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Previous Estimates of Mitochondrial DNA Mutation Level
Variance Did Not Account for Sampling Error: Comparing
the mtDNA Genetic Bottleneck in Mice and Humans

Passorn Wonnapinij,1,2 Patrick F. Chinnery,3 and David C. Samuels1,*

In cases of inherited pathogenic mitochondrial DNA (mtDNA) mutations, a mother and her offspring generally have large and seemingly

random differences in the amount of mutated mtDNA that they carry. Comparisons of measured mtDNA mutation level variance values

have become an important issue in determining the mechanisms that cause these large random shifts in mutation level. These variance

measurements have been made with samples of quite modest size, which should be a source of concern because higher-order statistics,

such as variance, are poorly estimated from small sample sizes. We have developed an analysis of the standard error of variance from

a sample of size n, and we have defined error bars for variance measurements based on this standard error. We calculate variance error

bars for several published sets of measurements of mtDNA mutation level variance and show how the addition of the error bars alters the

interpretation of these experimental results. We compare variance measurements from human clinical data and from mouse models and

show that the mutation level variance is clearly higher in the human data than it is in the mouse models at both the primary oocyte and

offspring stages of inheritance. We discuss how the standard error of variance can be used in the design of experiments measuring

mtDNA mutation level variance. Our results show that variance measurements based on fewer than 20 measurements are generally unre-

liable and ideally more than 50 measurements are required to reliably compare variances with less than a 2-fold difference.
Introduction

Eukaryotic cells typically contain a large number of copies

of mitochondrial DNA (mtDNA). Generally, these copies

of mtDNA are identical; however, some individuals contain

a mixture of two versions of the mtDNA molecule, a condi-

tion called heteroplasmy. In the case of inherited mtDNA

mutations, this mtDNA heteroplasmy is found in cells

throughout the body, but with varying levels of the mutant

mtDNA in different tissues.1,2 This variation in mutation

level is often also found when comparing multiple cells

from the same tissue in the individual.3,4 mtDNA mutation

level variations are a major factor underpinning the

random mosaic distribution of affected cells that is typically

observed in diseases resulting from mtDNA mutation.3,4

Perhaps the most important issue about the mtDNA

mutation level variation among cells concerns the vari-

ability of the mtDNA mutation levels in the cells of the

female germline. Mutation levels of inherited mtDNA

mutations are known to vary significantly between the

mother and her offspring and among offspring from

the same mother.5 This variability is important because

the randomness in the inheritance of mtDNA mutations

severely limits our ability to provide genetic counseling

to affected families.6,7 The processes responsible for this

variability in mutation levels among family members and

the exact timing of these processes during reproduction

are currently a matter of some controversy.8–11 To under-

stand mtDNA mutation inheritance, we must therefore
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have a reliable means of measuring and comparing the

variation generated during the transmission of a hetero-

plasmic mtDNA mutation, both in the clinical setting

and also in several recently developed animal model sys-

tems. This understanding will underpin our ability to

make predictions about the likelihood of transmitting

a particular level of mutation and also provides the analyt-

ical tools to study tissue-tissue and cell-cell variability

in mtDNA mutation levels, which is fundamental to our

understanding of the tissue specificity and clinical progres-

sion of mtDNA diseases.

The experimental approach is based upon an estimation

of the distribution of mtDNA mutation in a particular

sample, which is typically reported as the variance of the

mutation level in the sample. As for all statistical estima-

tions, our confidence in the measured variance is critically

dependent upon the number of individual measure-

ments—in this case mutation level values—that must be

randomly sampled from the population of interest.

However, determining the statistical error for a variance

measurement is mathematically complex. As a result, the

error bars for the measured mtDNA mutation level vari-

ance are rarely, if ever, reported.

The mutation level variance is typically estimated from

a relatively small sample of cells in the range of 20 cells

or even far lower. Major experimental conclusions have

been based on comparisons of these measurements of vari-

ance, but we currently do not know whether these vari-

ance measurements are reliable. In other words, it is not
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known how many individual measurements are required

for a reliable estimate of variance with a given statistically

defined confidence interval. Here we address this issue

from first principles and provide evidence that a far greater

number of samples than are generally taken are required to

make reliable comparisons of variance between different

groups. Central to our approach is a method of reliably

calculating the standard error of variance, which will allow

these comparisons to be made. With this approach we can

confidently conclude that the variation in mutation levels

in human pedigrees is greater than that observed in mouse

pedigrees transmitting mtDNA heteroplasmy.

Material and Methods

Experimental Data
Data for mutation level variance measurements, including values

for the mutation level variance, the mean mutation level, and

the number of measurements (n), in mouse models were gathered

from the published literature.9,10,12 The same data for a data set of

human primary oocytes was taken from Brown et al.13 Data for

mutation levels in human mother and offspring pairs for various

inherited pathogenic mtDNA mutations were gathered from the

literature.14–36 Probands were excluded from that analysis to mini-

mize ascertainment bias, although it must be kept in mind that

this cannot completely remove ascertainment bias.

Definition of the Standard Error of Variance
To provide context for the equations for the standard error of vari-

ance, we begin with the well-known standard error of the mean.

By using a traditional parametric statistical approach, the mean

value of a quantity based on n samples from a population has a

standard error defined by the well-known equation

SE
�
p0

�
¼

ffiffiffiffiffiffiffiffiffiffi
s2=n

p
(1)

where p0 is the mean value (mean percentage level of mutant

mtDNA in our case) and s2 is the variance of the population

that is being sampled. Because the actual variance of the popula-

tion is not known, nor can it be easily determined, the practical

approach is to estimate the population variance s2 by measuring

the sample variance V in a randomly selected subgroup of the pop-

ulation. To assign error bars to the measurement of the mean

value, one generally follows the practice of setting the error bars

to be 2 3 SE(p0). This practice arose from the fact that 1.96 3 SE

is equal to the 95% confidence intervals for a sample from a normal

(Gaussian) distribution. We discuss this practice, and its applica-

tion to distributions other than the normal distribution, later in

this paper.

The corresponding equation for the standard error of the vari-

ance based on n samples37 is less familiar. It is

SE
�
s2
�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

�
D4 �

�
n� 3

n� 1

�
s4

�s
(2)

where D4 is the fourth central moment of the population.

Monte-Carlo Simulation Tests of the Statistics
To test the calculation of the standard error of the variance

measurement, we randomly generated a series of independent

sets of n values from a chosen probability distribution with a pre-
The Am
determined mean and variance. This was done for different sample

sizes n, ranging from 3 to 100, in order to determine how rapidly

estimates of the mean and variance improved as the sample size

is increased. By ‘‘independent’’ we mean that a completely new

set of values was generated for each value of n. This process was

repeated 10,000 times for each sample size allowing the 95% confi-

dence intervals for the mean and variance to be measured as a

function of the sample size n. This process was carried out for

a normal probability distribution and for a Kimura probability

distribution.38
The Levene Test of Paired Simulated Mutation Level

Data Sets with Different Variances
We carried out a Levene test on random simulated data to deter-

mine the effect of sample size on the comparison of two data

sets with different variances. Sample sizes were varied from 3 to

100 and the samples were independently generated for each

sample size from a probability distribution. Pairs of data sets

were drawn randomly from a Kimura probability distribution

with the same mean mutation level but with different variance

values, ranging from 10-fold difference down to equal variances.

Although the Levene test is itself complicated, it has the advantage

over the standard error of variance that it does not require

the calculation of a fourth-order moment or the assumption of

a specific underlying probability distribution. The Levene test

has several variations, of which the most commonly used is the

Brown-Forsyth test,39 and it is not generally clear which form of

the test is the best choice. We evaluated both the standard Levene

test and the Brown-Forsyth variation and found that the standard

Levene test had a better performance (fewer false negative results)

than did the Brown-Forsyth test on our Monte-Carlo simulated

data sets.
Results

The definition of the standard error of the variance was

given as Equation 2 in the Materials and Methods section.

This standard error can be used to calculate error bars for

a measurement of variance in the same way that the stan-

dard error of the mean is used to determine the error bar of

a measurement of the mean. The standard error of the

variance is a function of the sample size n, the population

variance s2, and the fourth central moment D4 of the pop-

ulation. In the following, we define three different

methods of estimating the standard error of variance,

based on three different methods of estimating the fourth

central moment.

Model-Free Method of Calculating the Variance Error

The fourth central moment, D4, is not a trivial calculation

and this probably accounts for the lack of use of the stan-

dard error in a variance measurement. But D4 can be calcu-

lated in several ways. Most basically, D4 can be estimated

directly from the n sample measurements. An unbiased

estimator for the fourth central moment40 of the under-

lying probability distribution is given by

D4 ¼
ðn� 1Þ

n3

��
n2 � 3nþ 3

�
m4 þ 3ð2n� 3Þm2

2

�
(3)
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Figure 1. Measurements of the Mean and Variance from
Samples Drawn from a Normal Distribution
(A) The normal distribution used with mean ¼ 0.5 and
variance ¼ 0.01.
(B) Mean values as a function of the sample size n ranging from
3 to 100. The error bars were set to twice the standard error of
the mean as calculated from Equation 1.
(C) Values of variance as a function of the sample size n. The error
bars were set to twice the standard error of the variance for
a normal distribution as calculated from Equation 6. The 95%
confidence intervals were determined from the mean and variance
values from 10,000 samples of size n.
where m2 and m4 are defined by

mj ¼
1

n

Xn

i¼1

�
pi � p0

�j
: (4)

With Equations 2–4, the standard error of the variance

can be estimated from the data and, as we show in the

following sections, the general practice of defining the

error bars of the measured variance to be twice the stan-

dard error may be followed.

The Normal Distribution Model

The value given by Equation 3 for D4 is only an estimate of

the fourth-order central moment based on a sample of size

n. If we are willing to assume that the values of mutation

level in the population follow a particular probability

distribution, we can use the exact equation for the fourth-

order central moment of that distribution. For a normal

distribution, the mathematics are particularly simple. The

fourth central moment of a normal distribution is simply

D4,Normal ¼ 3s4: (5)

Substituting this formula for D4 into Equation 2 gives the

standard error of variance of a sample of n data points

taken from a normal distribution.

SE
�
s2
�

Normal
¼ s2

ffiffiffiffiffiffiffiffiffiffiffiffi
2

n� 1

r
(6)

Assuming a normal distribution model has the advantage

of greatly simplifying the calculations.

A Monte-Carlo test of the mean and variance values of

data sets of size n drawn from a normal distribution was

carried out as described in the Materials and Methods.

Figure 1A shows the probability distribution from which

the simulated data were chosen, with a mean value of 0.5

and a variance of 0.01. Figure 1B shows the estimates of

the mean value as a function of the sample size n, with

error bars set to twice the standard error of the mean value

(Equation 1). Note how the error bars for the mean values

correspond well with the calculated 95% confidence inter-

vals, as expected for a normal distribution. Also note how

the variability in the measured mean value corresponds

well with the error bars.

These results for the estimates of the mean value and its

sample error are well known, and we present them here

only to provide context for the corresponding calculation

of the sampling error in the estimate of the variance

(Figure 1C). As was the case with the mean, setting the

error bars of the variance to twice the calculated standard

error in the variance is in good agreement with the 95%

confidence intervals in the variance measure. The 95%

confidence intervals were wide for a variance based on

a sample of 20 measurements, especially in comparison

to the corresponding confidence interval for the mean

value. From Equation 6, when n ¼ 20 the standard error

of the variance is equal to 32% of the variance, meaning

that the variance error bars are equal to 64% of the variance
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values. For a normal distribution, these calculations of the

relative size of the variance error bars do not depend on

any other parameters, such as mean and variance. In the

normal distribution model, a sample of 20 measurements

will always have a sampling error of 64% in the estimated

variance. As can be seen from Figure 1C, this sampling

error increases dramatically as the number of measure-

ments decreases below 20. This raises concerns for studies

based on variance values based on 20 individual measure-

ments or less.

Kimura Distribution Model

The results given above are general and can be applied

to the standard error of the variance of any measured

quantity with a normal distribution. Now we specialize to

results applicable specifically to mtDNA heteroplasmy.

There are two basic features of the normal distribution

that make it a poor choice to represent the distribution of
010



mtDNA mutation level values. First, the normal distribu-

tion is defined over the range of minus infinity to plus

infinity, whereas mutation level values must be only in

the range of zero to one. Second, the normal distribution

is always symmetric, whereas mtDNA mutation level distri-

butions can be either symmetric or skewed. For a good

example of a skewed distribution of mtDNA mutation

level values, see Brown et al.13 Although the normal distri-

bution can be used as an approximation for the distribution

of mtDNA mutation level values, this approximation is

good only for distributions with mean values near 0.5 and

with very few measurements near either extreme of 0 or 1.

Recently, we defined a probability distribution based on

the population genetics theory of Kimura,41 which can

be applied to mtDNA mutation level values.38 Kimura’s

theory of random genetic drift defines the following three

equations.

f ð0Þ ¼
�
1� p0

�
þ
XN
i¼1

ð2iþ 1Þp0

�
1� p0

�
ð�1Þi

� F
�
1� i,iþ 2,2,1� p0

�
biðiþ1Þ=2

(7)

fðpÞ ¼
XN
i¼1

iðiþ 1Þð2iþ 1Þp0

�
1� p0

�
Fð1� i,iþ 2,2,pÞ

� F
�
1� i,iþ 2,2,p0

�
biðiþ1Þ=2

(8)

f ð1Þ ¼ p0 þ
XN
i¼1

ð2iþ 1Þp0

�
1� p0

�
ð�1Þi

� F
�
1� i,iþ 2,2,p0

�
biðiþ1Þ=2

(9)

The probability of fixing on the wild-type mtDNA is f(0),

the probability of fixing on the mutant is f(1), and the

probability distribution for a mutation level value of p is

f(p). The function F(a,b,c,d) is the hypergeometric func-

tion. We refer to these three equations collectively as the

‘‘Kimura distribution.’’ Despite its complexity, the Kimura

distribution is only a two-parameter model, with parame-

ters p0 and b. Both parameters range from 0 to 1. The

parameter p0 is the mean mutation level and the parameter

b is related to the effective population size and can be

referred to as the bottleneck parameter. The effective

population size should not be confused with the actual

mtDNA copy number42 and should be interpreted only

as a statistical parameter that determines the variance.

For further details and comparisons of the Kimura distribu-

tion to mtDNA mutation level data, please see Wonnapinij

et al.38 The variance of the Kimura distribution is

s2 ¼ p0

�
1� p0

�
ð1� bÞ: (10)

This variance is equal to the variance equation defined

by Sewell-Wright43,44 and was first used in mitochondrial

genetics by Solignac et al.45

The Kimura distribution has the advantages that it is

based solidly on population genetics theory and that it

does describe well the existing data on mtDNA mutation
The Am
level distributions.38 However, one pays the price for this

in its obvious mathematical complexity. For our purposes

here, to define the standard error of mtDNA mutation level

variance measurements, we need to know only the fourth-

order central moment of this distribution. After a signifi-

cant amount of algebra, this quantity can be calculated

as the following.

D4,Kimura ¼ s2

 �
p0 �

1

2

�2�
3
�
1� b� b2

�
þ b3 þ b4 þ b5

�

þ 1

4

 
1�

�
bþ b2 þ b3 þ b4 þ b5

�
5

!!

(11)

Unlike the case of the normal distribution, there is no

simplification that occurs when the D4,Kimura is substituted

back into the basic definition of the standard error of

the variance, Equation 2. Equations 11 and 2 together

define the standard error of the variance in the case that

the population that is being sampled follows a Kimura

distribution.

As a test of the calculation of the standard error of vari-

ance, we carried out a Monte-Carlo test as described in

the Materials and Methods. We did this for two cases: a

Kimura distribution with p0 ¼ 0.5 (Figure 2), which is

similar to a normal distribution, and a Kimura distribution

with p0 ¼ 0.1 (Figure 3) for which a normal distribution is

a poor model. The variance error bars are set to be twice

the standard error of the variance, calculated now from

Equations 11 and 2. In both examples (Figures 2 and 3),

the size of the error bars on both the mean mutation

level and the variance corresponded well with the scatter

between the independent samples and with the 95% confi-

dence intervals. This validates the use of 2 3 SE(V) as the

variance error bars, even with the Kimura distribution.

As with the normal distribution results, it is concerning

how wide the variance measurement error bars and the

95% confidence intervals are in Figures 2 and 3 for rela-

tively common sample sizes, such as n ¼ 20. With the

complexity of the Kimura distribution mathematics, the

standard error of the variance is not a simple proportion

of the variance depending just on the sample size n, as it

was in the simpler normal distribution case. Instead, the

standard error of the variance depends also on the mean

mutation level p0 and on the bottleneck parameter b. By

comparing Figures 2C and 3C, one can see that the vari-

ance error (as a proportion of the variance) for the same

sample size is larger for extreme values of mean mutation

level (p0 ¼ 0.1 in Figure 3) than for moderate mean values

(p0 ¼ 0.5 in Figure 2). As a concrete example, consider

a sample size of n ¼ 20 with a mean mutation level of

p0 ¼ 0.5 (Figure 2C). In this case, 2 3 SE(V) is 58% of the

variance, in close agreement with the estimate of 64%

calculated above for a sample size of 20 assuming a normal

distribution. Compare this to the same sample size but

with p0 ¼ 0.1 (Figure 3C). In this case, 2 3 SE(V) is 86%
erican Journal of Human Genetics 86, 540–550, April 9, 2010 543



Figure 2. Measurements of the Mean and Variance from
Samples Drawn from a Kimura Distribution with Moderate
Mean Value
(A) The Kimura distribution f(p) used with mean p0 ¼ 0.5 and
b ¼ 0.9.
(B) Mean values as a function of the sample size n ranging from 3
to 100. The error bars were set to twice the standard error of the
mean as calculated from Equation 1.
(C) Values of variance as a function of the sample size n. The error
bars were set to twice the standard error of the variance for a
Kimura distribution as calculated from Equations 11 and 2. The
95% confidence intervals were determined from the mean and
variance values from 10,000 independent samples of size n.

Figure 3. Measurements of the Mean and Variance from
Samples Drawn from a Kimura Distribution with an Extreme
Mean Value
(A) The Kimura distribution f(p) used with mean p0 ¼ 0.1 and
b ¼ 0.9.
(B) Mean values as a function of the sample size n ranging from 3
to 100. The error bars were set to twice the standard error of the
mean as calculated from Equation 1.
(C) Values of variance as a function of the sample size n. The error
bars were set to twice the standard error of the variance for a
Kimura distribution as calculated from Equations 11 and 2. The
95% confidence intervals were determined from the mean and
variance values from 10,000 samples of size n.
of the variance. This will be discussed in more detail later

in the paper.

The Standard Error of Variance Shows that There Is

a Difference in mtDNA Mutation Level Inheritance

between Humans and Mice

The use of the synthetic or simulated data sets in Figures

1–3 allowed us to do idealized tests of the calculation of

the standard error of the variance because of sampling

effects. However, the true usefulness of this sampling error

definition comes from its application to experimentally

acquired biological data. Before dealing with the experi-

mental data, though, we must consider an important

confounding factor in comparing mtDNA mutation level

variances from samples with different mean mutation

level values. As the classic Sewell-Wright variance equation
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(Equation 10) shows, the mutation level variance is a

function of the mean mutation level, because it is propor-

tional to p0(1 � p0). This causes variance to decrease as p0

approaches the extreme values of 0 and 1. In order to

correct for this p0 dependence and allow us to compare

measured variance values from samples with different

mean mutation levels, it is necessary to normalize the vari-

ance measurements by dividing them by p0(1 � p0). The

standard error of the variance is then also normalized by

dividing it by p0(1 � p0).

We applied the standard error of variance to the mtDNA

mutation level variance data from Jenuth et al.,12 who

measured mutation level values from cells sampled from

various stages of development of the female germline

in a mouse model and the subsequent offspring. Only

summary statistics were reported and the full data sets of

the mutation level measurement in each cell were not
010



Figure 4. Application of the Standard Error of
Variance to Data from Human and Mouse Models
(A) Heteroplasmic mouse model data from Jenuth
et al.12 (circles) at four stages of mtDNA inheritance:
primordial germ cells (PGC), primary oocytes,
mature oocytes, and offspring. Human data (stars)
from Brown et al.13 for primary oocytes and from
numerous sources14–36 for offspring data are com-
pared to the mouse data.
(B) mtDNA mutation level variance with error bars
measured in 21 mouse lineages. All error bars are
twice the standard error calculated from a Kimura
distribution. Variance values are normalized by
dividing by p0(1 � p0).
given, so the ‘‘model-free’’ method of Equation 3 cannot be

used. Instead, we must choose a model for the underlying

cell population, and for the reasons given above we chose

the Kimura model for this analysis. Usefully, Jenuth et al.

reported several repeated independent measurements

from each development stage, so we can compare the

calculated error bars of the variance to the observed varia-

tion in these values across the repeated experiments. The

normalized mutation level variance values together with

our calculations of the variance error bars are plotted in

Figure 4A. The size of the normalized variance error bars

corresponds well with the scatter in the measured values

within each development stage. Of particular interest are

two high normalized variance values reported in the

mature oocytes. Based on just the reported variance values

(without the error bars), it might be reasonable to conclude

that the variance could be fundamentally different in these

two samples compared to the other three mature oocyte

samples that all had low normalized variances. However,

the addition of the variance error bars changes the inter-

pretation of the data. The calculated error bars for the vari-

ance in these two samples is very large, and they overlap

the error bars for the other three mature oocyte samples.

With the variance error bars, the most parsimonious inter-

pretation of the data is that all the normalized variances

reported in the mature oocyte data are consistent with

each other, with a mean value close to the primary oocyte

value. Similarly, though less dramatic, the large scatter in

the mutation level variance values reported for the

offspring are also shown to be consistent with each other

once the sampling error bars are added to the variance

values. Finally, the addition of the error bars allows us to

interpret the changes in variance between these four stages

of development. The increase in variance between the

primordial germ cell stage (PGC) and the primary oocyte

stage is clear, but no change in the mutation level variance

is supported by this data in the comparison of the primary

and mature oocytes. Finally, when the error bars are taken
The American Journa
into account, one cannot state a firm conclu-

sion about the apparent difference in the

mutation level variance between the mature

oocyte and offspring. The large error bars in

the variance measurements in both of these
stages show that the mean variance values in the mouse

mature oocytes and the offspring are not significantly

different in this experiment.

There is currently only one human data set that is large

enough for a reasonable analysis of mtDNA mutation level

variance in the female germline cells. Brown et al.13

reported measurements of mtDNA mutation level in 82

primary oocytes from a woman carrying the m.3243A>G

mutation (MIM *590050.0001) who underwent a hysterec-

tomy. We calculated the error bars of the variance for this

human oocyte data set and compared it to the mouse

primary oocyte data in Figure 4A. The addition of the error

bars to the variance measurements supports the conclu-

sion that the mutation level variance in the human

oocytes is clearly larger than the variance in the mouse

data at the same development stage.

Given that variance is closely linked to the mean muta-

tion level (Equation 10) and that a large number of obser-

vations are needed to measure variance, a reliable estimate

of the variance can be obtained only from a mother with

many offspring or by combining the offspring from

mothers with similar mean mutation levels. Published

data on mutation levels in mothers and offspring were

gathered as described in the Materials and Methods. In

order to minimize the differences in variance expected

from the Sewell-Wright variance formula (Equation 10),

we chose to combine data from mothers with mtDNA

mutation levels in the range of 40%–60%, where the differ-

ences in the mean mutation level have the least impact on

the variance. Data from mothers carrying the A3243G

mutation were excluded from this analysis to avoid the

potential confounding effects of age on the mutation level

measured in blood in this particular mutation.46 With this

approach, we identified 72 human mother-offspring pairs

from the published literature.14–36 The normalized muta-

tion level variance calculated from these data was signifi-

cantly higher in the human offspring than it was in the

mouse model (Figure 4A), when the variance error bars
l of Human Genetics 86, 540–550, April 9, 2010 545



Figure 5. mtDNA Mutation Level Variance with Error Bars in
a Mouse Model of the Postnatal Development of Oocytes
The data are taken from Wai et al.10 and all error bars are twice the
standard error of variance calculated from a Kimura model. Vari-
ance values are normalized by dividing by p0(1 � p0).
are taken into consideration. At both stages of develop-

ment, primary oocytes and offspring, the human normal-

ized variances are approximately three times larger than

the corresponding normalized variance in the mouse

model. This is an important point to consider when inter-

preting the results from any experiment with a mouse

model of mtDNA heteroplasmy.

In the recent paper by Cree et al.,9 mutation level vari-

ance values in 21 lineages of heteroplasmic mice were

reported in the Supplemental Data. Without variance error

bars and the proper normalization of the variance, it is

difficult to interpret the scatter of the data in Table S1 of

Cree et al. In Figure 4B we show our calculated error bars

for these normalized data, again based on a Kimura distri-

bution. The error bars show that the normalized variance

measurements that are large also have large errors, so

that all 21 mouse lineages actually have reasonably consis-

tent normalized variance values.

The development of mtDNA mutation level variance in

the female germline of a mouse model was also the subject

of a recent paper by Wai et al.10 In that paper, variance

measurements in samples from the female germline were

reported over 44 days after birth. Based on these variance

measurements, taken from samples with differing mean

mutation levels and without correcting for this confound-

ing factor through normalizing the variances, Wai et al.

concluded that there was a strong increase in variance

in the female germline cells during this postnatal period.

They reported statistically significant differences between

the variances measured on postnatal day 11 and later

compared to the variances measured at postnatal day 8

and earlier. However, within those two periods only the

comparison of day 11 to day 29 was statistically significant.

In Figure 5 we plot the variance data from Wai et al.10 with

the variance normalization and we calculate the standard

error of the normalized variance values via the Kimura

model. When the error bars and the variance normaliza-

tion are both taken into consideration, it is hard to defend

the conclusion that mtDNA mutation level variance

increases significantly during postnatal oocyte develop-

ment in this experiment. Such an increase could be occur-

ring, but the variance error bars are so large that any such

increase in the variance would be hidden by the random

noise in the data resulting from sampling effects. Only

the earliest data, at postnatal day 4, are clearly different

from the later normalized variance values, once the vari-

ance error bars are considered. The variance normalization

has shifted the important difference in the measured

variances back to the earliest measurements at postnatal

day 4. Considering the importance of the day 4 variance

measurements, it is striking that the extremely low

normalized mutation level variance values at postnatal

day 4 are far lower than the corresponding values from

Jenuth et al.12 (Figure 4A), an apparent inconsistency

between the two mouse reports.

In contrast to the mouse model, we currently have very

little data on the development of mtDNA mutation level
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variance at different stages of the human female germline.

In Figure 4A, we plot normalized variance values for a

single human primary oocyte data set and for a group of

human offspring. There is a clear difference in the normal-

ized variance values between these two stages of develop-

ment; however, this difference should be interpreted

with caution. The human primary oocyte data were from

a single person who carried the A3243G mutation, while

that specific mutation was removed from the offspring

data set because of the observed decline in the mutation

level of the A3243G mutation with age in blood samples.

It is possible that the differences in variance in the human

data in Figure 4A may be due to the different pathogenic

mutations instead of the different stages of development.

This question about the human data can be answered

only by having more data on the variance of other patho-

genic mtDNA mutations at the primary oocyte stage.

Statistical Tests for the Comparison of Variance

Measurements

The calculation of the standard error of variance is a useful

tool for the comparison of measurements of variance

values; however, when the full data sets are available it is

possible to test for the homogeneity of the variance in

different samples via the Levene test,39 as was done by

Wai et al.10 We carried out a Levene test of paired simulated

data sets drawn from Kimura distributions with the same

mean value and different variances, as described in the

Materials and Methods. The results are shown in Figure 6

for paired Kimura distributions with a mean mutation

level of 0.5. Large variance differences (Figures 6A and 6B)

are easily distinguished with significant p values even for

small sample sizes. However, moderate variance differ-

ences, on the order of 2-fold or less (Figure 6C), can be

reliably distinguished only with relatively large samples,

and even then there is a high rate of false negative results.
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Figure 6. Levene Test p Values for Comparisons of Two Data
Sets with Different Variances but Equal Mean Mutation Levels
of 0.5
Both data sets were drawn randomly from a Kimura distribution.
The distribution for the first data set was set to have b ¼ 0.9 while
the value of b for the second distribution was lowered according to
Equation 10 to give the stated variance difference. p values were
calculated with the standard Levene test. The horizontal line indi-
cates a p value of 0.05.
Differences in variance are as follows: (A) 10-fold; (B) 5-fold; (C)
2-fold; (D) 50% increase; (E) equal variance.

Figure 7. Levene Test p Values for Comparisons of Two Data
Sets with Different Variances but Equal Mean Mutation Levels
of 0.1
Other details are the same as in Figure 6.
A variance difference of 1.5-fold (Figure 6D) could not be

reliably detected even with sample sizes of 100. The test

of equal variance samples (Figure 6E) shows approximately

5% false positives, as would be expected. As we showed

earlier (Figure 3), sample size effects on variance measure-

ments increase at both large and small mean mutation

levels. Figure 7 shows the p value calculations for compar-

isons of two samples with equal mean mutation level of

0.1. At this low level of mutation, which is not an unusual

value in the mouse model data, even 2-fold differences in

variance cannot reliably be distinguished with sample sizes

of approximately n < 50. Even in the extreme case of

a 10-fold variance difference, several false negative results

occur (Figure 7A).

Using the Standard Error of Variance

for Experiment Design

The analysis we present here can be used to design experi-

ments with sufficient power to reliably detect changes in
The Am
mtDNA mutation level. If one chooses to assume a normal

distribution model, then this process is relatively simple

and Equation 6 can be used to determine the necessary

sample size n. However, the mathematical complications

of the Kimura model mean that its use in experimental

design is more difficult than the normal distribution,

though we would argue that it is also more accurate.

From Equation 11, the standard error of the variance in

the Kimura model will depend on the distribution param-

eter values p0 and b, as well as the sample size n. In Figure 8

we plot the standard error of the variance divided by the

variance for different values of p0 and n, assuming that

the value of b is set to 0.9, approximately the value deter-

mined from the analysis of the human oocyte data set.13

Figure 8A shows how the standard error of the variance

rises rapidly for small sample sizes (n below about 20).

Figure 8B shows that at extreme values of mutation level,

below about 0.1 and above about 0.9, the standard error

in the variance measurement is much greater. In between

these extreme values of p0, the standard error of variance

is relatively insensitive to different mutation level values.

In this intermediate p0 range, the normal distribution is

often a good approximation for the Kimura distribution,

and the values in Figure 8B correspond well with those

calculated from Equation 6 for the normal distribution.
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Figure 8. Dependence of the Standard Error of
Variance Divided by the Variance on the Mean
mtDNA Mutation Level p0 and on the Sample Size n
(A) Dependence on the sample size n for three values
of the mean mutation level.
(B) Dependence on the mean mutation level for
a range of sample sizes. All standard error values
are calculated for a Kimura distribution from
Equations 11 and 2. All curves were calculated
from Equations 11 and 2 with a value of b ¼ 0.9.
That b value was chosen as a simple value that was
close to the b value calculated from the one human
oocyte data set.13,38
However, the width of the horizontal region in Figure 8B

depends on the bottleneck parameter b. Lower values of

b will correspond to higher variances (as shown by Equa-

tion 10), making the normal distribution a poor approxi-

mation to the Kimura distribution.

A practical approach would be to calculate the required

sample size n via a general estimate based on the normal

distribution approximation of Equation 6. One then needs

to keep in mind that this will give a good prediction for the

standard error of the variance in data sets with moderate

mean mtDNA mutation levels (near 50%), but that data

sets with high or low values of mean mutation level will

have even higher relative standard errors of the variance,

as illustrated in Figure 8B. The normal distribution method

underestimates the standard error of variance for samples

with high (>90%) or low (<10%) mean mutation level, so

for calculating error bars for the measured variance, either

the model-free method (Equations 2–4) or the Kimura

model method (Equations 11 and 2) should be used.
Discussion

The calculation of mtDNA mutation level variance values

from quite small sample sizes has been an accepted prac-

tice, although some have had concerns about this practice.

We have addressed these concerns by developing the

equations for calculating the standard error of variance

measured from a sample of size n. We give three options

for doing this calculation. The model-free method uses

only the measured data and does not require any assump-

tion of the form of the probability distribution from which

the data are sampled. However, the model-free method

does require the calculation of the fourth central moment

of the data, and high-order moments such as this are diffi-

cult to estimate from data. The simplest option is to

assume that the population follows a normal distribution,

and in that case the standard error of the variance is quite
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simple to calculate. The difficulty with the

normal distribution is that it is a poor descrip-

tion of the mutation level distribution at the

high and low extremes and these are often

the ranges of great practical interest. To deal
with the details of the mtDNA mutation level distribution,

we have developed the Kimura distribution38 based on the

theory of neutral genetic drift.41 Although the Kimura

distribution is mathematically complicated, it is a reliable

description of measured mtDNA mutation level distribu-

tions38 and in this paper we have derived the standard

error of variance for mutation level values drawn from a

Kimura distribution.

Although the standard error of variance has not been

used in this field, the standard error of the mean is, of

course, common knowledge. We would argue that in

general, assumptions about the reasonable number of

samples to take in an experiment have been shaped by

our familiarity with the standard error of the mean. How-

ever, a number of samples n that are quite sufficient for

the accurate estimation of the mean value can be inade-

quate for the estimation of higher-order statistics, such as

the variance. Comparisons of the confidence intervals for

the mean values and for the variance values for both the

normal distribution (Figure 1) and the Kimura distribution

(Figures 2 and 3) illustrate this difference starkly. Although

the confidence intervals for the mean are quite reasonably

small for sample sizes of about 20, the corresponding confi-

dence intervals for the variance measurements are disturb-

ingly large at those samples sizes, making it extremely

difficult to reliably measure small changes in variance.

Because scientific conclusions are being made based on

comparisons of these measured variances, it is critical that

error bars for these variance measurements be reported and

that reliable statistical tests for comparisons of variance

measurements, such as the Levene test, should be used.

Based on our Monte-Carlo results (Figures 6 and 7), a

good rule of thumb for experimental design is that at

moderate mean mutation levels (50%), a 2-fold or greater

difference in normalized variance can be reliably detected

by >30 measurements, while for low (10%) or high

(90%) mean mutation levels, the number of measurements

should be increased to 50 or more.



The standard error of variance is a critical tool for assess-

ing the reliability of a variance measurement. With this

new capability, we have reinterpreted the experimental

data on the development of mtDNA mutation level vari-

ance in the female germline. In the mouse model, this

reassessment shows that there is no support for the conclu-

sion that the mutation level variance increases greatly

during postnatal development (Figures 4A and 5), contrary

to the previous interpretation of the data.10 The addition

of the standard error of variance also shows that there

is a clear difference between the mouse model and the

human data, with humans having a far larger mtDNA

mutation level variance than mice in both primary oocytes

and offspring.
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