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Abstract

Surgical cure of glioblastomas is virtually impossi-

ble and their clinical course is mainly determined by

the biologic behavior of the tumor cells and their

response to radiation and chemotherapy. We inves-

tigated whether response to temozolomide (TMZ)

chemotherapy differs in subsets of malignant glio-

blastomas defined by genetic lesions. Eighty patients

with newly diagnosed glioblastoma were analyzed

with comparative genomic hybridization and loss of

heterozygosity. All patients underwent radical resec-

tion. Fifty patients received TMZ after radiotherapy

(TMZ group) and 30 patients received radiotherapy

alone (RT group). The most common aberrations de-

tected were gains of parts of chromosome 7 and losses

of 10q, 9p, or 13q. The spectrum of genetic aberrations

did not differ between the TMZ and RT groups. Patients

treated with TMZ showed significantly better survival

than patients treated with radiotherapy alone (19.5

vs 9.3 months). Genomic deletions on chromosomes

9 and 10 are typical for glioblastoma and associated

with poor prognosis. However, patients with these

aberrations benefited significantly from TMZ in uni-

variate analysis. In multivariate analysis, this effect was

pronounced for 9p deletion and for elderly patients

with 10q deletions, respectively. This study demon-

strates that molecular genetic and cytogenetic analy-

ses potentially predict responses to chemotherapy in

patients with newly diagnosed glioblastomas.
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Introduction

Treatment of diffuse gliomas still remains one of the

most disappointing tasks in oncology. Surgical cure of

these infiltrating brain tumors is virtually impossible. The

clinical course is determined by the biologic behavior of

the tumor, including growth rate and response to radiation

and chemotherapy.

Neuropathologic diagnosis is the most valuable tool for

the classification of human tumors. However, within neuro-

pathologic entities, morphologic and immunohistochemical

analyses usually cannot predict prognosis and response to

therapy. However, molecular genetic analysis has succeeded

in determining distinct genetic subgroups that may exhibit

different biologic behavior [1–3].

Trials on the effects of systemic chemotherapy on survival

and recurrence in adults with high-grade gliomas showed

extended survival times, but there was no evidence that the

effect of chemotherapy depended on age, sex, histology,

Karnofsky performance status (KPS), or extent of resection [4].

However, patients of young age and with complete resection

have a considerably better prognosis [5–7]. Temozolomide

(TMZ), an orally administered second-generation imidazote-

trazine, has been demonstrated to increase the survival time

of glioma patients [8]. Phase II studies of TMZ (versus procar-

bazine) showed that TMZ has an acceptable safety profile

and can improve the quality of life [8–10].

Abbreviations: CGH, comparative genomic hybridization; GBM, glioblastoma multiforme;
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Health Organization
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Numerous studies revealed that themost common somatic

chromosomal changes in malignant gliomas are complete or

partial loss of chromosome 10 and gain of chromosome 7.

Various molecular genetic alterations have been identified,

including the amplification of EGFR, CDK4, and MDM2, as

well as the deletion of tumor-suppressor genes like TP53

(17p), RB (13q), CDKN2A (9p), CDKN2B (9p), PTEN (10q),

and DMBT1 (10q) [2,11–15]. These tumor-suppressor genes

play crucial roles in the regulation of cell proliferation and

apoptosis. The TP53 gene product, p53, is involved in the

regulation of cell repair, apoptosis, and cell cycle. Cyclin-

dependent kinases (cdk), such as CDK4 and their inhibitors,

p16 and p15, proteins from CDKN2A and CDKN2B, and

pRB, are key regulators of the cell cycle. The gene products

of CDKN2A/B locus on 9p also participate in the TP53 path-

way through a protein encoded by an alternate reading

frame, p14arf, which binds to the p53/MDM2 complex and

inhibits MDM2-mediated degradation of p53. Therefore,

homozygous deletion of the CDKN2A/B locus affects both

Rb and TP53 pathways [16].

In recent years, studies have identified a correlation be-

tween alterations on chromosome 10q and shorter survival

in patients with high-grade glioma. Tada et al. [3] reported

significantly shorter survival rates of patients with glioblas-

toma multiforme (GBM) with loss of heterozygosity (LOH) on

10q containing the PTEN/MMAC1 gene, and in anaplastic

astrocytoma patients with LOH on 10q in the region contain-

ing DMBT1. Several authors [3,17–19] detected poorer sur-

vival rates associated with LOH on 10q in glioblastomas,

but showed that PTEN mutation is only marginally asso-

ciated with survival [17,20].

A further candidate on chromosome arm 10q is MGMT.

The MGMT gene encodes for the DNA repair enzyme

O6-alkylguanine-DNA-alkyltransferase, which is responsible

for protecting cells from alkylating agents. The enzyme ef-

ficiently removes methyl adducts at the O-6 position of gua-

nine, which is an important target of alkylating agents [21].

It could been shown that the sensitivity to alkylating agents

like BCNU correlates inversely toMGMT activity [22,23]. The

responsiveness to BCNU is associated with an increase in

overall survival rate [24]. Further on, the presence of aber-

rant promoter hypermethylation of MGMT was associated

with loss of the MGMT protein, in contrast to retention of

protein in the majority of tumors without hypermethylation

[25]. Further clinical trials suggested that methylation of the

MGMT promoter is predictive for better outcome in patients

with malignant gliomas treated with alkylating agents such

as TMZ [26–28].

Gains of chromosome 7 are known to be associated with

shorter patient survival in anaplastic astrocytomas and low-

grade astrocytomas [29,30], but, to our knowledge, no cor-

relation between additional copies of chromosome 7 and

survival in GBM has been found so far. However, EGFR

amplification is considered to be an unfavorable marker for

survival [31,32]. Further indicators of poor prognosis are

LOH on 9p [17,33] and p16 mutations [34].

Chemosensitivity and prolonged overall survival of pa-

tients with anaplastic oligodendroglioma have recently

been linked to specific genetic alterations, namely LOH on

1p or combined LOH on 1p and 19q, and the absence of

homozygous deletion of the CDKN2A tumor-suppressor

gene on 9p21 [19,35]. Apart from these data on the effect

of genetic changes on the overall prognosis of gliomas, there

is no information at the moment on the significance of further

genetic changes on therapy response. Therefore, we ana-

lyzed a series of TMZ-treated patients in comparison to a

retrospective, conventionally treated control group with

newly diagnosed glioblastoma with respect to the above-

mentioned typical chromosomal alterations in glioblastomas.

The aim of this study was to determine whether spe-

cific genetic markers predict response to TMZ chemother-

apy and may serve as parameters for the rational design

of chemotherapy.

Materials and Methods

Patients

In total, 80 cases of newly diagnosed glioblastomas

operated on during the period of 1997 to 2003 were studied

(Table 1). The patients were treated in two centers: 48 pa-

tients in the Department of Neurosurgery of the Saarland

University and 32 patients in the Department of Neuro-

surgery, Charité, University Berlin. Patients eligible for this

nonrandomized study were 18 to 70 years of age, with a

histologically proven GBM (World Health Organization [WHO]

grade IV astrocytoma) [2] and a KPS of 70 or better. Patients

with renal, hepatic, or bone marrow impairment; HIV infec-

tion; prior chemotherapy; or stereotactic biopsy were ex-

cluded. All patients underwent radical resection followed

by radiotherapy within 4 weeks of surgery. Radiotherapy

consisted of fractionated focal irradiation at a dose of 1.8 to

2 Gy per fraction, given once daily 5 days per week over a

period of 6 weeks, for a total dose of 60 Gy. Radiotherapy

was delivered to the gross tumor volume with a 2-cm margin

volume for the clinical target volume on a preoperative

magnetic resonance imaging (MRI).

Two groups of patients were defined. The first group in-

cluded patients from March 1997 to April 1999, treated after

radical resection with radiotherapy alone (control group). In

the second group, patients from the time period from April

Table 1. Patient Characteristics.

Patients TMZ (n = 50) Conventionally

Treated (n = 30)

Age (years)

Median 53 58

Range 26–72 24–77

Still alive 17 3

Gender

Male 33 20

Female 17 10

KPS

100 27 6

90 19 16

80 4 2

70 6
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1999 to November 2003 were included. This group received,

after radical resection, the abovementioned radiotherapy

regime and an adjuvant chemotherapy consisting of TMZ

(TMZ group). TMZ was administered as a test dosage of

150 mg/m2 body surface area per day (750 mg/m2 total dose

per cycle) on days 1 to 5 in the first cycle because of its

dose-limiting toxic effect resulting in thrombocytopenia. The

following cycles were performed at a dosage of 200 mg/m2

per day (1000 mg/m2 total dose per cycle). Treatment cycles

were repeated every 28 days. Altogether, eight cycles were

carried out. Patients were seen at least every 3 months in

the first 2 years. At each follow-up visit, clinical performance

status, neurologic status, and MRI were recorded.

Specimens of resected tumors were immediately frozen

and stored at �80jC, or fixed in formalin and embedded in

paraffin. All patients gave written informed consent for the

use of the tumor samples for genetic analysis.

Comparative Genomic Hybridization (CGH)

DNA was obtained using standard protocols. Reference

DNA from the blood of a healthy donor and tumor DNA

from frozen tumor tissues were labeled with biotin and digoxi-

genin by standard nick translation (RocheDiagnostics, Mann-

heim, Germany). Six hundred nanograms of each tumor

and reference DNA was hybridized together with COT1

DNA (Roche Diagnostics) to normal chromosome meta-

phase spreads from peripheral blood lymphocytes pre-

pared following standard procedures. After 3 to 4 days of

hybridization at 37jC, posthybridization washes were per-

formed at a stringency of 50% formamide/2� standard sa-

line citrate (SSC), 2� SSC, and 0.1� SSC at 45jC. Tumor

DNA was visualized with fluorescein isothiocyanate (Vector

Laboratories, Burlingame, CA) and reference DNA with rho-

damine (Roche Diagnostics). Fluorescence images were

captured using a fluorescence microscope Olympus AX 70

(Olympus, Hamburg,Germany) with a cooled charged-coupled

device camera. Image processing was performed by use

of ISIS (MetaSystems, Altlussheim, Germany). Average ratio

profiles were determined from analyses of 10 to 15 meta-

phases. The thresholds used for ratio profiles were 1.2 for

gain and 0.8 for loss.

Because of suppression with COT1 DNA, the fluores-

cence intensities were not representative at chromosome

regions with tandem repetitive DNA clusters (i.e., at the

heterochromatic blocks on chromosomes 1, 9, 16, and Y, at

the centromeric regions, and along the short arms of acro-

centric chromosomes). These areas were excluded from

evaluation. Chromosome 19 and the chromosomal segment

1p34-pter were also excluded from the analysis because

results for 19 and 1p34-pter have been observed to be prone

to artifacts in our and others’ laboratories [36].

Microsatellite Analysis for LOH

DNA from frozen tumor tissues and, if not available, DNA

from paraffin-embedded tumor sections (n = 24) was sepa-

rated using previously published protocols [37,38].

The following regions were examined for allelic losses by

nonradioactive microsatellite analysis: chromosomal arm

10p with markers D10S1172, D10S1159, D10S527, and

D10S506; chromosomal arm 10q with markers D10S1419,

D10S1171, D10S523, D10S1765, D10S1143, D10S 1173,

D10S520, D10S521, D10S1141, D10S503, D10S1165,

D10S1439, D10S505, D10S1134, and D10S1248; chromo-

somal arm 13q with markers D13S326, D13S887, D13S788,

and D13S773; and chromosomal arm 9p with markers

D9S759, D9S925, D9S1121, and D9S319. Nucleotide se-

quences and mapping information were retrieved from the

Human Genome Database (www.gdb.org) or the Coopera-

tive Human Linkage Center (www.chlc.org) database files.

Polymerase chain reaction (PCR) was performed in a final

volume of 10 ml containing 10 ng of DNA, 50 mM KCl, 10 mM

Tris–HCl (pH 8.3), 200 mM deoxynucleotides, 0.1% gelatin,

and 20 pmol of each primer. Taq polymerase (Gibco BRL/

Life Technologies, Karlsruhe, Germany) was used and the

MgCl2 concentration ranged from 1.0 to 2.0 mM, depending

on the primer pair. Initial denaturation at 95jC for 3 minutes

was followed by 29 cycles on a thermocycler (Biometra,

Goettingen, Germany), denaturation at 95jC for 30 seconds,

annealing at temperatures ranging from 52jC to 64jC for

40 seconds, and extension at 72jC for 30 seconds. A final

extension step of 10 minutes at 72jC was added. PCR prod-

ucts were separated on 8% denaturating acrylamide gels

and visualized by silver staining [39]. LOH was scored as

previously described [38].

Statistical Analyses

Subgroups of patients were defined by genetic status,

therapy, and age (old patients, > 53 years; young patients,

V 53 years). We chose this classification because the median

age was 54 years. Comparisons between groups were per-

formed by Kaplan-Meier curves and Cox regression analysis.

Figure 1. Kaplan-Meier estimates for patients with GBM treated with TMZ

and radiotherapy (TMZ; solid lines) versus the untreated control group

(radiotherapy alone; dashed lines) had significantly higher overall survival.

Censored data (patients still alive) are plotted as hash marks.
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Table 2. Clinical Characteristics and CGH Results of TMZ-Treated and Conventionally Treated High-Grade Gliomas.

Case Tumor Age/Sex Chromosomal Imbalances by CGH

Number
ST (months) Gains Losses

TMZ-treated high-grade gliomas

1782 sGBM 26/M 24.2 19p, X 16p13.1p13.3

265 GBM 46/F 23.1 None 10q25.3qter, 16p12p13.3

1349 GBM 54/M 33.8 X 16p, Y

1099 GBM 49/M 23.8 7, 12q13.2q13.3 1p31.3p32.3, 1q32.1q41, 10q

369 sGBM 37/M 14.3 1q, 5p15.1pter, 7q31.3qter, 8q21.1qter, 9p,

10p, 12p, 15q25qter, 18p11.2pter

1p33p36.1, 4q21.1qter, 5q21qter, 10q21.3qter,

11p12p15.3, 13q12.1q31, 15q14q21.2, 19

1534 GBM 62/M 18.4 7q11.2q21, 19p13.1p13.3, X 4p16pter, 10q24.1qter, 13q21.3qter

1106 GBM 70/M 19.8 7q21.1qter, 12q13.1q14, 19p 10q, 13q12.3q22, Y

662 GBM 70/M 13.4 3q24q26.3, 7p11.1p12, 7q31.1q34, 18q12.1q21.1, X 4p16, 8p22pter, 10q, 16p11.2p13.2, Y

1326 GBM 56/M 19.2 7q34qter, 12p13.1pter 10q21.3qter, 22q13.1q13.3

1515 sGBM 40/F 11.2 19p 2p23pter, 3p24.2p26, 21q21qter

1707 GBM 47/M 29.4 7, 12q13.3q14 10q21.1qter

1691 sGBM 39/F 17.4 None 1p35p36.1, 4q27q32, 9p21, 9q21.2q32, 14

497 GBM 58/F 16.9 7p11.2p13, amp 1p36pter 6q12q21, 9p23p24

1460 GBM 31/F 11.9 2q34q37.1, 3p26pter, 3q23.2qter, 4p11p16,

4q11q13.3, 8p22pter, 9, 15q22.3qter, 18q12.3qter,

19q11q13.1, 20p, 22

3q11.1q25.2, 5p, 13q12.3qter, 16q, 20q11.2qter, Y

896 GBM 51/M 13.0 7 6q22.2qter, 9p21pter, 10p12.2pter, 10q23.1qter,

13q13qter, 14, 16q13qter, 22q12.2

1405 GBM 53/M 7.4 4q31.3q33 8p23.1pter, 16p, 17, 19q13.2qter

643 GBM 54/F 15.3 4p16pter, 7p11.1p13, 7q32qter, 16p12pter, 19q, 22 10, 13q14.3q22.1

1795 sGBM 31/M 6.9 None 5p15.1pter, 6q16.3qter, 8p23.2pter, 9p13pter

18q12.1qter

T4789 GBM 38/M 44.1 8p, Xq23q28 3q13.1q25.3, 9p

T5958 GBM 63/F 14.4 2q22q35, 3p11.1p14.1, 3p25pter, 3q13.1q21,

3q24q26.3, 4p14p15.3, 4q21.2q34, 5p14,

5q13.1q22, 6q14q23.1, 7, 8q22.3, 11p13p15.3,

11q14.1qter, 13q14.1q33, 14q12q22, 20p12pter,

amp 7p11.1p11.2

1p32.3pter, 10, 12q23q24.3, 16p, 17p, 17q24qter,

18p11.2, 19, 22, Y

784 GBM 52/M 22.5 7p13p22, 7q11.1q22, 19p, X, amp 7p11.1p13 4p16, 8p22pter, 9p11p13, 9p23pter, 10p13pter,

10q11.2q21.2, 16p

T6002 GBM 53/M 11.2 5, 6, 7, 12p, 12q11q14, 12q24.1qter, 15, 19, 20,

amp 7p11.1p11.2

1p21p31.3, 3p, 3q23q26.3, 10, 13, 17p11.1p13, 18, 22

1536 GBM 53/M 15.1 3p11.1p14.1, 3q11.1q26.3, 7, 9q, 21q21qter, X 1p33p36.1, 4p15.1pter, 10, 12p12.1pter, 12q11q21.3,

15, 17q12q23, 18p11.1p11.2, 19q13.3qter,

20p11.1p11.2

1940 GBM 54/F 17.3 5p13.3p15.2, 7p15.3pter, 18p 8q22.1q24.1, 10, 12q14q23, Xp11.4pter, Xq13q21.3

6 GBM 41/M 26.2 6q12q15, 6q25.1qter, 7, 12q14q21.1, X 4p16, 9p11p23, 10, 11q12q14.3, 15q11.1q22.2,

20p11.1p11.2, Y

596 GBM 32/M 21.1 7, 12q13.3q21.1, 17p11.1p12, 19, Y 3q26.1q36.3, 10, X

947 GBM 46/F 17.7 7, 15q24q26.1, 18p, 19, 20q 9p21p23, 10q21.1q25.2

XXL GBM 45/M 8.6 7p15.1pter, 7q11.1q31.3, amp 2p22pter 1p36pter, 10, 13q13q21.1, 17p12pter, 22q13.1qter, X

T6044 GBM 37/M 7.6 18p11.1p11.2, 19p, X 6q25.2qter, 7q36

Conventionally treated high-grade gliomas

861 GBM 70/F 22.7 2p21p23, 7p12, 12q14q21.3, 13q21.3q32 4p15.3pter, 8p22pter, 16p, 19p, 20q13.1qter

1856 GBM 46/M 65.8 13q21.1q32 1p34pter, 17q12q21.3, 19q, 22, Y

1028 GBM 62/M 5.6 6q11q14, 7, 19p, X, Y 10, 14, 15, 18

2046 GBM 39/M 39.8 1p13.3p31.1, 1q25q41, 3p24.1pter, 3p11.1p13,

3q11.2q13.3, 3q24q26.3, 4p11p15.2, 4q12q13.3,

4q22q28, 5p13.3pter, 5q12q23.3, 6q12q23.1, 7,

8p22pter, 9p, 14q11.2q24.1, 18p11.3pter, 20p13,

21q11.1q22.1

1p35pter, 10, 11, 12q22qter, 13q12.1q14.1,

13q32qter, 15q21.3qter, 17, 19, 20q11.2qter, 22

T6025 GBM 73/M 6.3 1p34.3p36.1, 1q31q43, 3p14.1p21.1, 7,

16p11.1p13.2, 17p11.1p12, 17q, 18p11.1p11.3,

19p, Y, amp 7p11.1p12

2p24pter, 4p15.1p15.3, 5p15.2pter, 8p21.3pter,

8q22.1q24.1, 10, 12q15q21.3, 13q14.3qter, 14,

15q21.3qter, 20p12pter

393 GBM 65/M 4.6 1p, 3, 7, 12q11q13.2, 12q23q24.3, 16p, 17q, 19,

20q, 22. amp 7p11.1p12

1q32.2qter, 9p, 10, 13q22q31, 21q11.1q21

T5954 GBM 61/M 3.3 1p24.1pter, 11q11q14.1, 16p, 18p11.1p11.2, 19,

20q, 22q12.3q13.3, Xp, Xq11.1q21.2

9p13pter, 13, 14q11.1q12, 18q12.1qter

1819 GBM 76/F 1 4q32qter, 5p14pter, 5q23.3q35.1, 6p23pter,

6q22.3qter, 7q33q36, 8q23q24.2, 13q21.3q33,

18q12.2qter

17q11.2q21.3, 19p

63 GBM 77/F 10.9 7p11.1p12, 7q11.1q11.2 5p, 5q11.2q23.1, 6p23pter, 6q15q22.3, 9p23pter,

18p11.3pter

T6052 GBM 24/F 4.8 5, 7, 12, 18, 19p, amp 12p13.1, 18q11.1q11.2 3p25pter, 3q26.3qter, 6p23pter, 8q22.1qter,

9p21pter, 11q23.3qter, 13q21.3q31, 20q13.2qter

832 GBM 57/M 8.9 4, 5, 7, 8q22.1q24.3, 14q11.1q12, 14q24.3q31,

17q24q25, 19, 20, 22, X

3p, 9p13p24, 9q22.1q31, 10, 21q22

(continued on next page)
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In the univariate Cox proportional hazards model, for a

given genetic status, the main effect of therapy on survival

was tested. In the first multivariate Cox model, for a given

genetic status, main effects of therapy, age, gender, and KPS

were estimated. In the second multivariate Cox model, main

effects of therapy and age and an interaction effect between

therapy and age were estimated. All effects were quantified

by hazard ratio estimates with 95% confidence intervals

(CIs). All P values were calculated with two-sided tests.

Median survival rates were calculated using the Kaplan-

Meier method. Association between dichotomous variables

was tested by chi-square analysis.

LOH data were summarized per chromosomal arm. LOH

was defined as present if at least one loss on the respective

chromosomal arm was detected. For chromosome arm 10q

with a large number of primer, LOH was defined as present

if the majority of the considered regions were lost.

Results

Univariate and Multivariate Prognosis Analyses

Treatment, gender, and age In total, 60 patients had died

and 20 were alive during the last follow-up (20 censored

data). Median follow-up was 17.2 months and median age at

diagnosis was 54 years.

Median overall survival for the TMZ group (n = 50; median

age, 53 years) was 19.5 months and for the control group

(n = 30; median age, 58 years) was 9.3 months. Univariate

analysis showed that TMZ chemotherapy was significantly

associated with longer survival rates (P = .00063; Figure 1).

Multivariate analysis indicated that the strongest factors

associated with survival were chemotherapy and age.

Younger patients survived longer than older patients

(> 53 years of age) in the control group (P = .024). However,

for older patients, a prolonged survival time under adjuvant

chemotherapy treatment was detectable (P = .00014), but not

for younger patients (P = .96). There was no significant

difference in survival time by age in the TMZ-treated

group (P = .83).

Genetic status, treatment, gender, and age Clinical data,

CGH, and LOH results of patients in the TMZ and control

groups are summarized in Tables 1–3. Both groups showed

a similar genetic pattern. The most frequent genetic aber-

rations were complete or partial losses of chromosome

10 (63%) and complete or partial gains of chromosome

7 (58%). Further deletions were detectable on 9p (29%)

and 13q (35%) (Figure 2).

Subgroups of patients were defined by their genetic

pattern. In the univariate model, patients with deletions of

9p and 10q, respectively, did associate with better prognosis

under treatment (Figure 3; Table 4). No correlation with

treatment was observed for gains of chromosomes 7p and

12, losses of chromosome 13, and gender. Due to the me-

thodical limitations of LOH, only deletions could be detected.

A positive effect on survival was observed for better KPS and

younger age (Table 5).

In the multivariate Cox proportional hazards models, for

the genetic subgroups, the main effects of TMZ treatment,

gender, KPS, and age, as well as an interaction effect be-

tween treatment and age, were estimated. Patients with de-

letions of 9p showed a positive correlation between TMZ

chemotherapy and survival also in multivariate analysis,

whereas gender, age, and the interaction of age and treat-

ment had no effect (Table 6). Patients with deletions on 10q

and higher age had a poorer prognosis (P = .0076). However,

the negative effect of the genetic status and age was com-

pensated by TMZ treatment (P = .0042) (Table 7).

LOH analysis of the CDKN2A region, as well as LOH on

chromosome arm 10q and the MGMT region, respectively,

produced results similar to that of CGH (Tables 6 and 7;

Figures 4 and 5). The only difference was the association of

high KPS and better prognosis in patients with losses of

9p and 10q, in contrast to the corresponding CGH data.

Discussion

Today, the aim of chemotherapy in patients with glio-

blastomas is palliation and improvement of health-related

quality of life (HQL), as well as prevention of neurologic

Table 2. (continued )

Case Tumor Age/Sex Chromosomal Imbalances by CGH

Number
ST (months) Gains Losses

Conventionally treated high-grade gliomas

T4795 GBM 66/M 0.2 4p15.1p16, 6q24q27, 7p15.1p22, 18q12.3q23,

20p13

10, 11p, 11q11q23.1, 13, 14, 19, 22, X, Y

838 GBM 56/w 1.3 7, 16, 17q12q21.3, 19, X, amp 7p11.2p12 9p21p24, 10, 13, 14, 22

T4803 GBM 59/M 9.4 1p32.1p36.3, 7, 9q32q34.2, 12q13.1q14,

15q22.1q24, 17, 20q11.1q13.1

10, 14

H549 GBM 38/M 5.5 3q21q23, 3q26.2qter, 7q21.3q31.1,

amp 12q11q14

6q21q23.3, 10q, 11p, 11q11, 13q12.1qter, 14

H321 sGBM 48/M 18.2 19p, 20q11.2q13.1, X 5p15.2pter, 9p21pter, 10q, Y

H147 GBM 48/M 7.5 7q11.1q11.2, 19, 20q11.1q13.1 10p13pter, 10q11.2q21.3

H281 GBM 56/M 12.5 7p11.1p12 None

N111 sGBM 24/M 17.4 1p32pter, 11q13, 17, 19, 20, 22 6q16q23

sGBM, secondary glioblastoma multiforme; M, male; F, female; ST, survival time; amp, amplification.
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Table 3. LOH Results and Comparison with CGH Data of TMZ-Treated and Conventionally Treated High-Grade Gliomas.

Tumor ST (months) CGH 10q* PTEN LOH/Infy MGMT LOH/Infy CGH 13q* RB LOH/Infy CGH 9p* p16 LOH/Infy

TMZ-treated high-grade gliomas

1795 6.9 0 2/2 0 0/3 1 3/3

1534 40.9 1 1/4 2/4 0 0/2 0 0/2

T4789 55.3 0 0/2 0 0/2 1 1/1

1691 39.9 0 1/4 0 0/2 1 2/2

1326 19.2 1 1/4 0/2 0 0/3 0 0/2

1460 11.9 0 0/5 1/5 1 2/2 0 0/2

643 35.3 1 3/4 1 0/3 0 3/3

369 20.2 1 3/3 3/4 1 2/2 0 0/1

1515 11.2 0 1/1 0 0 1/1

1106 19.8 1 1/4 2/2 1 0/1 0 0/2

497 16.9 0 1/3 2/5 0 0/2 1

662 13.4 1 2/2 2/6 0 0/3 0 0/3

1782 24.2 0 3/3 4/5 0 0/2 0 2/2

1349 56.8 0 0/5 0 0/3 0 0/2

1099 23.8 1 4/4 4/6 0 0/1 0 1/2

1707 29.4 1 5/5 3/4 0 0/1 0 1/2

596 21.1 1 3/3 4/4 0 0/1 0 0/3

398 14.4 1/4 0/1 2/3

1777 51.6 0/5 0/3 0/1

1536 15.1 1 4/4 4/4 0 1/1 0 0/1

90 12.0 0/0 4/5 0/1

947 17.7 1 5/5 0 0/3 1 2/3

XXL 8.6 1 1/1 4/5 1 0 0/2

784 22.4 1 1/1 0 0

1921 3.4 1 5/5 0 0/2 0 0/2

N529/02 21.4 0/5 0/2 0/1

N20/02 24.8 2/2 4/4 0/3 1/2

N690/02 18.6 1/2 0/1 0/3

N1082/02 13.5 1/1 0/1

N1421/01 13.6 0/1 1/2 0/1

N934/02 24.5 1/1

N1124/01 9.0 0/1 0/1

N1507/01 16.0 5/5 0/3 0/3

N363/02 18.9 0/4 0/4 0/1 1/3

N449/03 8.2 2/3 3/3 2/4 2/3

N1443/02 15.1 6/6 2/2

N528/03 6.7 4/4 0/4 1/2

N438/03 8.9 6/6 0/3 0/2

N202/03 10.8 4/4 2/2 0/2 1/2

N412/03 9.0 0/5 0/3 0/2

N759/01 31.5 0/1 0/3 1/3 0/2

N193/03 11.0 3/3 3/3 1/2 0/2

N1618/02 10.3 1/2 1/2 0/1

Conventionally treated high-grade gliomas

1856 58.5 0 0/3 0 0/1 0 0/3

1394 0.5 5/5 2/4 2/2 3/3

1819 1.0 0 0/4 0 0/3 0 0/2

2046 39.8 1 4/4 1 0 0/1

63 10.9 0 0/6 2/5 0 1 0/1

T4803 9.4 1 3/3 0 0/3 0 0/3

N111 17.4 0 0/4 0 0/1 0 0/3

2064 18.2 1 0/3 3/3 0 0/2 1 1/2

393 4.6 1 4/4 4/4 1 0/4 1 2/2

1028 5.6 1 0/5 0 0/3 0 0/2

N28/99 5.8 2/4 2/6 0/1 2/2

N1106/00 39.0 1/3 3/4 1/2 0/2

N113/99 9.5 3/4 0/2 2/3

N600/98 16.7 3/3 5/5 0/1 2/3

N1047/00 0.7 4/4 1/1 1/1

N982/00 14.4 1/3 0/2 1/1

N823/01 14.4 2/2 0/1 1/1

N894/00 21.3 0/2 0/2 0/2

N860/01 21.3 0/3 1/2 0/3 0/3

N1320/99 4.7 1/2

N231/00 12.4 0/2 2/7 1/2 0/2

N358/00 11.2 3/3 1/1

*1, deletion; 0, no deletion determined by CGH.
yLOH at available informative markers.
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deterioration. Multimodal therapy approaches had limited

success in the treatment of patients with malignant glioma

[40–42]. The present studies demonstrate that TMZ chemo-

therapy after prior radiotherapy significantly prolongs survival

among patients with newly diagnosed glioblastomas. Their

median overall survival time was 19.5 months, compared to

9.3 months of patients with radiotherapy alone. Due to the

retrospective nature of our study, patient selection cannot

be excluded. However, the outcome of patients with radio-

therapy alone in our study compares to the outcome in the

literature. These patients had an overall survival of 7.7 and

12.1 months, respectively [43,44], whereas patients with

TMZ chemotherapy and radiotherapy had an overall sur-

vival of 13.4 to 16 months [23,43,44]. The survival time of

our TMZ-treated group is better than that reported in the

papers before, but is in line with the study of Hegi et al. [28].

They reported a median survival of 21.7 months for patients

treated with radiation and chemotherapy when defining sub-

groups according to theMGMT promoter methylation status.

Several clinical and histopathologic features are known

to be of prognostic significance for survival in patients with

glioblastomas. Favorable features include young age and

Figure 2. Overview of genetic imbalances of (A) TMZ-treated GBMs and (B) conventionally treated GBMs. Lines on the left represent losses, and lines on the right

represent gains; amplifications are in bold.
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good KPS [2,7,19]. For lymphomas, it was already suggested

that increased perioperative and postoperative morbidity

and mortality, as well as diminished tolerance to therapy of

elderly patients, may be caused by the presence of con-

comitant diseases [45]. For gliomas, to our knowledge, there

are no appropriate results concerning this matter.

In our present study, young age also correlated with

better prognosis, but interestingly, the negative impact of

age on survival was compensated by the TMZ treatment.

Recent studies suggest that there are genetic subtypes

of diffuse gliomas associated with survival time [3,29], and

that their clinical course as well as their response to radia-

tion and chemotherapy are primarily determined by the bio-

logic behavior of the tumor cells. Attention has already been

drawn to gliomas with LOH on 1p and 19q. These alterations

are typical for oligodendroglial tumors [46–49] and have

been proposed to be a powerful independent factor for

prolonged survival time and favorable response to chemo-

therapy in WHO grade III anaplastic oligodendrogliomas

[35,50]. These genomic alterations are also observed in

GBM, however, at lower frequencies, with approximately

10% for LOH 1p and up to 30% for LOH 19q [19,51], but in-

dicating better survival [19].

Uniform numerical and/or structural alterations affecting

chromosomes 7, 9, 10, 12, and 13 represent the most com-

mon genetic abnormalities in high-grade gliomas [11–13,51]

despite genetic heterogeneity [52,53]. Several investigators

have noted that LOH on 9p and 10q is associated with shorter

survival time in these tumors [3,17–19]. The candidate genes

CDKN2A and CDKN2B on the short arm of chromosome 9,

and PTEN and DMBT1 on 10q are discussed to influence

survival time. LOH around PTEN has been associated with

Figure 3. Kaplan-Meier estimates of overall survival, according to genetic

alteration and assignment to TMZ and radiotherapy or radiotherapy alone.

(A) Survival curves for patients with loss of 9p (thick lines) and without loss of

9p (thin lines). (B) Survival curves for patients with loss of 10q (thick lines)

and without loss of 10q (thin lines), determined by CGH. The Kaplan-Meier

estimates for overall survival indicate that the patients with losses of 9p and

10q had significantly longer overall survival rates under TMZ treatment.

Table 4. Univariate Analysis of the TMZ Effect on Overall Survival.

Alteration Hazard Ratio CGH

and LOH (95% CI)

P Value CGH and

LOH (Two-Sided)

Loss 9p 0.55 (0.0064–0.48) .0085

0.16 (0.053–0.5) .0015

Loss 10q 0.31 (0.134–0.729) .0071

0.63 (0.28–1.43) .27

Table 5. Univariate Analysis of Effects of Predictors on Overall Survival.

Predictor Hazard (95% CI) P Value (Two-Sided)

TMZ 0.409 (0.245–0.683) .00063

Sex 1.03 (0.589–1.79) .93

Age 1.03 (1.00–1.05) .017

KPS 0.955 (0.923–0.988) .0074

Table 6. Subgroup Analysis of Differential TMZ, Age, Gender, and KPS

Effects Depending on Genetic Aberration with Respect to Survival Assessed

by Cox Proportional Hazard Regression.

Alteration Variable Hazard Ratio CGH

and LOH (95% CI)

P Value CGH

and LOH (Two-Sided)

Loss 9p TMZ 0.065 (0.0043–0.98) .048

0.12 (0.031–0.47) .0024

Age (> 53 years) 1.63 (0.21–12.76) .64

1.04 (0.33–3.25) .95

Gender 0.81 (0.23–2.87) .75

0.61 (0.16–2.34) .47

KPS (z 90) 1.32 (0.21–8.30) .76

0.086 (0.017–0.43) .003

Loss 10q TMZ 0.32 (0.13–0.80) .014

0.74 (0.30–1.85) .52

Age (> 53 years) 1.20 (0.46–3.17) .71

2.39 (1.00–5.73) .051

Gender 0.77 (0.21–2.87) .77

0.46 (0.13–1.61) .22

KPS (z 90) 0.41 (0.075–2.28) .31

0.028 (0.0048–0.16) .000068

In the multivariate Cox model, all predictors are included and only main

effects are estimated.
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shorter survival time [3,18]; however, mutations of PTEN did

not affect prognosis for survival [20,34].

Esteller et al. [25] were able to show that aberrant MGMT

promoter hypermethylation was associated with loss of

MGMT protein, in contrast to retention of protein in the ma-

jority of tumors without aberrant hypermethylation. Recent

studies suggested that methylation of the MGMT promoter

is predictive for good outcome in patients with glioblastomas

treated with alkylating agents [24,26–28]. Our data support

the results mentioned above because MGMT is included in

the deleted regions on 10q. The results for our control group

showed that deletions on chromosome 10 indicate a trend

to shorter survival. The same results are observed for LOH of

MGMT, whereas LOH of PTEN showed no association with

survival as reported before [17,20]. Interestingly, patients

with deletion on 10q benefited significantly from adjuvant

chemotherapy in univariate analysis.

Therefore, deletion as well as inactivation by hypermeth-

ylation of MGMT will predict responses to alkylating chemo-

therapy, probably in a dose-related manner. Further on,

multivariate analysis showed that patients benefited signifi-

cantly from the therapy especially if they belonged to the

older age group (Table 7). Hence, our data suggest that the

negative effect of age was compensated by TMZ treatment.

Homozygous deletion of CDKN2A gene mapping on chro-

mosome 9p21 has been reported as an indicator of poor

prognosis and resistance to chemotherapy for patients with an-

aplastic oligodendroglioma. However, homozygous CDKN2A

losses were observed exclusively in tumors without LOH

on 1p [35]. In glioblastomas with oligodendroglial compo-

nents, similar results were found [54,55].

An association of tumor necrosis and microvascular pro-

liferation with 9p deletion and CDKN2A alterations was

observed in oligodendrogliomas. The higher vascularization

of tumors harboring 9p deletion may explain the reasons for

better response to chemotherapy [56]. This may also hold

true for glioblastomas. However, this effect has never been

proven in trials.

To our knowledge, this is the first report demonstrating an

effect of 9p deletion on chemotherapy response in glioblas-

tomas. The unfavorable prognostic factor of this alteration

[15,17,33,34,57] was confirmed by CGH and LOH analyses

in our control group. Further on, the effectivity of TMZ is

enhanced by deletion of 9p by CGH and LOH of CDKN2A,

Table 7. Subgroup Analysis of Differential TMZ and Age Effects Depending

on Genetic Aberration with Respect to Survival Assessed by Cox Proportional

Hazard Regression.

Alteration/

Normal

Variable Hazard Ratio CGH

and LOH (95% CI)

P Value CGH and

LOH (Two-Sided)

Loss 9p TMZ 0.037 (0.0017–0.78) .034

0.49 (0.054–4.51) .53

Age (> 53 years) 0.81 (0.081–8.09) .86

4.31 (0.47–39.36) .20

TMZ � age 3.57 (0.13–99.15) .45

(> 53 years) 0.20 (0.015–2.71) .23

Loss 10q TMZ 0.85 (0.25–2.91) .79

5.64 (0.71–44.57) .10

Age (> 53 years) 10.47 (1.87–58.65) .0076

33.56 (3.67–307.35) .0019

TMZ � age 0.040 (0.0044–0.36) .0042

(> 53 years) 0.017 (0.0014–0.21) .0015

Figure 4. Microsatellite analysis for LOH on chromosome arm 9p.

Figure 5. Microsatellite analysis for LOH on chromosome 10.
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respectively, indicating also a crucial role of CDKN2A in

chemotherapy response to alkylating agents.

Further, our present data indicate that gains of chromo-

somes 7 and 12 have no influence on response and survival

in TMZ treatment. Therefore, our results suggest that there is

no association between frequently amplified regions on

these chromosomes (EGFR, CDK4, and MDM2) and TMZ

response. Deletions on chromosome arm 13q did not corre-

late with TMZ chemotherapy either.

In conclusion, we demonstrate a positive effect of TMZ

treatment on survival in patients with newly diagnosed glio-

blastoma. Although deletions on 9p and 10q indicate poorer

survival in patients without adjuvant therapy, patients with

these molecular alterations benefit from TMZ treatment. This

effect was pronounced also in elderly patients with 10q

deletion having a very poor prognosis with conventional

treatments. Thus, a controlled prospective study should be

performed to confirm that TMZ chemotherapy is effective in

patients with major factors for poor prognosis, deletions on

9p and 10, and older age.
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