
�

n=0

q( n
2) xn

(q; q)n . (1.5)

2. THE EXPONENTIAL OPERATOR T (bDq)

The usual q-differential operator, or q-derivative, is defined by

Dq f (a)=
f (a)& f (aq)

a
. (2.1)

By convention, D0
q is understood as the identity.

The Leibniz rule for Dq is the following identity, which is a variation of
the q-binomial theorem [29]:

Dn
q[ f (a) g(a)]= :

n

k=0

qk(k&n) _n
k& Dk

q[ f (a)] Dn&k
q [g(qka)]. (2.2)

The following property of Dq is straightforward, but important:

Theorem 2.1.

Dq { 1
(at; q)�==

t
(at; q)�

, (2.3)

Dk
q { 1

(at ; q)�==
tk

(at; q)�
. (2.4)

The operator to be used in this paper, denoted T, is constructed based
on Dq :

T (bDq)= :
�

n=0

(bDq)n

(q; q)n
. (2.5)

From the above theorem, we may obtain the following.
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Theorem 2.2.

T (bDq) { 1
(at; q)�==

1
(at, bt; q)�

. (2.6)

Employing the Leibniz formula, we may derive the following theorem.

Theorem 2.3.

T (bDq) { 1
(as, at; q)�==

(abst; q)�

(as, at, bs, bt; q)�
. (2.7)

Proof of Theorem 2.3. Applying the Leibniz formula for Dq , the left-
hand side of (2.7) equals

:
�

n=0

bn

(q; q)n
Dn

q { 1
(as, at; q)�=

= :
�

n=0

bn

(q; q)n
:
n

k=0

qk(k&n) _n
k& Dk

q { 1
(as; q)�= Dn&k

q { 1
(atqk ; q)�=

= :
�

n=0

bn

(q; q)n
:
n

k=0

qk(k&n) _n
k&

sk

(as; q)�

(tqk)n&k

(atqk ; q)�

=
1

(as, at; q)�
:
�

k=0

(at; q)k (bs)k

(q; q)k
:
�

n=k

(bt)n&k

(q; q)n&k

=
1

(as, at; q)�

(abst; q)�

(bs; q)�

1
(bt; q)�

=
(abst; q)�

(as, at, bs, bt; q)�
,

as desired. K

Theorem 2.3 reduces to Theorem 2.2 when s=0. These two theorems
may lead to many important results in the theory of hypergeometric series.

3. THE q-PFAFF�SAALSCHU� TZ FORMULA AND
THE JACKSON TRANSFORM

To give the reader a taste of the applications of the operator T, we will
present probably the simplest proofs of the well-known q-Pfaff�Saalschu� tz
formula, the Gauss 2 ,1 summation formula, and the Jackson q-analogue of
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the Euler transform. Using the idea of parameter augmentation, the q-Pfaff�
Saalschu� tz formula can easily be derived from the q-Chu�Vandermonde
convolution formula, the Gauss 2 ,1 summation formula can easily be
derived from the Cauchy binomial theorem, and the Jackson q-analogue
of the Euler transform can also be recovered from the Cauchy binomial
theorem written in a slightly different form.

Recall that the usual q-Chu�Vandermonde convolution can be rewritten
as the following basic hypergeometric series form (see, for example, [13]):

2,1 \q&n, a
c

; q, q+=
an(c�a; q)n

(c; q)n
. (3.1)

Using the following relation

an(c�a; q)n=(&c)n q( n
2) (aq1&n�c; q)�

(aq�c; q)�
, (3.2)

(3.1) can be written as

:
n

k=0

(q&n ; q)k qk

(q; q)k (c; q)k (aqk, aq1&n�c; q)�
=(&c)n q( n

2)

(c; q)n (aq�c, a; q)�
. (3.3)

Applying the operator T (bDq) on both sides of (3.3), it follows that

:
n

k=0

(q&n ; q)k qk

(q, c; q)k
T (bDq) { 1

(aqk, aq1&n�c; q)�=
=

(&c)n q( n
2)

(c; q)n
T (bDq) { 1

(aq�c, a; q)�= .

Using the relations

T (bDq) { 1
(aqk, aq1&n�c; q)�==

(abq1&n+k�c; q)�

(aqk, aq1&n�c, bqk, bq1&n�c; q)�
,

T (bDq) { 1
(aq�c, a; q)�==

(abq�c; q)�

(aq�c, a, bq�c, b; q)�
,

we obtain the q-Pfaff�Saalschu� tz formula [5, 15, 20, 35]:

Theorem 3.1. We have

3,2 \ a, b, q&n

c, abc&1q1&n ; q, q+=
(c�a, c�b; q)n

(c, c�ab; q)n
. (3.4)
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Next we proceed to give an augmentation argument for the q-Gauss
theorem. By (1.2), the Cauchy binomial theorem can be written as

1
(x; q)� (a; q)�

= :
�

n=0

xn

(q; q)n (aqn, ax; q)�
.

Applying T (bDq) on both sides of the above identity, we get

1
(x; q)�

T (bDq) { 1
(a; q)�== :

�

n=0

xn

(q; q)n
T (bDq) { 1

(aqn, ax; q)�= . (3.5)

Since

T (bDq) { 1
(a; q)�==

1
(a, b; q)�

and

T (bDq) { 1
(aqn, ax; q)�==

(abxqn ; q)�

(aqn, ax, bqn, bx; q)�
,

it follows from (3.5) that

1
(x, a, b; q)�

= :
�

n=0

xn

(q; q)n

(abxqn ; q)�

(aqn, ax, bqn, bx; q)�
.

Using (1.2), the above identity can be written as

2,1 \a, b
abx

; q, x+=
(ax, bx; q)�

(x, abx; q)�
,

which is equivalent to the following form of the q-Gauss theorem [3, 5, 15,
20, 29]:

Theorem 3.2. We have

2,1 \a, b
c

; q,
c

ab+=
(c�a, c�b; q)�

(c, c�ab; q)�
. (3.6)

By the Cauchy binomial theorem, we have

(abx; q)�

(x; q)�
= :

�

n=0

(ab; q)n

(q; q)n
xn,

(abx; q)�

(b; q)�
= :

�

n=0

(ax; q)n

(q; q)n
bn.
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It follows that

:
�

n=0

(ab; q)n

(q; q)n
xn=

(b; q)�

(x; q)�
:
�

n=0

(ax; q)n

(q; q)n
bn,

which can be rewritten as

:
�

n=0

xn

(q; q)n (abqn, ax; q)�
=

(b; q)�

(x; q)�
:
�

n=0

bn

(q; q)n (axqn, ab; q)�
.

Applying T (cDq), we have

:
�

n=0

xn(abcxqn ; q)�

(q; q)n (abqn, ax, bcqn, cx; q)�

=
(b; q)�

(x; q)�
:
�

n=0

bn(abcxqn ; q)�

(q; q)n (axqn, ab, cxqn, bc; q)�
,

which can be rewritten as

2,1 \ab, bc
abcx

; q, x+=
(b; q)�

(x; q)�
2,1 \ax, cx

abcx
; q, b+ . (3.7)

Note that (3.7) is equivalent to the Jackson q-analogue of the Euler trans-
form [15]:

Theorem 3.3. We have

2,1 \a, b
c

; q, x+=
(abx�c; q)�

(x; q)�
2,1 \c�a, c�b

c
; q,

abx
c + . (3.8)

4. AN IDENTITY OF ANDREWS

In [1], Andrews gives an identity which contains as a special case the
Lebesgue identity. This identity is also called the q-analogue of the Gauss
second theorem. Here we point out that the Andrews identity can be
recovered from the Lebesgue identity by parameter augmentation. To this
end, we present a proof of the Lebesgue identity for completeness. It is
stated as follows [1, 3]:

:
�

n=0

(a; q)n q( n+1
2 )

(q; q)n
=(&q; q)� (aq; q2)� . (4.1)
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Proof. The left hand side of (4.1) equals

(a; q)� :
�

n=0

q( n+1
2 )

(q; q)n

1
(aqn ; q)�

=(a; q)� :
�

j=0

a j

(q; q) j
:
�

n=0

qnj q( n+1
2 )

(q; q)n

=(a; q)� :
�

j=0

a j

(q; q) j
(&q j+1 ; q)�

=(&q, a; q)� :
�

j=0

a j

(q2 ; q2) j

=
(&q, a; q)�

(a; q2)�

=(&q; q)� (aq; q2)� ,

as desired. K

Let us rewrite (4.1) in the following form:

:
�

n=0

q( n+1
2 )

(q; q)n (aqn, aqn+1; q2)�
=

(&q; q)�

(a; q2)�
.

Setting q to q1�2, the above identity becomes

:
�

n=0

q1�2( n+1
2 )

(q1�2 ; q1�2)n (aqn�2 ; aq(n+1)�2 ; q)�
=

(&q1�2 ; q1�2)�

(a; q)�
. (4.2)

Applying the operator T (bDq) on both sides of (4.2) leads to the following
identity:

:
�

n=0

q1�2( n+1
2 ) (abqn+(1�2) ; q)�

(q1�2; q1�2)n (aqn�2, aq(n+1)�2, bqn�2, bq(n+1)�2 ; q)�
=

(&q1�2; q1�2)�

(a, b; q)�
.

(4.3)

Finally, setting q1�2 back to q, we get the Andrews identity [3]:

Theorem 4.1. We have

:
�

n=0

(a, b; q)n q( n+1
2 )

(q; q)n (abq; q2)n
=

(&q; q)� (aq, bq; q2)�

(abq; q2)�
. (4.4)
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5. THE ASKEY�WILSON INTEGRAL AND THE
NASSRALLAH�RAHMAN INTEGRAL

In this section, we shall present a treatment of the Askey�Wilson
integrals via parameter augmentation. The point of departure from the
usual Askey�Wilson integral is the orthogonality relation obtained from
the Cauchy binomial theorem and the Jacobi triple product identity. Once
we have the identity with one parameter, while the Askey�Wilson integral
involves four parameters, the augmentation turns out to be an easy task.
Moreover, one more augmenation argument on the Askey�Wilson integral
leads to a generalization due to Ismail�Stanton�Viennot. We also point out
that the Nassrallah�Rahman integral can be easily derived from the result
of Ismail�Stanton�Viennot.

5.1. The Askey�Wilson Integral

In the Cauchy binomial theorem, setting a=q&2N, x=qN, where N is an
nonnegative integer, one obtains the following orthogonality relation:

:
+�

n=&�

(&1)n q( n
2) _ 2N

N+n&=$0, N , (5.1)

where $n, m is the Kronecker delta.
By the Cauchy binomial identity we have

1
(aei%, ae&i%; q)�

= :
�

n=0

anein%

(q ; q)n
:
�

m=0

ame&im%

(q; q)m

= :
�

n, m=0

am+n

(q; q)n (q; q)m
ei(n&m)%

= :
+�

k=&�

e&ik% :
�

m=0

a2m&k

(q; q)m&k (q; q)m
. (5.2)

From the Jacobi triple product identity, we have

(e2i%, e&2i%; q)�=(1&e&2i%)(e2i%, q�e2i%; q)�

=
1

(q; q)�
:

+�

n= &�

(&1)n q( n
2)(1&e&2i%) e2ni%

=
1

(q; q)�
:

+�

n= &�

(&1)n (1+qn) q( n
2)e2ni%. (5.3)

183BASIC HYPERGEOMETRIC SERIES



File: DISTIL 280110 . By:DS . Date:09:07:01 . Time:06:32 LOP8M. V8.0. Page 01:01
Codes: 2214 Signs: 849 . Length: 45 pic 0 pts, 190 mm

Thus, we obtain

|
?

&?

(e2i%, e&2i%; q)�

(aei%, ae&i%; q)�
d%

=
1

(q; q)�
:

+�

n=&�

:
+�

k=&�

:
�

m=0

(&1)n q( n
2)(1+qn)

_
a2m&k

(q; q)m&k (q; q)m
|

?

&?
e(2n&k) i% d%.

The following identity is straightforward:

|
?

&?
e(2n&k) i% d%=2?$k, 2n .

Hence we have the following evaluation:

|
?

&?

(e2i%, e&2i%; q)�

(aei%, ae&i%; q)�
d%

=
2?

(q; q)�
:

+�

n=&�

:
�

m=0

(&1)n (1+qn) q( n
2) a2m&2n

(q; q)m&2n (q; q)m

=
2?

(q; q)�
:
�

N=0

a2N

(q; q)2N
:

+�

n= &�

(&1)n (1+qn) q( n
2) _ 2N

n+N&
=

4?
(q; q)�

:
�

N=0

a2N

(q; q)2N
:

+�

n= &�

(&1)n q( n
2) _ 2N

n+N&
=

4?
(q; q)�

:
�

N=0

a2N

(q; q)2N
$N, 0

=
4?

(q; q)�
.

Since the above integral is an even function of %, we obtain the following
theorem.

Theorem 5.1. We have

|
?

0

(e2i%, e&2i%; q)�

(aei%, ae&i%; q)�
d%=

2?
(q; q)�

. (5.4)

The above identity is a very special case of the Askey�Wilson integral
with other parameters b, c, d reduced to zero. Our aim is to arrive at the
general case of the Askey�Wilson integral by three steps of parameter
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augmentation on the above special case. By adding the parameter b to (5.4)
one obtains the identity which is closely related to the orthogonality of the
Rogers�Szego� polynomials [10, 19, 32, 33]. These polynomials are a
variant form of the q-Hermite polynomials. In the last section, we will
revisit some fundamental properties of Rogers�Szego� polynomials by the
approach of parameter augmentation.

For notational simplicity, we adopt the following notation [15]:

h(cos %; r)=(rei%, re&i%; q)� ,

h(cos %; a1 , a2 , ..., am)=h(cos %; a1) h(cos %; a2) } } } h(cos %; am).

Hence (5.4) becomes

|
?

0

h(cos 2%; 1)
h(cos %; a)

d%=
2?

(q; q)�
. (5.5)

Taking the action of T(bDq) on both sides of (5.5), we obtain

|
?

0
h(cos 2%; 1) T(bDq) { 1

h(cos %; a)= d%=
2?

(q; q)�
,

where

T(bDq) { 1
h(cos %; a)==T(bDq) { 1

(aei%, ae&i%; q)�=
=

(ab; q)�

(aei%, ae&i%, bei%, be&i%; q)�

=
(ab; q)�

h(cos %; a, b)
.

It follows that

|
?

0

h(cos 2%; 1)
h(cos %; a, b)

d%=
2?

(q, ab; q)�
. (5.6)

Taking the action of T(cDq) on both sides of (5.6), we obtain

|
?

0

h(cos 2%; 1)
h(cos %; b)

T(cDq) { 1
h(cos %; a)= d%

=
2?

(q; q)�
T(cDq) { 1

(ab; q)�= ,
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where

T(cDq) { 1
h(cos %; a)==

(ac; q)�

h(cos %; a, c)
,

T(cDq) { 1
(ab; q)�==

1
(ab, bc; q)�

.

Thus, we have

|
?

0

h(cos 2%; 1)
h(cos %; a, b, c)

d%=
2?

(q, ab, ac, bc; q)�
. (5.7)

One more action of T(dDq) on the above identity leads to the Askey�
Wilson integral,

|
?

0

h(cos 2%; 1)
h(cos %; b, c)

T(dDq) { 1
h(cos %; a)= d%

=
2?

(q, bc; q)�
T(dDq) { 1

(ab, ac; q)�= , (5.8)

where

T(dDq) { 1
h(cos %; a)==

(ad; q)�

h(cos %; a, d )
,

T(dDq) { 1
(ab, ac; q)�==

(abcd; q)�

(ab, ac, bd, cd; q)�
.

The above identity (5.8) is just the Askey�Wilson integral [7, 9, 18, 19, 21,
25, 34]:

Theorem 5.2. (Askey�Wilson). We have

|
?

0

h(cos 2%; 1)
h(cos %; a, b, c, d )

d%=
2?(abcd; q)�

(q, ab, ac, ad, bc, bd, cd; q)�
, (5.9)

where max[ |a|, |b|, |c|, |d |]<1.

5.2. The Ismail�Stanton�Viennot Integral

One naturally wonders what would happen if one tried to add another
parameter, say f, to the Askey�Wilson integral. It is interesting that such
a consideration of parameter augmentation on the Askey�Wilson integral
leads to an integral formula obtained by Ismail�Stanton�Viennot [19].
Here we give a proof in a few lines:
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Proof of the Ismail�Stanton�Viennot Integral. Taking the action of
T( fDq) on the Askey�Wilson integral, one obtains

|
?

0

h(cos 2%; 1)
h(cos %; a, b, c, d, f )

d%

=
2?

(q, af, bc, bd, cd; q)�
T( fDq) { (abcd; q)�

(ab, ac, ad; q)�= . (5.10)

By the Leibniz formula, it follows that

T( fDq) { (abcd; q)�

(ab, ac, ad; q)�=
= :

�

n=0

(dc; q)n bn

(q; q)n
:
�

k=0

f k

(q; q)k
Dk

q { an

(ac, ad; q)�=
= :

�

n=0

(dc; q)n bn

(q; q)n
:
�

k=0

f k

(q; q)k
:
k

j=0

q j( j&k) _k
j & D j

q

_{ 1
(ac, ad; q)�= Dk& j

q (aq j )n

= :
�

n=0

(dc; q)n bn

(q; q)n
:
�

j=0

( fDq) j

(q; q) j {
1

(ac, ad; q)�= :
n

m=0

q j(n&m)an&m _ n
m& f m

= :
�

n=0

(dc; q)n bn

(q; q)n
:
n

m=0

an&m _ n
m& f mT( fqn&mDq) { 1

(ac, ad; q)�=
= :

�

m=0

(bf )m

(q; q)m
:
�

k=0

(dc; q)k+m

(q; q)k
(ab)k T( fqkDq) { 1

ac, ad; q)�=
= :

�

m=0

(bf )m

(q; q)m
:
�

k=0

(dc; q)k+m

(q; q)k
(ab)k (acdfqk; q)�

(ac, ad, fcqk, fdqk; q)�

=
(acdf; q)�

(ac, ad, cf, df; q)�
:
�

k=0

(cf, df, cd; q)k

(q, acdf; q)k
(ab)k :

�

m=0

(cdqk; q)m

(q; q)m
(bf )m

=
(acdf; q)�

(ac, ad, cf, df; q)�
:
�

k=0

(cf, df, cd; q)k

(q, acdf; q)k
(ab)k (bcdfqk; q)�

(bf; q)�

=
(acdf, bcdf; q)�

(ac, ad, bf, cf, df; q)�
3,2 \ cf, df, cd

acdf, bcdf
; q, ab+ . (5.11)

Combining (5.10) and (5.11), we are led to the Ismail�Stanton�Viennot
integral [19]:

187BASIC HYPERGEOMETRIC SERIES



File: DISTIL 280114 . By:DS . Date:09:07:01 . Time:06:32 LOP8M. V8.0. Page 01:01
Codes: 2313 Signs: 1075 . Length: 45 pic 0 pts, 190 mm

Theorem 5.3. We have

|
?

0

h(cos 2%; 1)
h(cos %; a, b, c, d, f )

d%

=
2?(acdf, bcdf; q)�

(q, ac, ad, af, bc, bd, bf, cd, cf, df; q)�
3,2 \ cf, df, cd

acdf, bcdf
; q, ab+ ,

(5.12)

where max[ |a|, |b|, |c|, |d |, | f |]<1.

5.3. The Nassrallah�Rahman Integral

We point out that the well-known Nassrallah�Rahman integral originally
obtained by the integral representation of the Sears transformation and the
Bailey 8,7 transformation can easily be derived from the above Ismail�
Stanton�Viennot integral by an application of the q-Gauss summation for-
mula and the q-Pfaff�Saalschu� tz formula.

Replacing f by fqn in (5.12), multiplying

(abcd )n

(q, abcdf 2; q)n

on both sides, and taking summation over n, we get

|
?

0

h(cos 2%; 1)
h(cos %; a, b, c, d, f ) 2,1 \fei%, fe&i%

abcdf 2 ; q, abcd+ d% (5.13)

=
2?(acdf, bcdf ; q)�

(q, ac, ad, af, bc, bd, bf, cd, cf, df; q)�
:
�

n=0

(cf, df, cd; q)n

(q, acdf, bcdf; q)n
(ab)n

_3,2 \ q&n, af, bf
abcdf 2, q1&n�cd

; q, q+ . (5.14)

By the q-Gauss summation formula (3.6), we have

2,1 \fei%, fe&i%

abcdf 2 ; q, abcd+=
h(cos %; abcdf )

(abcd, abcdf 2; q)�
. (5.15)

By the q-Pfaff�Saalschu� tz formula (3.4), we have

3,2 \ q&n, af, bf
abcdf 2, q1&n�cd

; q, q+=
(bcdf, acdf; q)n

(abcdf 2, cd; q)n
. (5.16)
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Substituting (5.15) and (5.16) into (5.14), it follows that

|
?

0

h(cos 2%; 1) h(cos %; abcdf )
h(cos %; a, b, c, d, f )

d%

=
2?(acdf, bcdf, abcd, abcdf 2; q)�

(q, ac, ad, af, bc, bd, bf, cd, cf, df; q)�
2,1 \ cf, df

abcdf 2 ; q, ab+ . (5.17)

Applying the q-Gauss summation formula again, we have

2,1 \ cf, df
abcdf 2 ; q, ab+=

(abdf, abcf; q)�

(abcdf 2, ab; q)�
. (5.18)

Substituting (5.18) into (5.17), we are led to the Nassrallah�Rahman
integral [23]:

Theorem 5.4. We have

|
?

0

h(cos 2%; 1) h(cos %; abcdf )
h(cos %; a, b, c, d, f )

d%

=
2?(abcd, abcf, abdf, acdf, bcdf; q)�

(q, ab, ac, ad, af, bc, bd, bf, cd, cf, df; q)�
, (5.19)

where max[ |a|, |b|, |c|, |d |, | f |]<1.

6. THE q-INTEGRAL FORM OF THE SEARS TRANSFORMATION

In this section, we point out the relationship between the Andrews�Askey
integral [6] and the q-integral form of the Sears transformation [15] in the
light of parameter augmentation. The following is the Andrews�Askey
integral which can be derived from Ramanujan's sum of 1�1 :

Theorem 6.1. We have

|
d

c

(qt�c, qt�d; q)�

(at, bt; q)�
dqt=

d(1&q)(q, dq�c, c�d, abcd; q)�

(ac, ad, bc, bd; q)�
. (6.1)

Dividing both sides of (6.1) by (abcd; q)� , we obtain

|
d

c

(qt�c, qt�d; q)�

(at, bt, abcd; q)�
dq t=

d(1&q)(q, dq�c, c�d; q)�

(ac, ad, bc, bd; q)�
.
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Taking the action of T(eDq) on both sides of the above identity, the
q-integral form of Sears transformation can be immediately obtained from
the following relations:

T(eDq) { 1
(at, abcd; q)�==

(abcdet; q)�

(at, et, abcd, ebcd; q)�
,

T(eDq) { 1
(ca, da; q)�==

(acde; q)�

(ca, da, ce, de; q)�
.

Theorem 6.2. We have

|
d

c

(qt�c, qt�d, abcdet; q)�

(at, bt, et; q)�
dqt

=
d(1&q)(q, dq�c, c�d, abcd, bcde, acde; q)�

(ac, ad, bc, bd, ce, de; q)�
. (6.2)

7. AN EXTENSION OF THE ASKEY�ROY INTEGRAL:
GASPER'S FORMULA

We observe that a recent integral formula discovered by Gasper [14]
and proved also by Rahman and Suslov [26] can be derived from the
Askey�Roy integral in one step of parameter augmentation. The Askey�
Roy integral [26] is given by

1
2? |

?

&?

(\ei%�d, qde&i%�\, \ce&i%, qei%�c\; q)�

(aei%, bei%, ce&i%, de&i%; q)�
d%

=
(abcd, \c�d, dq�\c, \, q�\; q)�

(q, ac, ad, bc, bd; q)�
. (7.1)

Dividing both sides of the above equation by (abcd; q)� , we have

1
2? |

?

&?

(\ei%�d, qde&i%�\, \ce&i%, qei%�c\; q)�

(aei%, bei%, ce&i%, de&i%, abcd; q)�
d%

=
(\c�d, dq�\c, \, q�\; q)�

(q, ac, ad, bc, bc, bd; q)�
. (7.2)
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Taking the action of T( fDq) on both sides of (7.2), and applying the
relations

T( fDq) { 1
(aei%, abcd; q)�==

(abcdfei%; q)�

(aei%, fei%, abcd, bcdf; q)�
,

T( fDq) { 1
(ac, ad; q)�==

(acdf; q)�

(ac, ad, cf, df; q)�
,

we obtain

1
2? |

?

&?

(\ei%�d, qde&i%�\, \ce&i%, qei%�c\, abcdfei%; q)�

(aei%, bei%, fei%, ce&i%, de&i%; q)�
d%

=
(\c�d, dq�\c, \, q�\, abcd, bcdf, acdf; q)�

(q, ac, ad, bc, bd, cf, df; q)�
, (7.3)

where max[ |a|, |b|, |c|, |d |]<1, cd\{0. This is exactly the formula
recently discovered by Gasper [14].

8. THE ROGERS�SZEGO� POLYNOMIALS

The Rogers�Szego� polynomials play an important role in the theory of
orthogonal polynomials, particularly in the study of the Askey�Wilson
integral [8, 18, 19]. We observe that some important results on the Rogers�
Szego� polynomials or the equivalent forms on q-Hermite polynomials
naturally fall into the framework of parameter augmentation such as
Mehler's formula, and the linearization formula and its inverse [4, 8, 11, 18,
19, 22]. The Rogers�Szego� polynomial is defined by

hn(x | q)= :
n

k=0
_n

k& xk, (8.1)

which has the following generating function:

:
�

n=0

hn(x | q)
tn

(q; q)n
=

1
(t, xt; q)�

. (8.2)

The q-Hermite polynomials Hn(x | q) is often defined by its generating
function [11]:

:
�

n=0

Hn(x | q)
tn

(q; q)n
= `

�

n=0

1
(1&2xtqn+t2q2n)

.
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The Rogers�Szego� polynomials and the q-Hermite polynomials are related
by

Hn(cos % | q)=e&in%hn(e2i% | q).

The polynomials hn(x | q) can easily be represented by the augmentation
operator as follows:

hn(x | q)=T(Dq) xn. (8.3)

Using the above operator definition of the Rogers�Szego� polynomial and
our augmentation argument, it is easy to derive Mehler's formula.

Theorem 8.1. We have

:
�

n=0

hn(x | q) hn( y | q)
tn

(q; q)n
=

(xyt2; q)�

(t, xt, yt, xyt; q)�
. (8.4)

Proof.

:
�

n=0

hn(x | q) hn( y | q)
tn

(q; q)n
= :

�

n=0

hn( y | q) T(Dq) { (xt)n

(q; q)n=
=T(Dq) { :

�

n=0

hn( y | q)
(xt)n

(q; q)n=
=T(Dq) { 1

(xt, xyt; q)�=
=

(xyt2; q)�

(t, xt, yt, xyt; q)�
,

as desired. K

The above formula is a special case of the following identity due to
Rogers [27, 28] which implies the linearization formula for Rogers�Szego�
polynomials, and accordingly for the q-Hermite polynomials. A simple
proof of the Rogers formula is given by Bressoud [11] based the
recurrence relation. As is shown below, the Rogers formula becomes
apparent from the point view of parameter augmentation,.
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Theorem 8.2. We have

:
�

n=0

:
�

m=0

hm+n(x | q)
tn

(q; q)n

sm

(q; q)m

=(tsx; q)� :
�

n=0

:
�

m=0

hn(x | q) hm(x | q)
tn

(q; q)n

sm

(q; q)m
. (8.5)

Proof. The left-hand side of (8.5) equals

:
�

n=0

:
�

m=0

T(Dq) xm+n tn

(q; q)n

sm

(q; q)m

=T(Dq) :
�

n=0

:
�

m=0

(tx)n

(q; q)n

(sx)m

(q; q)m

=T(Dq)
1

(tx, sx; q)�

=(tsx; q)� (tx, sx, t, s; q)�

=(tsx; q)�
1

(t, tx; q)�

1
(s, sx; q)�

=(tsx; q)� :
�

n=0

:
�

m=0

hn(x | q) hm(x | q)
tn

(q; q)n

sm

(q; q)m
,

as required. K

Substituting the expansion

1
(tsx; q)�

= :
�

n=0

(ts)n xn

(q; q)n

in (8.5) and comparing the coefficients of tnsm, we get the linearization
formula for hn(x | q):

Theorem 8.3. We have

hn(x | q) hm(x | q)= :
min[m, n]

k=0
_n

k&_
m
k & (q; q)k xkhn+m&2k(x | q). (8.6)
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A combinatorial proof of the above formula (8.6) is given by Ismail,
Stanton, and Viennot [19]. Similarly, using the expansion

(tsx; q)�= :
�

n=0

(&1)n q( n
2)

(q; q)n
xntnsn

in (8.5), we are led to the inverse relation of the linearization formula
obtained by Askey and Ismail [8]:

Theorem 8.4. We have

hm+n(x | q)= :
min[m, n]

k=0
_n

k&_
m
k & (q; q)k q( k

2)(&x)k hn&k(x | q) hm&k(x | q).

(8.7)
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