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The purpose of this study was to relate central inflammation to autonomic activity (heart rate variability (HRV))
in patients with rheumatoid arthritis (RA) and fibromyalgia (FM). RA patients had reduced parasympathetic ac-
tivity and FM patients had increased sympathetic activity compared to healthy controls. Comparisons between
RA and FM showed higher cerebrospinal fluid (CSF) interleukin (IL)-1β inversely correlated to parasympathetic
activity in RA. The FM patients had higher concentrations of CSF IL-8, IL-1Ra, IL-4 and IL-10, but none of these cy-
tokines correlated with HRV. In conclusion, we found different profiles of central cytokines, i.e., elevated IL-1β in
inflammatory pain (RA) and elevated IL-8 in dysfunctional pain (FM).

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Central nervous system (CNS) mechanisms such as central sensitiza-
tion, facilitation and disinhibition are involved in various forms of chronic
pain conditions. The latter was illustrated by findings of widespread
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allodynia and hyperalgesia in patients with fibromyalgia (FM) (dysfunc-
tional pain) (Kosek et al., 1996), but also other diseases characterized by
nociceptive and inflammatory pain, such as osteoarthritis (Kosek and
Ordeberg, 2000a,b; Gwilym et al., 2009; Arendt-Nielsen et al., 2010) and
rheumatoid arthritis (RA) (Leffler et al., 2002). The mechanisms of sensi-
tization and hyperalgesia involve neuron interaction with activated glia
cells (for review see Watkins and Maier, 2005; Milligan and Watkins,
2009). Following activation, glia cells release pro-inflammatory cyto-
kines/chemokines such as tumor necrosis factor (TNF), interleukin-
1beta (IL-1β), interleukin-6 (IL-6) and interleukin-8 (IL-8), chemokine
(C–C motif) ligand 2 (CCL-2), also known as monocyte chemoattractant
protein 1 (MCP-1), as well as brain-derived neurotrophic factor (BDNF),
nerve growth factor (NGF), glutamate and substance P (SP) (Sofroniew
et al., 2001; Watkins and Maier, 2005; Milligan and Watkins, 2009),
substances with the potential for pain amplification. Based on data from
animal studies, activated glia cells have been proposed to be an important
actor also for development and maintenance of chronic pain in humans
(Milligan and Watkins, 2009).

Supporting the role of neuroinflammation in human pain patients,
elevated cerebrospinal fluid (CSF) concentrations of pro-inflammatory
cytokines/chemokines have been reported in patients with chronic
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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nociceptive (Lundborg et al., 2010) aswell as neuropathic (Kotani et al.,
2004; Backonja et al., 2008) pain. In addition, we have previously docu-
mented increased CSF IL-8, but not IL-1β, in FM patients compared to
headache controls (Kadetoff et al., 2012) and increased CSF IL-1β levels
in patients with RA compared to surgical controls and to patients with
multiple sclerosis (MS), respectively (Lampa et al., 2012). These results
are in accordancewith animal studies showing that the hyperalgesic ef-
fects of IL-1β, but not IL-8,weremediated by cyclooxygenase-2 (COX-2)
while the hyperalgesic effects of IL-8, but not IL-1β, were mediated by
activation of beta-adrenergic receptors (sympathetic activity) (Cunha
et al., 2005; Verri et al., 2006).

There are indications that the autonomic nervous system forms
an important link for neuro-immune regulation through the cholinergic
anti-inflammatory pathway, termed as the inflammatory reflex (Tracey,
2007). Assessment of heart rate variability (HRV) provides a non-invasive
method to assess autonomic function. Previous studies have reported ab-
normalities in HRV in RA (Janse Van Rensburg et al., 2012) as well as FM
(Meeus et al., 2013) patients. However, to our knowledge, no previous
study has related autonomic tone to CSF patterns of cytokines in chronic
pain patients. In this study, we wanted to profit from our patient cohorts
tomake a direct comparison between patientswith inflammatory, COX-2
driven pain (RA) and patients with dysfunctional pain traditionally
regarded as non-inflammatory (FM). Our hypothesiswas that RApatients
would have reduced parasympathetic activity which would be related
to elevated CSF IL-1β and that FM patients would have increased sym-
pathetic activity related to elevated CSF IL-8. Also, we extended our
previous CSF assessments with analysis of TNF, IL-4, IL-6, IL-10, CCL-2,
BDNF, NGF as well as the IL-1 receptor antagonist (IL-1Ra) in the FM
patients and with the analysis of CSF IL-8, CCL-2, BDNF, NGF in the RA
patients. In addition to the different concentrations of IL-1β and IL-8,
we hypothesized different CSF profiles with higher levels of the pro-
inflammatory TNF, IL-6 and CCL-2 and lower concentrations of the
anti-inflammatory IL-1Ra, IL-4 and IL-10 in the RA patients compared
to the FM patients.

2. Materials & methods

2.1. Subjects

2.1.1. FM patients
Fifteen female patients (average age 46.2 years, range 25–60 years,

Table 1) participated. They were outpatients at the Department of
Rehabilitation Medicine, Danderyds Hospital, Stockholm and fulfilled
the classification criteria of the American College of Rheumatology
(ACR) 1990 for fibromyalgia (Wolfe et al., 1990). All the patients had
normal erythrocyte sedimentation rate, hematology count, liver en-
zymes, creatinine kinase, thyroid function, rheumatoid factor and anti-
Table 1
Descriptive data for fibromyalgia (FM) patients, rheumatoid arthritis (RA) patients and health
visual analogue scale, MFI-20 = Multidimensional Fatigue Inventory 20 item general, PSQI =
ment = mental components (original 0–100 scoring algorithms based on the summated ratin

Means ± SD FM patients RA pati

Age (years) 46.2 ± 11.1
n = 15

51.1 ±
n = 14

Duration FM/RA (years) 2.9 ± 2.7
n = 15

8.4 ± 8
n = 14

Pain (mm VAS) 65.8 ± 13.2
n = 15

24.0 ±
n = 14

Fatigue (MFI-20) 18.1 ± 1.4
n = 15

14.0 ±
n = 14

Sleep (PSQI) 13.2 ± 3.7
n = 15

6.6 ± 3
n = 13

SF-36phys 26.4 ± 7.6
n = 15

62.4 ±
n = 14

SF-36ment 40.3 ± 21.2
n = 15

72.5 ±
n = 14
nuclear antibodies. No medications were taken on a regular basis and
no analgesics or non-steroidal anti-inflammatory drugs (NSAIDs) had
been used on the day of assessment. None of the FM patients had
other known painful conditions or neurological diseases.

2.1.2. RA patients
Fourteen female patients (average age 51.1 years, range 36–59 years,

Table 1) participated. Theywere outpatients at the Unit of Rheumatology,
Karolinska University Hospital, Stockholm and fulfilled both the 1987 and
2010ACR criteria for RA (Arnett et al., 1988; Aletaha et al., 2010) andnone
fulfilled the ACR criteria for fibromyalgia (Wolfe et al., 1990). The average
number (± standard deviation) of swollen and painful joints was 4.9 ±
3.8 and 4.2 ± 3.9 respectively. The average disease activity score for 28
joint count (DAS28)was 3.55±1.3. Twelvepatients (86%) had antibodies
to citrullinated peptide antigens (ACPA) and ten patients (71%) had pos-
itive rheumatoid factor (RF). Sevenpatientswere onmethotrexate (MTX)
monotherapy, twowere onMTX combinedwith etanercept or infliximab,
one was on adalimumab monotherapy, three were on sulfasalazine and
one was on hydroxychloroquine. Three patients were also on low-dose
prednisone (all below 7.5 mg/d). No NSAIDs were administered within
24hbefore CSF sampling andpain and fatigue assessments. No RApatient
had any neurological disease.

2.1.3. Healthy controls
Fifteen healthy sex- and age-matched subjects (average age

44.4 years, range 25–61 years) participated. They were assessed in
the same way as the FM/RA patients except that no lumbar puncture
was performed (for ethical reasons). The subjects were recruited by
advertising at public places at Danderyds Hospital.

The study was approved by the local ethical committee and all the
subjects gave their informed consent to participate. The study followed
the guidelines of the Declaration of Helsinki.

2.2. Procedures

On the first day the RA and FM patients and healthy controls
completed all questionnaires and were provided with the device for
HRV assessment. The subjects returned the following morning for
venous and lumbar (patients only) puncture.

2.2.1. Pain ratings and questionnaires
Ongoing pain intensity was rated on a 100 mm visual analogue scale

(VAS) anchored by the words “no pain” and “worst imaginable pain”.
The RA and FM patients and healthy controls rated fatigue (Multidimen-
sional Fatigue Inventory (MFI-20)) (Lin et al., 2009), sleep disturbance
(Pittsburg SleepQuality Inventory (PSQI)) (Buysse et al., 1989) andhealth
y controls. SD = standard deviation, NA = non-applicable, NS = non-significant, VAS =
Pittsburg Sleep Quality Inventory, SF-36 = Short Form-36; phys = physical components;
g method).

ents Healthy controls Group differences

7.2 44.4 ± 10.7
n = 15

NS

.7 NA p b 0.028

18.0 NA p b 0.001

4.2 5.1 ± 1.0
n = 15

p b 0.001

.0 1.8 ± 1.7
n = 15

p b 0.001

18.6 97.5 ± 2.7
n = 15

p b 0.001

21.6 90.4 ± 6.3
n = 15

p b 0.001
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related quality of life (Short Form-36 (SF-36)) (Contopoulos-Ioannidis
et al., 2009).
2.2.2. Lumbar puncture and cytokine measurements in CSF and serum
Lumbar puncturewas performedwithin 24 h after questionnaires. CSF

was sampled in polypropylene tubes. CSF samples were immediately
centrifuged and supernatants were frozen and stored in −80 °C until
use. Cytokine levels in CSF and serum were analyzed with enzyme-
linked immunosorbent assay (ELISA) (R&D, high sensitivity Quantikine).
Sensitivity, expressed as the mean of minimum detectable dose (MDD),
for the ELISA kits were as follows: IL-1β 0.14 pg/mL; IL-1ra: 6.26 pg/mL;
IL-4: 0.11 pg/mL; IL-6 0.039 pg/mL; IL-8 3.5 pg/mL; IL-10 0.09 pg/mL;
and TNF 0.106 pg/mL. Human CSF was tested for CCL-2 (Cat No
L451AYA-1), BDNF (Cat No N45ZA-1), and β-NGF (custom made proto-
type), in a chemiluminescence assay based on the MSD technology
(Mesoscale Discovery, Gaithersburg,MA, US). The sampleswere captured
on the pre-coatedMSD plates andwere detected using a labeled biotinyl-
ated antibody directed towards the analyte of interest.
2.2.3. Autonomic activity and heart rate variability
Holter electrocardiography (ECG) was applied for 24 h measure-

ments during day and sleep at night. Recordings were manually read,
and readings with a high number of ectopic beats were discarded
from analysis. The normal-to-normal R–R interval (NN interval) was
utilized to perform computation of HRV measures from time and fre-
quency domains. In the time domain analysis heart rate, the square
root of the mean of the squares of differences between adjacent NN in-
tervals (RMSSD) and standard deviation of the NN intervals (SDNN)
represent the major components of the time domain HRV (Malik
et al., 1996) and were selected for the statistical analysis. The
power spectrum can be divided into three frequency bands of very
low frequency (VLF) 0.003–0.04 Hz, low frequency (LF) 0.04–0.15 Hz
and high frequency (HF) 0.15–0.4 Hz. Of these, LF and HF can be related
to the controlled and balanced behavior of the two branches of the auto-
nomic nervous system. The efferent vagal activity is amajor contributor to
theHF component, whereas themajor autonomic input on the LF compo-
nent is not entirely clear. It is considered to be contributed by either sym-
pathetic input only, or in some conditions to reflect a mixture of both
sympathetic and parasympathetic inputs (Malik et al., 1996). The LF/HF
ratio is related to the sympathetic/parasympathetic balance (Malik et al.,
1996).
2.3. Statistics

Overall group differences were analyzed by Kruskal–Wallis test and
post hoc group differences were assessed by independent samples
Mann–Whitney U-test. Correlations were analyzed by Spearmans' cor-
relation coefficient. p b 0.05 was considered as a statistically significant
difference. Means and standard deviations are presented in the text.
3. Results

3.1. Subject characterization

The FMpatients rated higher ongoing pain intensity (VAS) (p b 0.001)
compared to the RA patients. Furthermore, compared to the RA patients
and healthy controls, the FM patients reported higher ratings of fatigue
(RA; p b 0.002, controls; p b 0.001), sleep disturbance (RA and controls;
p b 0.001) and lower ratings of quality of life (mental and physical) (RA
and controls; p b 0.001). Compared to healthy controls, the RA patients
had higher ratings of fatigue (p b 0.001), sleep disturbance (p b 0.001)
and lower quality of life (SF-36: mental p b 0.014, physical p b 0.001)
(Table 1).
3.2. Serum concentrations of cytokines/chemokines

The serum concentrations (mean and standard deviations) are pre-
sented in Table 2. There were statistically significant (Kruskal–Wallis
test) overall group differences for TNF (p b 0.001), IL-1β (p b 0.001)
and IL-8 (p b 0.001), but only a tendency for IL-6 (p = 0.054). Post
hoc comparisons revealed significantly lower TNF and IL-1β serum con-
centrations in both patient groups compared to healthy controls
(p b 0.05). The RA patients had lower serum concentrations of TNF
(p b 0.006) and IL-1β (p b 0.001) compared to the FM patients. In con-
trast, the FM patients had higher serum IL-8 concentrations compared
to the RA patients (p b 0.001) and healthy controls (p b 0.02), and the
RA patients had lower serum IL-8 levels compared to healthy controls
(p b 0.002). Although the overall group difference was not statistically
significant post hoc comparisons, as expected, revealed higher serum
IL-6 levels in the RA patients compared to healthy controls (p b 0.029).

3.3. Cerebrospinal fluid concentrations of cytokines/chemokines

One FMCSF samplewas lost due to technical failure and therefore 14
samples were analyzed. The CSF concentrations (mean and standard
deviations) are presented in Table 3. Compared to the FM patients, the
RA patients had significantly higher CSF IL-1β, but lower IL-1Ra. The
reverse was true for IL-8, with higher levels in the FM patients com-
pared to the RA patients. In addition, the FM patients had higher CSF
IL-4 and IL-10 levels compared to the RA patients. Although not statisti-
cally significant, the FM patients also tended to have higher CSF TNF
concentrations. There were no significant group differences in CSF IL-6
or CCL-2. CSF BDNF and NGF levels were below detection limit in all
the FM and RA patients.

3.4. Relationships between serum and CSF levels of cytokines/chemokines

CSF concentrations of IL-1β and IL-8 were higher than correspond-
ing serum concentrations in the FM (IL-1β p b 0.002; IL-8 p b 0.001)
and RA (IL-1β p b 0.007; IL-8 p b 0.004) patients. TNF was higher
in serum compared to CSF in the FM (p b 0.001) and RA patients
(p b 0.001). There were no statistically significant differences between
CSF and serum IL-6 concentrations in either group. Therewere no statis-
tically significant correlations between serum and CSF concentrations
for any of the assessed cytokines/chemokines.

3.5. Autonomic activity in patients and controls

Overall group differences concerning time and frequency domain
HRVparameters are presented in Table 4. All three time-domain param-
eters differed significantly between RA and controls, and FM and con-
trols, respectively. There was a decrease in HF in RA compared to
controls, in line with decreased parasympathetic activity in RA. In FM
therewas a significantly increased ratio LF/HF, in linewith increased sym-
pathetic activity. There were no statistically significant differences be-
tween RA and FM in either time- or frequency domain HRV parameters.

3.6. Relationship between autonomic activity and cytokine levels

Concerning time-domain HRV parameters, there was a strong
negative correlation between serum IL-6 levels in RA and SDNN
(r = −0.868 p b 0.0001). Moreover, SDNN in RA correlated negatively
with CSF levels of IL-10 (r=−0.716, p b 0.006), and also serum IL-1beta
in FM and SDNN was significantly correlated (r = 0.646 p b 0.01). There
were no other correlations between CSF/serum cytokines and the time-
domain HRV parameters.

The frequency domain of HRV is known to reflect sympathetic/
parasympathetic balance. In RA, CSF IL-1β correlated positively with
LF/HF (r = 0.64; p b 0.05). Moreover, and in line with these data, RA
CSF IL-10 correlated negatively with LF (r = −0.58; p b 0.05). On the



Table 2
Serum cytokine and chemokine concentrations in fibromyalgia (FM) patients, rheumatoid
arthritis (RA) patients and healthy controls. Overall group differences are shown. Statistically
significant differences between FM and RA patients are marked † and significant differences
between controls and patients are marked ‡. p b 0.05 is regarded as a statistically significant
difference. SD = standard deviation. IL = interleukin, TNF = tumor necrosis factor.

Serum levels
(pg/mL)
Means ± SD

FM RA Controls Group
differences

IL-1β 0.59 ± 0.08‡
n = 15

0.02 ± 0.06†‡
n = 13

0.83 ± 0.24
n = 15

p b 0.001

IL-8 21.36 ± 5.54‡
n = 15

10.42 ± 6.68†‡
n = 12

16.58 ± 6.20
n = 15

p b 0.001

TNF 2.77 ± 1.61‡
n = 14

1.41 ± 0.96†‡
n = 13

4.42 ± 2.29
n = 15

p b 0.001

IL-6 1.45 ± 0.76
n = 14

7.50 ± 16.07‡
n = 14

1.21 ± 0.70
n = 15

p = 0.054

Table 4
Time and frequency domains of heart rate variability (HRV) infibromyalgia (FM) patients,
rheumatoid arthritis (RA) patients and healthy controls. Overall group differences
are shown. Statistically significant differences between patients and controls are marked
‡. SD = standard deviation. Bpm = beats per minute, RMSSD = the square root of the
mean squared differences between adjacent NN intervals, SDNN= the standard deviation
of the NN interval, NN interval = the normal-to-normal interval; all intervals between
adjacent QRS complexes resulting from sinus node depolarizations, LF = low frequency
power; HF = high frequency power; LF/HF = ratio LF (ms2)/HF (ms2).

Means ± SD FM RA Healthy
controls

Group
differences

Heart rate (bpm) 78 + 10‡
n = 15

75 + 6‡
n = 14

68 + 5
n = 15

p = 0.003

RMSSD (ms) 30.9 + 12.2‡
n = 15

29.2 + 8.1‡
n = 14

50.7 + 24.8
n = 15

p = 0.002

SDNN 124 + 24.9‡
n = 15

127.8 + 27.6‡
n = 14

152.9 + 33.0
n = 15

p = 0.02

LF 836 + 541
n = 15

530 + 213‡
n = 13

948 + 523
n = 15

NS

HF 410 + 259
n = 15

313 + 280‡
n = 13

759 + 657
n = 15

p = 0.018

LF/HF 3.41 + 1.30‡
n = 15

2.65 + 0.71
n = 13

2.23 + 1.0
n = 15

p = 0.036
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contrary, in the FM patients no significant correlations between CSF
cytokines and HRV were found. In serum, IL-1β and IL-10 in the RA
patients was not correlated to HRV, but serum IL-6 was correlated
inversely to LF both in RA (r = −0.55 p b 0.05) and controls
(r = −0.46; p b 0.05). There were no correlations between CSF IL-
6 or other CSF or serum cytokine levels and frequency domains of
HRV in the RA and FM patients.

4. Discussion

In accordance with our a priori hypothesis, the RA patients had a
reduced parasympathetic tone compared to controls and an inverse
correlation between CSF IL-1β levels and parasympathetic activity.
Compared to controls, the FM patients had increased sympathetic activ-
ity, but contrary to our hypothesis, we did not find a positive correlation
between CSF IL-8 and HRV measures of sympathetic tone. The RA pa-
tients had higher CSF concentrations of the pro-inflammatory IL-1β
and lower anti-inflammatory IL-1Ra, IL-4 and IL-10 compared to the
FM patients, whereas the FM patients had higher CSF levels of the pro-
inflammatory chemokine IL-8 compared to the RA patients. Thus we
found evidence of different CSF cytokine profiles in the patients with in-
flammatory, COX-2 dependent pain (RA) and dysfunctional, possibly
sympathetically mediated pain (FM). The CSF concentrations of IL-1β
and IL-8 were significantly higher than serum concentrations in both
groups indicating a central inflammatory response involving these
cytokines.
Table 3
Concentrations of cytokines and chemokines in cerebrospinal fluid (CSF) of fibromyalgia
(FM) and rheumatoid arthritis (RA) patients. Overall group differences are shown. p b

0.05 is regarded as a statistically significant difference. SD = standard deviation. IL =

interleukin, TNF = tumor necrosis factor, CCL-2 = chemokine (C–C motif) ligand 2,
IL-1Ra = interleukin 1 receptor antagonist.

CSF levels (pg/mL)
Means ± SD

FM RA Group differences

IL-1β 2.58 ± 1.98
n = 14

8.83 ± 7.21
n = 14

p = 0.002

IL-8 62.35 ± 26.26
n = 14

26.92 ± 14.07
n = 12

p b 0.001

TNF 0.38 ± 0.22
n = 14

0.26 ± 0.09
n = 14

NS (p = 0.056)

IL-6 1.80 ± 0.69
n = 14

1.60 ± 0.73
n = 14

NS

CCL-2 439.03 ± 114.54
n = 12

491.43 ± 134.74
n = 13

NS

IL-1Ra 27.50 + 4.96
n = 14

17.06 + 9.82
n = 14

p = 0.002

IL-4 0.25 + 0.20
n = 14

0.04 + 0.05
n = 14

p b 0.001

IL-10 0.43 + 0.19
n = 14

0.13 + 0.08
n = 14

p b 0.001
An important link for neuro-immune regulation is the cholinergic
anti-inflammatory pathway, termed as the inflammatory reflex, which
has been shown to impact immune regulation in experimental inflam-
matory conditions and arthritis (Tracey, 2007). Moreover, these vagus-
mediated neuro-immune mechanisms have also been shown to be
dysfunctional in several inflammatory diseases including RA (Tracey,
2007). In the present study, we could confirm a decreased vagus activity
in RA, with a marked decrease in HF. It has been discussed how much
peripheral inflammationmay influence the parasympathetic dysfunction
in RA and a relation to inflammatory state was indicated by the coupling
between parasympathetic dysfunction and clinical response to anti-TNF
therapy (Holman and Ng, 2008). Whereas the peripheral inflammatory
reflex is dependent upon activation of the alpha7 nicotinic receptor
(Tracey, 2007), CNS activation of the efferent, cholinergic vagus nerve is
mediated throughmuscarinic receptors (Pavlov et al., 2006). Interesting-
ly, earlier investigations have shown that interleukin IL-1β may cause
dysfunction in cholinergic neurotransmission (Schliebs et al., 2006).
Thus, our findings of an inverse correlation between elevated IL-1β levels
in RA CSF and parasympathetic activity may indicate that autonomic ac-
tivity in RA is centrally regulated through action of inflammatory cyto-
kines, such as IL-1β.

Interestingly, and in the RA patients only, we found an inverse corre-
lation between intrathecal levels of the anti-inflammatory cytokine IL-
10 and LF.Whereas themajor autonomic component of LF is not exactly
clear, LF has in some studies been related directly to sympathetic activ-
ity. Thus, in a post-infarction study beta-blockers were shown to reduce
LF, stressing the importance of adrenergic stimulation for this compo-
nent of HRV (Sandrone et al., 1994). In addition, central nervous sympa-
thetic outflow and intracerebral cathecolamine release has been shown
related to action of inflammatory cytokines (Szelenyi and Vizi, 2007),
and it is possible that intrathecal IL-10may thus have a regulating func-
tion in this context. When correlating the serum levels of cytokines to
HRV, we found an inverse correlation between serum IL-6 and LF in
both RA and controls. This pattern has earlier been described in healthy
controls (von Känel et al., 2008), and confirms the association of sys-
temic inflammation in relation to autonomic activity also under physio-
logical conditions.

In FM, we detected an increased sympathetic-to-parasympathetic
balance, which is well in line with previous data (Meeus et al., 2013),
however, no correlation was found between cerebrospinal cytokines/
chemokines and HRV. The fact that we failed to confirm a statistically
significant correlation between CSF IL-8 and HRV measures of sympa-
thetic activity in our FM cohort should be interpreted with caution
due to the small sample size. Previously, pain and stress have been
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directly associated with increased central nervous sympathetic outflow
(Li et al., 1996). Furthermore, in animal studies stress and activation of
sympathetic NS have been reported to increase the release of the IL-8
analogue CINC-1 from the hypothalamic–pituitary region (Sakamoto
et al., 1996;Matsumoto et al., 1997). The combination of elevated stress
levels (Schmidt-Wilcke and Clauw, 2011) and autonomic dysfunction
(Meeus et al., 2013) is in line with the proposal to regard FM as a
sympathetically mediated pain syndrome (Martinez-Lavin, 2007). The
latter is in agreement with our findings of higher CSF and serum IL-8
in the FM patients compared to the RA patients and also the increased
sympathetic activity in the FM patients, but not the RA patients, com-
pared to controls.

The different CSF cytokine patterns, i.e., higher CSF IL-1β and lower
anti-inflammatory IL-1Ra, IL-4 and IL-10 in an inflammatory painful
condition (RA) and higher CSF and serum IL-8 in a dysfunctional pain
syndrome (FM) tally reports from animal studies showing that the
two pro-inflammatory cytokines IL-1β and IL-8 contribute to pain and
hyperalgesia by different mechanisms (Cunha et al., 1991; Sachs et al.,
2002). Administration of IL-1β in peripheral tissues or intrathecally
stimulates COX-2 activity (Bartfai, 2001; Samad et al., 2001) and IL-1β
mediated increase in pain sensitivity can be prevented by COX-2 in-
hibitors (Cunha et al., 1991; Sachs et al., 2002; Samad et al., 2001). Phar-
macological agents counteracting the biological effects of IL-1β (in the
form, of anakinra, IL-1Ra) have been established in the treatment of
RA (Nam et al., 2010; Neurath and Finotto, 2011) and COX-2 inhibitors
have shown good pain relieving effects (Shi and Klotz, 2008). In contrast,
administration of IL-8 (or the rat analogue CINC-1) in peripheral tissues or
intrathecally causes an increase in pain sensitivity (Yamamoto et al.,
1998; Bartfai, 2001; Oh et al., 2001; Ahn et al., 2005) that can be reversed
by beta-adrenergic receptor antagonists (Ahn et al., 2005) or guanethi-
dine (Cunha et al., 1991) but not COX-2 inhibitors (Ahn et al., 2005),
which fits well with the inefficacy of COX-2 inhibitors in FM (Carville
et al., 2008). Contrary to our hypothesis, we found no group difference re-
garding CSF CCL-2. Despite the fact that CCL-2 has been implicated in the
activation of astrocytes, promoting their release of IL-1β (Gao and Ji,
2010)we found no evidence that this would be themechanism responsi-
ble for the elevated CSF IL-1β in our RA patients.

The RA patients had higher serum IL-6 compared to healthy controls
(but not the FM patients) and there was a positive correlation between
serum IL-6 levels and disease activity assessed by DAS28 (r = 0.585,
p = 0.028), as reported previously (Madhok et al., 1993; Nishimoto
et al., 2004, 2007). However, all the RA patients in the present study
were on DMARD medications, which might have influenced the serum
levels of pro-inflammatory cytokines (Eklund et al., 2007; Chen et al.,
2011) and could explain the lower TNF, IL-1β and IL-8 serum concentra-
tions compared to the healthy controls and the FM patients. Only serum
IL-8 levelswere higher in our FMpatients compared to healthy controls,
which is in accordance with other studies (Wallace et al., 2001; Gur
et al., 2002; Bazzichi et al., 2007; Wang et al., 2009; Ortega et al.,
2009; Kadetoff et al., 2012).

Despite the fact that cytokine/chemokine production is differentially
regulated in the peripheral and central compartments (Feldmann and
Maini, 2008), the compartments are integrated, thus cytokine/chemokine
levels in one compartment influence the concentrations in the other com-
partment (Szelenyi and Vizi, 2007). Our findings of higher IL-1β and IL-8
concentrations in the CSF compared to serum as well as the lack of corre-
lations between the CSF and serum levels in both groups does not favor
simple transport or leakage of the cytokines across the blood–brain-
barrier (BBB) (Gutierrez and Kastin, 1993; Banks et al., 1995; Watkins
et al., 1995; Quan and Herkenham, 2002). Rather our data would indi-
cate central cytokine/chemokine production. Notably, circulating cyto-
kines can affect the CNS indirectly by activating the brain endothelium
to produce pro-inflammatory cytokines (Reijerkerk et al., 2012),
such as IL-1β (Szelenyi, 2001) or IL-8 analogue (Zidovetzki et al.,
1999; Chen et al., 2001) thus permitting the signal to be transduced
from the blood stream into the CNS without the need to cross the
BBB (Szelenyi, 2001). In addition, peripheral injections of pro-
inflammatory cytokines/chemokines have the potential to activate
glia cells (Watkins and Maier, 2005) and activated glia can produce
IL-1β in response to inflammatory stimuli (Pinteaux et al., 2002; Guo
et al., 2007) and also have the potential to produce IL-8 (Milligan and
Watkins, 2009). Our results indicate that the pattern of the release of
pro-inflammatory substances in the CNS could reflect peripheral inflam-
matory mechanisms, and thus result in specific patterns for different
conditions.

While the communication between peripheral tissues and CNS is
well established, the reverse, i.e., if central inflammation mediated
by activated glia or neurons affects efferent signaling remains highly
speculative. However, the inverse correlation between CSF IL-1β and
parasympathetic activity in our RA patients, as well as the symmetric dis-
tribution of arthritis in RA with reports of remission of RA in hemiparetic
limbs following ischemic cerebral infarcts (Keyszer et al., 2004), suggests
that also an efferent communication, i.e., CNS to peripherymight be of rel-
evance. The concentrations of TNFwere higher in the serum than in CSF in
both groups and IL-6 levels were not statistically different between the
serum and CSF in either group. The lack of significant up-regulation of
these pro-inflammatory cytokines in CSF compared to the serum is in
line with previous data demonstrating low levels of these cytokines in
CNS (Vladic et al., 2002).

4.1. Limitations
The present study suffers from several limitations. For ethical

reasons we had to keep to a low number of subjects in the patient
groups and we had no healthy CSF controls. Furthermore, patients
were recruited from specialized clinics and thusmay not be representa-
tive for FMor RApopulations as such. For ethical reasons the RApatients
could not be taken off DMARDS, which most likely affected the serum
assessments and possibly also the CSF through indirect mechanisms.
Furthermore, the serum samples were not available to compare
IL-1Ra, IL-4, IL-10 and CCL-2 in all groups.

5. Conclusions

In conclusion, we found differential CSF cytokine profiles with
higher IL-1β and lower IL-1Ra, IL-4 and IL-10 in the CSF of the RA
patients, compared to FM and higher IL-8 in the CSF of the FM patients
compared to RA. Our results indicate different profiles of central cyto-
kine release, i.e., IL-1β in the patients with inflammatory, prostaglandin
associated pain (RA) and IL-8 in the patients with dysfunctional, possibly
sympathetically mediated pain (FM). Furthermore, RA was associated
with decrease in vagus activity, which correlated with elevated cerebral
IL-1β levels in accordance with the cholinergic anti-inflammatory
pathway, whereas autonomic disturbances in FM were characterized by
sympathetic over-activity but did not correlate to the CSF IL-8 levels.
Further studies assessing the usefulness of pro-inflammatory cytokines
for diagnostic purposes and to increase the understanding of chronic
pain mechanisms are needed. Our results indicate that a bi-directional
communication between peripheral tissues and CNS involving the im-
mune system and glia could be of outmost importance in chronic pain
conditions. Increased understanding of these mechanisms could open
up for truly new treatment approaches.

Acknowledgments

We thank Rosmarie Johnson and Seija Johansson for excellent
assistance in clinical assessments and lumbar puncture. The study was
supported by the Swedish Research Council (K2009-53X-21070-01-3
and 2009-3808), the Swedish Rheumatism Association, the Karolinska
Institute Foundations, the Stockholm County Council (20090060 and
20100126), the Swedish Foundation for Strategic Research and the EU
Project FP7-Health-2013-Innovation-1602919-2.



54 E. Kosek et al. / Journal of Neuroimmunology 280 (2015) 49–55
References

Ahn, D.K., Lee, K.R., Lee, H.J., Kim, S.K., Choi, H.S., Lim, E.J., Park, J.S., 2005. Intracisternal
administration of chemokines facilitated formalin-induced behavioral responses in
the orofacial area of freely moving rats. Brain Res. Bull. 66, 50–58.

Aletaha, D., Neogi, T., Silman, A.J., Funovits, J., Felson, D.T., Bingham, C.O., Birnbaum, N.S.,
Burmester, G.R., Bykerk, V.P., Cohen, M.D., Combe, B., Costenbader, K.H., Dougados,
M., Emery, P., Ferraccioli, G., Hazes, J.M., Hobbs, K., Huizinga, T.W., Kavanaugh, A.,
Kay, J., Kvien, T.K., Laing, T., Mease, P., Ménard, H.A., Moreland, L.W., Naden, R.L.,
Pincus, T., Smolen, J.S., Stanislawska-Biernat, E., Symmons, D., Tak, P.P., Upchurch,
K.S., Vencovský, J., Wolfe, F., Hawker, G., 2010. Rheumatoid arthritis classification
criteria: an American College of Rheumatology/European League Against Rheuma-
tism collaborative initiative. Arthritis Rheum. 62, 2569–2581.

Arendt-Nielsen, L., Nie, H., Laursen, M.B., Laursen, B.S., Madeleine, P., Simonsen, O.H.,
Graven-Nielsen, T., 2010. Sensitization in patients with painful knee osteoarthritis.
Pain 149, 573–581.

Arnett, F.C., Edworthy, S.M., Bloch, D.A., McShane, D.J., Fries, J.F., Cooper, N.S., Healey, L.A.,
Kaplan, S.R., Liang, M.H., Luthra, H.S., MedsgerJR, T.A., Mitchell, D.M., Neustadt, D.H.,
Pinals, R.S., Schaller, J.G., Sharp, J.T., Wilder, R.L., Hunder, G.G., 1988. The American
Rheumatism Association 1987 revised criteria for the classification of rheumatoid
arthrtitis. Arthritis Rheum. 3, 315–324.

Backonja, M., Coe, C.L., Muller, D.A., Schell, K., 2008. Altered cytokine levels in the blood
and cerebrospinal fluid of chronic pain patients. J. Neuroimmunol. 195, 157–163.

Banks, W.A., Kastin, A.J., Broadwell, R.D., 1995. Passage of cytokines across the blood–brain
barrier. Neuroimmunomodulation 2, 241–248.

Bartfai, T., 2001. Telling the brain about pain. Nature 410, 425–427.
Bazzichi, L., Rossi, A., Massimetti, G., Giannaccini, G., Giuliano, T., Feo, F.D., Ciapparelli, A.,

Dell'Osso, L., Bombardieri, S., 2007. Cytokine patterns in fibromyalgia and their correla-
tion with clinical manifestations. Clin. Exp. Rheumatol. 25, 225–230.

Buysse, D., Reynolds, I., Monk, C., Kupfer, D., 1989. The Pittsburg Sleep Quality Index: a
new instrument for psychiatric practice and research. Psychiatry Res. 28, 193–213.

Carville, S., Arendt-Nielsen, L., Bliddal, H., Blotman, F., Branco, J., Buskila, D., DaSilva, J.,
Danneskiøld-Samsøe, B., Dincer, F., Henriksson, C., Henriksson, K., Kosek, E.,
Longley, K., McCarthy, G., Perrot, S., Puszczewicz, M., Sarzi-Puttini, P., Silman, A.,
Späth, M., Choy, E., 2008. EULAR evidence based recommendations for the manage-
ment of fibromyalgia syndrome. Ann. Rheum. Dis. 67, 536–541.

Chen, P., Shibata, M., Zidovetzki, R., Fisher, M., Zlokovic, B.V., Hofman, F.M., 2001.
Endothelin-1 and monocyte chemoattractant protein-1 modulation in ischemia and
human brain-derived endothelial cell cultures. J. Neuroimmunol. 116, 62–73.

Chen, D.-Y., Chen, Y.-M., Chen, H.-H., Hsieh, C.-W., Lin, C.-C., Lan, J.-L., 2011. Increasing
levels of circulating Th17 cells and interleukin-17 in rheumatoid arthritis patients
with an inadequate response to anti-TNF-a therapy. Arthritis Res. Ther. 13, R126.

Contopoulos-Ioannidis, D., Karvouni, A., Kouri, I., Ioannidis, J., 2009. Reporting and inter-
pretation of SF-36 outcomes in randomised trials: systematic review. BMJ 339, 3006.

Cunha, F.Q., Lorenzetti, B.B., Poole, S., Ferreira, S.H., 1991. Interleukin-8 as a mediator of
sympathetic pain. Br. J. Pharmacol. 104, 765–767.

Cunha, T.M., Verri, W.A., Silva, J.S., Poole, S., Cunha, F.Q., Ferreira, S.H., 2005. A cascade of
cytokines mediates mechanical inflammatory hypernociception in mice. PNAS 102,
1755–1760.

Eklund, K.K., Leirisalo-Repo, M., Ranta, P., Mäki, T., Kautiainen, H., Hannonen, P., Korpela,
M., Hakala, M., Järvinen, P., Möttönen, T., for the FIN-RACo Trial Group, 2007. Serum
IL-1β levels are associated with the presence of erosions in recent onset rheumatoid
arthritis. Clin. Exp. Rheumatol. 25, 684–689.

Feldmann, M., Maini, R.N., 2008. Role of cytokines in rheumatoid arthritis: an education in
pathophysiology and therapeutics. Immunol. Rev. 223, 7–19.

Gao, Y.-J., Ji, R.-R., 2010. Targeting astrocyte signaling for chronic pain. Neurotherapeutics
7, 482–493.

Guo, W., Wang, H., Watanabe, M., Shimizu, K., Zou, S., LaGraize, S.C., Wei, F., Dubner, R.,
Ren, K., 2007. Glial–cytokine–neuronal interactions underlying the mechanisms of
persistent pain. J. Neurosci. 27, 6006–6018.

Gur, A., Karakoc, M., Nas, K., Cevik, R., Denli, A., Sarac, J., 2002. Cytokines and depression in
cases with fibromyalgia. J. Rheumatol. 29, 358–361.

Gutierrez, E.G.B.W., Kastin, A.J., 1993. Murine tumor necrosis factor alpha is transported
from blood to brain in the mouse. J. Neuroimmunol. 47, 169–176.

Gwilym, S.E., Keltner, J.R., Warnaby, C.E., Carr, A.J., Chizh, B., Chessell, I., Tracey, I.,
2009. Psychophysical and functional imaging evidence supporting the presence
of central sensitization in a cohort of osteoarthritis patients. Arthritis Rheum.
61, 1226–1234.

Holman, A.J., Ng, E., 2008. Heart rate variability predicts anti-tumour necrosis factor
therapy response for inflammatory arthritis. Auton. Neurosci. 143, 58–67.

Janse Van Rensburg, D.C., Ker, J.A., Grant, C.C., Fletcher, L., 2012. Autonomic impairment in
rheumatoid arthritis. Int. J. Rheum. Dis. 15, 419–426.

Kadetoff, D., Lampa, J., Westman, M., Andersson, M., Kosek, E., 2012. Evidence of central
inflammation in fibromyalgia — increased cerebrospinal fluid interleukin-8 levels.
J. Neuroimmunol. 242, 33–38.

Keyszer, G., Langer, T., Kornhuber, M., Taute, B., Horneff, G., 2004. Neurovascular mecha-
nisms as a possible cause of remission of rheumatoid arthritis in hemiparetic limbs.
Ann. Rheum. Dis. 63, 1349–1351.

Kosek, E., Ordeberg, G., 2000a. Lack of pressure pain modulation by heterotopic noxious
conditioning stimulation in patients with painful osteoarthritis before, but not
following, surgical pain relief. Pain 88, 69–78.

Kosek, E., Ordeberg, G., 2000b. Abnormalities of somatosensory perception in patients
with painful osteoarthritis normalize following successful treatment. Eur. J. Pain 4,
229–238.

Kosek, E., Ekholm, J., Hansson, P., 1996. Sensory dysfunction in fibromyalgia patients with
implications for pathogenic mechanisms. Pain 68, 375–383.
Kotani, N., Kudo, R., Sakurai, Y., Sawamura, D., Sessler, D.I., Okada, H., Nakayama, H.,
Yamagata, T., Yasujima, M., Matsuki, A., 2004. Cerebrospinal fluid interleukin 8 con-
centrations and the subsequent development of postherpetic neuralgia. Am. J. Med.
116, 318–324.

Lampa, J., Westman, M., Kadetoff, D., Nordenstedt Agréus, A., Le Maître, E., Gilllis-
Haegerstrand, C., Andersson, M., Khademi, M., Corr, M., Christianson, C.A.,
Delaney, A., Yaksh, T.L., Kosek, E., Svensson, C.I., 2012. Peripheral inflammatory
disease associated with centrally activated IL-1 system in humans and mice.
PNAS 109, 12728–12733.

Leffler, A.S., Kosek, E., Lerndal, T., Nordmark, B., Hansson, P., 2002. Somatosensory perception
and function of diffuse noxious inhibitory controls (DNIC) in patients suffering from
rheumatoid arthritis. Eur. J. Pain 6, 161–176.

Li, H.Y., Ericsson, A., Sawchenko, P.E., 1996. Distinctmechanisms underlie activation of hy-
pothalamic neurosecretory neurons and their medullary catecholaminergic afferents
in categorically different stress paradigms. PNAS 19, 2359–2364.

Lin, J.-M., Brimmer, D., Maloney, E., Nyarko, E., BeLue, R., Reeves, W., 2009. Further valida-
tion of the Multidimensional Fatigue Inventory in a US adult population sample.
Popul. Health Metrics 7, 18.

Lundborg, C., Hahn-Zoric, M., Biber, B., Hansson, E., 2010. Glial cell line-derived neuro-
trophic factor is increased in cerebrospinal fluid but decreased in blood during
long-term pain. J. Neuroimmunol. 220, 108–113.

Madhok, R., Crilly, A., Watson, J., Capell, H.A., 1993. Serum interleukin 6 levels in rheumatoid
arthritis: correlations with clinical and laboratory indices of disease activity. Ann.
Rheum. Dis. 52, 232–234.

Malik, M., The Task Force of the European Society of Cardiology, The North American Society
of Pacing and Electrophysiology, 1996. Heart rate variability; standards ofmeasurement,
physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381.

Martinez-Lavin, M., 2007. Biology and therapy of fibromyalgia: stress, the stress response
system, and fibromyalgia. Arthritis Res. Ther. 9, 216.

Matsumoto, K., Koike, K., Miyake, A., Watanabe, K., Konishi, K., Kiyama, H., 1997. Noxious
stimulation enhances release of cytokine-induced neutrophil chemoattractant from
hypothalamic neurosecretory cells. Neurosci. Res. 27, 181–184.

Meeus, M., Goubert, D., DeBacker, F., Struyf, F., Hermans, L., Coppieters, I., DeWandele, I.,
DaSilva, H., Calders, P., 2013. Heart rate variability in patients with fibromyalgia
and patients with chronic fatigue syndrome: a systematic review. Semin. Arthritis
Rheum. 43, 279–287.

Milligan, E.,Watkins, L., 2009. Pathological and protective roles of glia in chronic pain. Nat.
Rev. Neurosci. 10, 23–36.

Nam, J.L., Winthrop, K.L., Vollenhoven, RFv, Pavelka, K., Valesini, G., Hensor, E.M.A.,
Worthy, G., Landewé, R., Smolen, J.S., Emery, P., Buch, M.H., 2010. Current evidence
for the management of rheumatoid arthritis with biological disease-modifying anti-
rheumatic drugs: a systematic literature review informing the EULAR recommenda-
tions for the management of RA. Ann. Rheum. Dis. 69, 976–986.

Neurath, M.F., Finotto, S., 2011. IL-6 signaling in autoimmunity, chronic inflammation and
inflammation-associated cancer. Cytokine Growth Factor Rev. 22, 83–89.

Nishimoto, N., Yoshizaki, K., Miyasaka, N., Yamamoto, K., Kawai, S., Takeuchi, T., Hashimoto,
J., Azuma, J., Kishimoto, T., 2004. Treatment of rheumatoid arthritis with humanized
anti-interleukin-6 receptor antibody. A multicenter, double-blind, placebo-controlled
trial. Arthritis Rheum. 50, 1761–1769.

Nishimoto, N., Hashimoto, J., Miyasaka, N., Yamamoto, K., Kawai, S., Takeuchi, T., Murata,
N., VanDerHeijde, D., Kishimoto, T., 2007. Study of active controlled monotherapy
used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): evidence of clinical and
radiographic benefit from an x ray reader-blinded randomised controlled trial of toci-
lizumab. Ann. Rheum. Dis. 66, 1162–1167.

Oh, S.B., Tran, P.B., Gillard, S.E., Hurley, R.W., Hammond, D.L., Miller, R.J., 2001.
Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting
primary nociceptive neurons. J. Neurosci. 21, 5027–5035.

Ortega, E., García, J.J., Bote, M.E., Martín-Cordero, L., Escalante, Y., Saavedra, J.M., Northoff,
H., Giraldo, E., 2009. Exercise in fibromyalgia and related inflammatory disorders:
known effects and unknown chances. Exerc. Immunol. Rev. 15, 42–65.

Pavlov, V.A., Ochani, M., Gallowitsch-Puerta, M., Ochani, K., Huston, J.M., Czura, C.J., Al-
Abed, Y., Tracey, K.J., 2006. Central muscarinic cholinergic regulation of the systemic
inflammatory response during endotoxemia. PNAS 103, 5219–5223.

Pinteaux, E., Parker, L.C., Rothwell, N.J., Luheshi, G.N., 2002. Expression of
interleukin-1 receptors and their role in interleukin-1 actions in murine microglial
cells. J. Neurochem. 83, 754–763.

Quan, N., Herkenham, M., 2002. Connecting cytokines and brain: a review of current
issues. Histol. Histopathol. 17, 273–288.

Reijerkerk, A., Lakeman, K.A., Drexhage, J.A., VanHetHof, B., VanWijck, Y., VanderPol, S.M.,
Kooij, G., Geerts, D., DeVries, H.E., 2012. Brain endothelin barrier passage by mono-
cytes is controlled by the endothelin system. J. Neurochem. 121, 730–737.

Sachs, D., Cunha, F.Q., Poole, S., Ferreira, S.H., 2002. Tumour necrosis factor-a, interleukin-
1b and interleukin-8 induce persistent mechanical nociceptor hypersensitivity. Pain
96, 89–97.

Sakamoto, Y., Koike, K., Kiyama, H., Konishi, K., Watanabe, K., Tsurufuji, S., Bicknell, R.J.,
Hirota, K., Miyake, A., 1996. A stress-sensitive chemokinergic neuronal pathway in
the hypothalamo-pituitary system. Neuroscience 75, 133–142.

Samad, T.A., Moore, K.A., Sapirstein, A., Billet, S., Allchorne, A., Poole, S., Bonventrek, J.V.,
Woolf, C.J., 2001. Interleukin-1beta-mediated induction of Cox-2 in the CNS contrib-
utes to inflammatory pain hypersensitivity. Nature 410, 471–475.

Sandrone, G., Mortara, A., Torzillo, D., LaRovere, M.T., Malliani, A., Lombardi, F., 1994.
Effects of beta blockers (atenolol or metoprolol) on heart rate variability after acute
myocardial infarction. Am. J. Cardiol. 74, 340–345.

Schliebs, R., Heidel, K., Apelt, J., Gniezdzinska, M., Kirazov, L., Szutowicz, A., 2006. Interac-
tion of interleukin 1-beta with muscarinic acetylcholine-mediated signaling cascade
in cholinergically differentiated SH-SY5Y cells. Brain Res. 1122, 78–85.

http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0005
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0005
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0005
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0010
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0010
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0010
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0015
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0015
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0020
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0020
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0020
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0025
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0025
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0030
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0030
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0035
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0040
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0040
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0045
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0045
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0050
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0050
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0055
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0055
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0060
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0060
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0060
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0065
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0065
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0070
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0070
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0075
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0075
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0075
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0365
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0365
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0365
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0085
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0085
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0090
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0090
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0095
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0095
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0100
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0100
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0105
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0105
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0110
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0110
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0110
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0115
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0115
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0120
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0120
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0125
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0125
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0125
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0130
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0130
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0130
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0140
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0140
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0140
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0145
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0145
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0145
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0135
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0135
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0150
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0150
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0150
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0155
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0155
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0155
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0160
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0160
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0160
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0165
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0165
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0165
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0170
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0170
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0170
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0175
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0175
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0175
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0180
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0180
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0180
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0370
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0370
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0190
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0190
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0195
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0195
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0195
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0200
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0200
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0200
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0205
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0205
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0375
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0375
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0375
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0375
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0215
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0215
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0220
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0220
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0220
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0225
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0225
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0225
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0225
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0230
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0230
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0235
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0235
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0240
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0240
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0245
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0245
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0245
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0250
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0250
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0255
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0255
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0260
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0260
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0260
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0265
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0265
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0270
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0270
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0275
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0275
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0280
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0280
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0280


55E. Kosek et al. / Journal of Neuroimmunology 280 (2015) 49–55
Schmidt-Wilcke, T., Clauw, D.J., 2011. Fibromyalgia: from pathophysiology to therapy.
Nat. Rev. Rheumatol. 7, 518–527.

Shi, S., Klotz, U., 2008. Clinical use and pharmacological properties of selective COX-2 in-
hibitors. Eur. J. Clin. Pharmacol. 64, 233–252.

Sofroniew, M.V., Howe, C.L., Mobley, W.C., 2001. Nerve growth factor signaling, neuropro-
tection, and neural repair. Annu. Rev. Neurosci. 24, 1217–1281.

Szelenyi, J., 2001. Cytokines and the central nervous system. Brain Res. Bull. 54, 329–338.
Szelenyi, J., Vizi, E.S., 2007. The catecholamine–cytokine balance interaction between the

brain and the immune system. Ann. N. Y. Acad. Sci. 1113, 311–324.
Tracey, K.J., 2007. Physiology and immunology of the cholinergic anti-inflammatory path-

way. J. Clin. Invest. 117, 289–296.
Verri, W.A., Cunha, T.M., Parada, C.A., Poole, S., Cunha, F.Q., Ferreira, S.H., 2006.

Hypernociceptive role of cytokines and chemokines: targets for analgesic drug devel-
opment? Pharmacol. Ther. 112, 116–138.

Vladic, A., Horvat, G., Vukadin, S., Sucic, Z., Simaga, S., 2002. Cerebrospinal fluid and serum
protein levels if tumour necrosis factor-alpha (THF-alpha), interleukin-6 (IL-6) and
soluble interleukin-6 (IL-6) and soluble interleukin-6 receptor (sIL-6 gp80) in multi-
ple sclerosis patients. Cytokine Growth Factor Rev. 20, 86–89.

von Känel, R., Nelesen, R.A., Mills, P.J., Ziegler, M.G., Dimsdale, J.E., 2008. Relationship
between heart rate variability, interleukin-6, and soluble tissue factor in healthy sub-
jects. Brain Behav. Immun. 22, 461–468.
Wallace, D., Linker-Israeli, M., Hallegua, D., Silverman, S., Silver, D., Weisman, M., 2001.
Cytikines play an aetiopathogenetic role in fibromyalgia: a hypothesis and pilot
study. Rheumatology 40, 743–749.

Wang, H., Buchner, M., Moser, M.T., Daniel, V., Schiltenwolf, M., 2009. The role of IL-8 in
patients with fibromyalgia. A prospective longitudinal study of 6 months. Clin.
J. Pain 25, 1–4.

Watkins, L.R., Maier, S.F., 2005. Immune regulation of central nervous system functions:
from sickness responses to pathological pain. J. Int. Med. 257, 139–155.

Watkins, L.R., Maier, S.F., Goehler, L.E., 1995. Cytokine-to-brain communication: a review
& analysis of alternative mechanisms. Life Sci. 57, 1011–1026.

Wolfe, F., Smythe, H.A., Yunus, M.B., Bennett, R.M., Bombardier, C., Goldenberg, D.L.,
Tugwell, P., Cambell, S.M., Abeles, M., Clark, P., Gatter, A.G., Hamaty, D., Lessard, J.,
Lichtbroun, A.S., Masi, A.T., McCain, G.A., Reynolds, W.J., Romano, T.J., Russell, I.J.,
Sheon, R.P., 1990. The American College of Rheumatology 1990 criteria for the classi-
fication of fibromyalgia. Arthritis Rheum. 33, 160–172.

Yamamoto, J., Nishiyori, A., Takami, S., Ohtani, Y., Minami, M., Satoh, M., 1998. A hyperalgesic
effect of intracerebroventricular cytokine-induced neutrophil chemoattractant-1 in the
rat paw pressure test. Eur. J. Pharmacol. 363, 131–133.

Zidovetzki, R., Chen, P., Chen, M., Hofman, F.M., 1999. Endothelin-1-induced interleukin-8
production in human brain-derived endothelial cells is mediated by the protein
kinase C and protein tyrosine kinase pathways. Blood 94, 1291–1299.

http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0285
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0285
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0290
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0290
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0295
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0295
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0300
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0305
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0305
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0310
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0310
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0315
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0315
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0320
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0320
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0320
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0320
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0325
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0325
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0325
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0330
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0330
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0335
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0335
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0335
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0345
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0345
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0340
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0340
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0350
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0350
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0360
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0360
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0360
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0355
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0355
http://refhub.elsevier.com/S0165-5728(15)00035-1/rf0355

	Evidence of different mediators of central inflammation in dysfunctional and inflammatory pain — Interleukin-�8 in fibromya...
	1. Introduction
	2. Materials & methods
	2.1. Subjects
	2.1.1. FM patients
	2.1.2. RA patients
	2.1.3. Healthy controls

	2.2. Procedures
	2.2.1. Pain ratings and questionnaires
	2.2.2. Lumbar puncture and cytokine measurements in CSF and serum
	2.2.3. Autonomic activity and heart rate variability

	2.3. Statistics

	3. Results
	3.1. Subject characterization
	3.2. Serum concentrations of cytokines/chemokines
	3.3. Cerebrospinal fluid concentrations of cytokines/chemokines
	3.4. Relationships between serum and CSF levels of cytokines/chemokines
	3.5. Autonomic activity in patients and controls
	3.6. Relationship between autonomic activity and cytokine levels

	4. Discussion
	Outline placeholder
	4.1. Limitations


	5. Conclusions
	Acknowledgments
	References


