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a b s t r a c t

In this paper, a class of non-autonomous reaction-diffusion neural networks with time-
varying delays is considered. Novel methods to study the global dynamical behavior of
these systems are proposed. Employing the properties of diffusion operator and themethod
of delayed inequalities analysis, we investigate global exponential stability, positive
invariant sets and global attracting sets of the neural networks under consideration.
Furthermore, conditions sufficient for the existence and uniqueness of periodic attractors
for periodic neural networks are derived and the existence range of the attractors is
estimated. Finally twoexamples are given to demonstrate the effectiveness of these results.
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1. Introduction

Dynamics of autonomous neural networks based on Hopfield architecture has attracted considerable attention due to its
important role in designs and applications to optimization, pattern recognition, signal processing and associativememories,
and so on. Many important results have been obtained, e.g., in [1–11]. However, as we well know, non-autonomous
phenomena often occur in many realistic systems. Particularly when we consider the long-term dynamical behavior of a
system, network coefficients are subject to environmental disturbances and frequently vary with time. In this case, non-
autonomous neural network model [12–14] can even accurately depict evolutionary processes of networks. Therefore, it is
important and, in effect, necessary to study the dynamics of non-autonomous neural networks.

In the past few decades, many scientists were interested in electronic implementation of neural networks. However,
strictly speaking, the diffusion effect cannot be avoided when electrons are moving in asymmetric electromagnetic fields.
Consequently, diffusion phenomena should be introduced into these systems. The stability of autonomous neural networks
with diffusion terms has been considered in [15–18]. But the dynamics of reaction-diffusion neural networks has not yet
been fully developed. So, further investigation to these neural networks is significant.

In this article, we consider a class of non-autonomous reaction-diffusion neural networks with time-varying delays
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where τij(t) is the transmission delay at time t with 0 ≤ τij(t) ≤ τ and τ > 0 is a constant. Ω ⊂ Rm is a bounded domain
with smooth boundary ∂Ω and measure µ = mesΩ > 0. n corresponds to the number of units in neural networks.
xk (k = 1, 2, . . . ,m) corresponds to the kth coordinate in the space. ui(t, x) corresponds to the state of the ith unit at time
t and in space x. Smooth function Dik = Dik(t, x) ≥ 0 corresponds to the transmission diffusion operator along the ith unit.
gj(uj) is the activation function of the jth unit. ai(t) ≥ 0 represents the rate with which the ith unit will reset its potential to
the resting state in isolation when disconnected from the network and external inputs. bij(t) denotes the strength of the jth
neuron on ith unit at time t−τij(t). Ji(t) is the external bias on the ith unit at time t; φ(s, x) = (φ1(s, x),φ2(s, x), . . . ,φn(s, x))T

is the initial value.We always assume that functions ai(t), bij(t) and Ji(t) are continuous for t ∈ R and gj is the globally Lipschitz
continuous, i, j ∈ N

∆
= {1, 2, . . . , n}.

The main difficulty for global dynamical behavior analysis of system (1) comes from both the diffusion effect and non-
autonomous phenomena. The existing criteria on stability for neural networks [1–11] may be difficult and even ineffective
for system (1). Therefore, techniques and methods for asymptotic property analysis of non-autonomous reaction-diffusion
neural networks with time-varying delays should be developed and explored. Based on this, novel methods to study the
global dynamical behavior of system (1) are proposed in this paper. By the properties of diffusion operators and the method
of delayed inequalities analysis, we investigate global exponential stability, positive invariant sets and global attracting sets
for non-autonomous reaction-diffusion neural networks (1). So the estimate for attracting sets of neural networks (1) is
obtained. Estimates can play an important role in applications such as signal analysis and optimal computation of neural
networks. Furthermore, employing the Banach fixed point theorem, we obtain the existence and uniqueness of the periodic
attractor and provide the existence range of the periodic attractor for periodic neural networks (1). Finally two examples
are given to demonstrate the effectiveness of our results.

This paper is organized as follows. In Section 2, we introduce some notations, definitions and lemmas. Section 3 discusses
the global dynamical behaviors of non-autonomous neural networks (1). And the periodic attractor and its existence range
are investigated in Section 4. Examples to illustrate the proposed methods are included in Section 5. Conclusions are drawn
in Section 6.

2. Preliminaries

Let C = C([−τ, 0], (L2(Ω))n). Then for φ(s, x) ∈ C, we define [φ]
+

τ , (‖φ1‖2τ, ‖φ2‖2τ, . . . , ‖φn‖2τ)
T, where ‖φi(s, x)‖2τ ,

max−τ≤s≤0 ‖φi(s, x)‖2 and ‖φi(s, x)‖2 , (
∫
Ω
φ2

i (s, x)dx)
1
2 , i ∈ N . For any real matrices A = (aij)n×m and B = (bij)n×m, we write

A ≥ B if aij ≥ bij, ∀i ∈ N , j ∈ {1, 2, . . . ,m}.
For φ ∈ C and t0 ∈ R, there exists a solution u(t, x) = (u1(t, x), . . . , un(t, x))T = u(t; t0,φ) ∈ C([t0,∞), (L2(Ω))n) for t ≥ t0

[19]. It is verified that ut(t0,φ) ∈ C, where ut(t0,φ)(s) = u(t + s; t0,φ) for s ∈ [−τ, 0].

Definition 1. A set S ⊂ C is called to be a positive invariant set of system (1) if for any initial value φ ∈ S, ut(t0,φ) ∈ S,
∀t ≥ t0, where ut(t0,φ)(s) = u(t + s; t0,φ)) for s ∈ [−τ, 0].

Definition 2. System (1) is said to be globally exponentially stable, if there are constants λ > 0 andM ≥ 1 such that for any
two solutions u(t; t0,φ) and u(t; t0,ψ) with the initial functions φ,ψ ∈ C, respectively, one has

‖u(t; t0,φ) − u(t; t0,ψ)‖ ≤ M‖φ−ψ‖τe−λ(t−t0), ∀t ≥ t0,

where, ‖u‖ , (
∑n

i=1 ‖ui(t, x)‖
2
2)

1
2 , ‖ui(t, x)‖2 , (

∫
Ω
u2i (t, x)dx)

1
2 , i ∈ N , ‖φ‖τ , (

∑n
i=1 ‖φi(s, x)‖

2
2τ)

1
2 = |[φ]

+

τ |, |.| is Euclidean
norm of Rn.

Definition 3. A set S ⊂ C is called a global attracting set of system (1), if for any initial value φ ∈ C, the solution ut(t0,φ)
converges to S as t → ∞, that is,

dist(ut(t0,φ), S) → 0, as t → ∞,

where dist(ut(t0,φ), S) = infϕ∈S ‖ut(t0,φ) − ϕ‖τ .

Definition 4 ([20]). The matrix A = (aij)n×n is called an M-matrix if the following conditions hold.

(i) aii > 0, i ∈ N , and aij ≤ 0, i 6= j, i, j ∈ N .
(ii) A is inverse-positive; that is, A−1 exists and A−1

≥ 0 .

Definition 5. Let Cn
= C([t − τ, t], Rn), τ ≥ 0. A function F(t, x, y) ∈ C(R+

× Rn
× Cn, Rn) is called an M-function, if the

following conditions hold.

(i) F(t, x, y(1)) ≤ F(t, x, y(2)), ∀t ∈ R+, x ∈ Rn, y(1), y(2)
∈ Cn and y(1)

≤ y(2).
(ii) ∀t ∈ R+, y ∈ Cn, x(1), x(2)

∈ Rn, x(1)
≤ x(2) and there is some i0 ∈ N satisfying x(1)

i0
= x(2)

i0
, then

Fi0(t, x
(1), y) ≤ Fi0(t, x

(2), y).

Lemma 1 (Generalized Halanay Inequality [20]). Assume that
(i) x(t) < y(t), t ∈ [t0 − τ, t0].
(ii) D+y(t) > F(t, y(t), ys(t)), D+x(t) ≤ F(t, x(t), xs(t)), t ≥ t0 ≥ 0,
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where F(t, x, y) is an M-function, D+y(t) is the upper-right derivation of y(t), x(t) = (x1(t), . . . , xn(t))T,
y(t) = (y1(t), . . . , yn(t))T, xs(t) , (xs1(t), . . . , x

s
n(t))

T, ys(t) , (ys1(t), . . . , y
s
n(t))

T, xsi (t) , max−τ≤s≤0 xi(t + s),
ysi (t) , max−τ≤s≤0 yi(t + s), i ∈ N . Then

x(t) < y(t), t ≥ t0.

To study the global dynamic behavior of system (1), we suppose
(A1) The activation function gj satisfies the global Lipschitz condition, that is, there exists σj > 0 such that

|gj(u) − gj(v)| ≤ σj|u − v|, ∀j ∈ N , u, v ∈ R.

(A2) There exist continuous function hi(t) > 0 and constants âi > 0, b̂ij ≥ 0, Ĵi ≥ 0 such that

ai(t) ≥ âi hi(t), |bij(t)| ≤ b̂ij hi(t), |Ji(t)| ≤ Ĵi hi(t), ∀i, j ∈ N .

(A3) Â − B̂σ is an M-matrix, where Â = diag{â1, . . . , ân}, B̂ = (b̂ij)n×n, σ = diag{σ1, . . . ,σn}.

3. Global exponential stability and attracting sets

In this section, we shall investigate the global exponential stability, positive invariant sets and global attracting sets of
non-autonomous system (1).
Theorem 1. Assume that conditions (A1)–(A3) are satisfied. Let Ĵ = (Ĵ1, . . . , Ĵn)T and µ = mesΩ , ĝ = (|g1(0)|, . . . , |gn(0)|)T,
I = B̂ĝ + Ĵ , S = {φ ∈ C|[φ]

+

τ ≤ (Â − B̂σ)−1Iµ}. Then S is a positive invariant set of system (1).

Proof. Without loss of generality, we let Ĵ > 0. Since Â − B̂σ is an M-matrix, from the Definition 4, we have (Â − B̂σ)−1
≥ 0,

and N = (N1, . . . ,Nn)
T ∆

= (Â − B̂σ)−1Iµ > 0. We now prove for φ ∈ C, when [φ]
+

τ ≤ N,
[u(t, x)]+ , (‖u1(t, x)‖2, ‖u2(t, x)‖2, . . . , ‖un(t, x)‖2)

T
≤ N, ∀t ≥ t0, (2)

where u(t, x) = u(t; t0,φ) is the solution of system (1) with the initial functions φ ∈ C.
First, we shall prove that for p > 1, [φ]

+

τ < pN implies
[u(t, x)]+ < pN, t ≥ t0. (3)

If not, there must be l and t1 > t0 such that
‖ul(t1, x)‖2 = pNl, ‖ul(t, x)‖2 < pNl, t0 − τ ≤ t < t1, (4)

and
‖ui(t, x)‖2 ≤ pNi, ∀i ∈ N , t0 − τ ≤ t ≤ t1. (5)

Since ui(t, x) satisfies

∂ui

∂t
=

m∑
k=1

∂

∂xk

(
Dik
∂ui

∂xk

)
− ai(t)ui +

n∑
j=1

bij(t)gj(uj(t − τij(t), x)) + Ji(t),

=

m∑
k=1

∂

∂xk

(
Dik
∂ui

∂xk

)
− ai(t)ui +

n∑
j=1

bij(t)[gj(uj(t − τij(t), x)) − gj(0)] +

n∑
j=1

bij(t)gj(0) + Ji(t), ∀i ∈ N ,

multiply both sides of the equation above with ui(t, x), and integrate

1
2

d
dt

∫
Ω

u2i dx =

m∑
k=1

∫
Ω

ui
∂

∂xk

(
Dik
∂ui

∂xk

)
dx − ai(t)

∫
Ω

u2i dx +

n∑
j=1

bij(t)
∫
Ω

ui[gj(uj(t − τij(t), x)) − gj(0)]dx

+

[
n∑

j=1
bij(t)gj(0) + Ji(t)

] ∫
Ω

uidx, ∀i ∈ N . (6)

From the boundary condition, we get
m∑

k=1

∫
Ω

ui
∂

∂xk

(
Dik
∂ui

∂xk

)
dx =

∫
Ω

ui∇ ·

(
Dik
∂ui

∂xk

)m

k=1
dx

=

∫
Ω

∇ ·

(
ui

(
Dik
∂ui

∂xk

)m

k=1

)
dx −

∫
Ω

(
Dik
∂ui

∂xk

)m

k=1
· ∇uidx

=

∫
∂Ω

(
uiDi

∂ui

∂n

)
·ds −

m∑
k=1

∫
Ω

Dik

(
∂ui

∂xk

)2

dx

= −

m∑
k=1

∫
Ω

Dik

(
∂ui

∂xk

)2

dx, ∀i ∈ N , (7)

where ∇ = ( ∂
∂x1

, . . . , ∂
∂xm

)T is the gradient operator, (Dik
∂ui
∂xk

)mk=1 = (Di1
∂ui
∂x1

, . . . ,Dim
∂ui
∂xm

)T and Di = diag {Di1, . . . ,Dim}.
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By the conditions (A1)–(A2), Eqs. (6) and (7) and Schwarz inequality, we have

1
2

d
dt

‖ui‖
2
2 ≤ −âihi(t)‖ui‖

2
2 +

n∑
j=1

b̂ijhi(t)
∫
Ω

|ui|σj|uj(t − τij(t), x)|dx +

[
n∑

j=1
b̂ij|gj(0)| + Ĵi

]
hi(t)

∫
Ω

|ui|dx

≤ −âihi(t)‖ui‖
2
2 +

n∑
j=1

b̂ijhi(t)σj‖ui‖2‖uj(t − τij(t), x)‖2 + Iihi(t)µ‖ui‖2,

where Ii =
∑n

j=1 b̂ij|gj(0)| + Ĵi, i ∈ N . Then

d
dt

‖ui‖2 ≤ −âihi(t)‖ui‖2 + hi(t)

[
n∑

j=1
b̂ijσj‖uj(t − τij(t), x)‖2 + Iiµ

]
, ∀i ∈ N , t ≥ t0. (8)

From [φ]
+

τ < pN, (4), (5) and (8), we obtain by Gronwall’s inequality

‖ul(t1, x)‖2 ≤ e−
∫ t1
t0

âlhl(s)ds‖φl‖2τ +

∫ t1

t0

e−
∫ t1
s âlhl(ξ)dξhl(s)

[
n∑

j=1
b̂ljσj‖uj(s − τlj(s), x)‖2 + Ilµ

]
ds

< e−
∫ t1
t0

âlhl(s)dspNl +
1
âl

(1 − e−
∫ t1
t0

âlhl(ξ)dξ)

[
n∑

j=1
b̂ljσjpNj + Ilµ

]

= e−
∫ t1
t0

âlhl(s)ds
[
pNl −

1
âl

(
n∑

j=1
b̂ljσjpNj + Ilµ

)]
+

1
âl

(
n∑

j=1
b̂ljσjpNj + Ilµ

)
. (9)

Since Â − B̂σ is an M-matrix and N = (Â − B̂σ)−1Iµ, one can get ÂN = B̂σN + Iµ, or

âiNi =

n∑
j=1

b̂ijσjNj + Iiµ, ∀i ∈ N ,

yielding

âipNi ≥

n∑
j=1

b̂ijσjpNj + Iiµ, ∀i ∈ N , p > 1. (10)

Noting that e−
∫ t1
t0

âlhl(s)ds ≤ 1, from (9) and (10), we obtain

‖ul(t1, x)‖2 <

[
pNl −

1
âl

(
n∑

j=1
b̂ljσjpNj + Ilµ

)]
+

1
âl

(
n∑

j=1
b̂ljσjpNj + Ilµ

)
= pNl,

which contradicts the equality in (4). This shows (3). Let p → 1 in (3), then (2) is true and the proof is completed. �

Remark 1. From the proof of Theorem 1 and (3), it is easy to conclude that for arbitrary α ≥ 1, S1 = {φ ∈ C|[φ]
+

τ ≤ αN} is a
positive invariant set of system (1).

Theorem 2. Suppose that the conditions (A1)–(A3) hold. In addition, hi(t)
∆
= h(t) > 0, i ∈ N and h(t) is a continuous and

ω-periodic function, i.e.,

h(t + ω) = h(t), ω > 0.

Then system (1) is globally exponentially stable and the exponential convergence rate is equal to δρω , where ρ ∆
=
∫ ω
0 h(t)dt > 0

and δ satisfying (16).

Proof. For any φ, ψ ∈ C, we denote

y(t, x) = u(t, x) − v(t, x), (11)

where u(t, x) = u(t; t0,φ) and v(t, x) = v(t; t0,ψ) are the solutions of (1) with the initial functions φ,ψ ∈ C, respectively.
Then from system (1), y(t, x) must satisfy

∂yi
∂t

=

m∑
k=1

∂

∂xk

(
Dik
∂yi
∂xk

)
− ai(t)yi +

n∑
j=1

bij(t)ḡj(yj(t − τij(t), x)),

yi(t0 + s, x) = φi(s, x) −ψi(s, x), −τ ≤ s ≤ 0, x ∈ Ω,

∂yi
∂n

:=

(
∂yi
∂x1

, . . . ,
∂yi
∂xm

)T

= 0, t ≥ t0 ≥ 0, x ∈ ∂Ω, i ∈ N

(12)

where ḡj(yj(t − τij(t), x)) = gj(uj(t − τij(t), x)) − gj(vj(t − τij(t), x)), j ∈ N .
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From condition (A1), we have

|ḡj(yj(t − τij(t), x))| ≤ σj|uj(t − τij(t), x) − vj(t − τij(t), x)| = σj|yj(t − τij(t), x)|, j ∈ N .

Similar to the proof of the inequality (8), we obtain

d
dt

‖yi‖2 ≤ −âihi(t)‖yi‖2 + hi(t)
n∑

j=1
b̂ijσj‖yj(t − τij(t), x)‖2, ∀i ∈ N , t ≥ t0. (13)

To employ Lemma 1, we define

F(t, x, y) , −h(t)Âx + h(t)B̂σy ∈ C(R+
× Rn

× Cn, Rn).

Obviously, F(t, x, y) satisfies the condition (i) of the Definition 5; On the other hand, for any t ∈ R+, y ∈ Cn,

x(1), x(2)
∈ Rn, x(1)

≤ x(2) and there is some i0 ∈ N satisfying x(1)
i0

= x(2)
i0

, then

Fi0(t, x
(1), y) = −h(t)âi0x

(1)
i0

+ h(t)
n∑

j=1
b̂i0 jσjyj = −h(t)âi0x

(2)
i0

+ h(t)
n∑

j=1
b̂i0 jσjyj = Fi0(t, x

(2), y).

So, F(t, x, y) is an M-function.
By (13), one can get

D+([y(t, x)]+) ≤ −h(t)Â[y(t, x)]+ + h(t)B̂σ([y(t, x)]+)s = F(t, [y(t, x)]+, ([y(t, x)]+)s), t ≥ t0, (14)

where ([y(t, x)]+)s = (‖y1(t, x)‖
s
2, . . . , ‖yn(t, x)‖

s
2)

T, ‖yi(t, x)‖
s
2 = max−τ≤s≤0 ‖yi(t + s, x)‖2,∀i ∈ N .

Since h(t) is a continuous and ω-periodic function with h(t) > 0, we can get ρ=
∫ ω
0 h(s)ds > 0 and∫ t

t0

h(s)ds ≥

(
t − t0
ω

− 1
) ∫ ω

0
h(s)ds =

(
t − t0
ω

− 1
)
ρ, ∀t ≥ t0; (15)∫ t

t−τ
h(s)ds ≤

(
τ

ω
+ 1

) ∫ ω

0
h(s)ds =

(
τ

ω
+ 1

)
ρ , η, ∀t ≥ t0.

Since Â − B̂σ is an M-matrix [20], there exists an r = (r1, . . . , rn)T > 0 such that

(−Â + B̂σ)r < 0.

Then there must exist a δ > 0 such that

δr − Âr + B̂σreηδ < 0. (16)

For any ε > 0, we define

q(t) = Rr(‖φ−ψ‖τ + ε)e−δ
∫ t
t0

h(s)ds
,

where R is a positive constant satisfying Rri ≥ 1, i ∈ N . Then

D+q(t) = −δrRh(t)(‖φ−ψ‖τ + ε)e−δ
∫ t
t0

h(s)ds

> (−Âr + B̂σreηδ)Rh(t)(‖φ−ψ‖τ + ε)e−δ
∫ t
t0

h(s)ds

≥ −h(t)Âq(t) + h(t)B̂σrR(‖φ−ψ‖τ + ε)e−δ
∫ t−τ
t0

h(s)ds

= −h(t)Âq(t) + h(t)B̂σqs(t)

= F(t, q(t), qs(t)), t ≥ t0, (17)

where, qs(t) = (qs1(t), . . . , q
s
n(t))

T, qsi (t) = max−τ≤s≤0 qi(t + s) = max−τ≤s≤0 riR(‖φ−ψ‖τ + ε)e−δ
∫ t+s
t0

h(ξ)dξ
, i ∈ N .

Furthermore, when t ∈ [t0 − τ, t0], we have

‖yi(t, x)‖2 ≤ max
−τ≤s≤0

‖yi(t0 + s, x)‖2 = max
−τ≤s≤0

‖φi(s, x) −ψi(s, x)‖2 = ‖φi −ψi‖2τ

≤ ‖φ−ψ‖τ < riR(‖φ−ψ‖τ + ε)e−δ
∫ t
t0

h(s)ds
= qi(t), i ∈ N .

Then

[y(t, x)]+ < q(t), t ∈ [t0 − τ, t0]. (18)

By (14), (17) and (18) and Lemma 1, we obtain

[y(t, x)]+ < q(t) = rR(‖φ−ψ‖τ + ε)e−δ
∫ t
t0

h(s)ds
, t ≥ t0.

Let ε → 0, then

[y(t, x)]+ ≤ rR‖φ−ψ‖τe
−δ

∫ t
t0

h(s)ds
, t ≥ t0.
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So,

‖y(t, x)‖ =

(
n∑

i=1
‖yi(t, x)‖

2
2

) 1
2

= |[y(t, x)]+| ≤ |r|R‖φ−ψ‖τe
−δ

∫ t
t0

h(s)ds
, t ≥ t0. (19)

By using (11), (15) and (19), for any φ, ψ ∈ C, we have

‖u(t; t0,φ) − u(t; t0,ψ)‖ ≤ |r|Reδρ(
t0
ω +1)

‖φ−ψ‖τe−
δρ
ω t, t ≥ t0. (20)

Therefore, system (1) is globally exponentially stable. Furthermore, its exponential convergence rate is equal to δρω . The
proof is completed. �

Using Theorems 1 and 2, we easily obtain the follow theorem.

Theorem 3. Suppose all conditions in Theorem 2 are satisfied. Then S = {φ ∈ C|[φ]
+

τ ≤ (Â − B̂σ)−1Iµ} is a globally attracting
set of system (1).

Proof. By Theorem 2, it follows that for any φ, ψ ∈ C, the inequality (20) holds. And by Theorem 1, S is a positive invariant
set of system (1). Then, ψ ∈ S yields

ut(t0,ψ) ∈ S, t ≥ t0. (21)

This together with (20) yields that

dist(ut(t0,φ), S) = inf
ϕ∈S

‖ut(t0,φ) − ϕ‖τ

≤ ‖ut(t0,φ) − ut(t0,ψ)‖τ

=

[
n∑

i=1
max

−τ≤s≤0
‖ui(t + s; t0,φ) − ui(t + s; t0,ψ)‖2

2

] 1
2

≤

[
n max

−τ≤s≤0
‖u(t + s; t0,φ) − u(t + s; t0,ψ)‖2

] 1
2

≤
√
n |r|Reδρ(

t0
ω +1)

‖φ−ψ‖τe−
δρ
ω (t−τ), t ≥ t0. (22)

So, we have

dist(ut(t0,φ), S) → 0, as t → ∞.

The proof is completed. �

4. Periodic attractor and its existence range

In this section, we assume that system (1) of neural networks be ω-periodic, i.e.,

ai(t + ω) = ai(t), Ji(t + ω) = Ji(t), bij(t + ω) = bij(t), τij(t + ω) = τij(t), ∀ i, j ∈ N ,

Dik(t + ω, x) = Dik(t, x), ∀ i ∈ N , k ∈ {1, 2, . . . ,m}.

Theorem 4. Let system (1) be ω-periodic. Suppose all conditions in Theorem 2 are satisfied. Then system (1) has uniquely one
ω-periodic attractor, which is globally exponentially stable and lies in S = {φ ∈ C|[φ]

+

τ ≤ (Â − B̂σ)−1Iµ}.

Proof. For any φ, ψ ∈ C, let u(t; t0,φ) and u(t; t0,ψ) be the solutions of system (1) with the initial functions φ,ψ ∈ C,
respectively. Owing to S ⊂ C is a positive invariant set of system (1), we may define Υ : S → S by

Υφ = u(t + ω; t0,φ), for t ∈ [t0 − τ, t0].

Now u(t + ω; t0,φ) is a solution of system (1) for t ≥ t0 and its initial function is Υφ. Hence,

u(t + ω; t0,φ) = u(t; t0,Υφ), ∀t ≥ t0 − τ,

by uniqueness. Then,

u(t + 2ω; t0,φ) = u(t + ω; t0,Υφ), ∀t ≥ t0 − τ.

Next,

Υ2φ = u(t + ω; t0,Υφ), for t ∈ [t0 − τ, t0].

Thus,

Υ2φ = u(t + 2ω; t0,φ), for t ∈ [t0 − τ, t0].
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In general,
Υ kφ = u(t + kω; t0,φ), for t ∈ [t0 − τ, t0]. (23)

From (20) and (23), there is a positive integer m0 such that

‖Υm0φ− Υm0ψ‖ ≤
1
2

‖φ−ψ‖τ.

Then the operator Υ satisfies all conditions of the general Banach fixed point theorem [21, pp.724]. Therefore, Υ has a fixed
point φ∗

∈ S, that is,
u(t + ω; t0,φ

∗) = Υφ∗
= φ∗, for t ∈ [t0 − τ, t0].

Thus u(t; t0,φ∗) and u(t + ω; t0,φ∗) are both solutions of system (1) with the same initial function and so, by uniqueness,
they are equal. This implies that u(t; t0,φ∗) ∈ S is ω-periodic. From (20), it is easy to prove that ω-periodic solution of the
ω-periodic system (1) is unique. Then from Theorem 2, system (1) has uniquely one globally exponentially stableω-periodic
attractor φ∗

∈ S. The proof is completed. �

5. Examples

Example 1. Consider a system of non-autonomous reaction-diffusion neural networks with time-varying delays

∂u1(t, x)

∂t
= ∆u1(t, x) − (4 + e−t)u1(t, x) − sin(t2)g1

(
u1

(
t −

1
2
, x
))

+ 4g2(u2(t − | cos t|, x)) + arctan(t),

∂u2(t, x)

∂t
= ∆u2(t, x) − (5 + e−t)u2(t, x) + 2 cos(t2)g1

(
u1

(
t −

3
4
, x
))

− 2g2(u2(t − 1, x)) + arctan(t),

ui(t0 + s, x) = φi(s, x), −1 ≤ s ≤ 0, x ∈ Ω = {(x1, x2, x3) ∈ R3|x21 + x22 + x23 = 1},
∂ui

∂n
:=

(
∂ui

∂x1
,
∂ui

∂x2
,
∂ui

∂x3

)
= 0, t ≥ t0 ≥ 0, x ∈ ∂Ω, i = 1, 2.

(24)

where sigmoid function g1(s) = g2(s) = tanh(s). It is easy to check that the conditions (A1)–(A3) are satisfied and we may
take τ = 1,σ1 = σ2 = 1, h1(t) = h2(t) ≡ 1, â1 = 4, â2 = 5, b̂11 = 1, b̂12 = 4, b̂21 = 2, b̂22 = 2, Ĵ1 = π/2, Ĵ2 = π/2. Then

Â =

(
4 0
0 5

)
, B̂ =

(
1 4
2 2

)
, σ =

(
1 0
0 1

)
, I = B̂ĝ + Ĵ = Ĵ =

( π
2
π
2

)
, µ = mesΩ =

4π
3

,

Â − B̂σ =

(
3 −4

−2 3

)
is an M-matrix , N = (Â − B̂σ)−1Iµ =

(
14π2
3

10π2
3

)
,

S1 =

{
φ ∈ C | ‖φ1‖2τ ≤

14π2

3
, ‖φ2‖2τ ≤

10π2

3

}
.

It follows from Theorems 1–3 that system (24) is globally and exponentially stable, and S1 is a positive invariant and global
attracting set of (24).
Example 2. Consider a system of 2π-periodic cellular neural networks with delays

∂u1(t, x)

∂t
= ∆u1(t, x) − (4 + sin t) u1(t, x) − u1

(
t −

1
2
, x
)

+ 3u2(t − 1, x) + 1,
∂u2(t, x)

∂t
= ∆u2(t, x) − 4u2(t, x) + u1(t − 1, x) − 2u2(t − | sin t|, x) + | cos t|,

ui(t0 + s, x) = φi(s, x), −1 ≤ s ≤ 0, x ∈ Ω = {(x1, x2, x3) ∈ R3|x21 + x22 + x23 = 1},
∂ui

∂n
:=

(
∂ui

∂x1
,
∂ui

∂x2
,
∂ui

∂x3

)
= 0, t ≥ t0 ≥ 0, x ∈ ∂Ω, i = 1, 2.

(25)

Take the parameters in Theorem 4 as follows: τ = 1,σ1 = σ2 = 1, h1(t) = h2(t) ≡ 1, â1 = 3, â2 = 4, b̂11 = 1, b̂12 = 3, b̂21 =

1, b̂22 = 2, Ĵ1 = 1, Ĵ2 = 1. We can verify that

Â =

(
3 0
0 4

)
, B̂ =

(
1 3
1 2

)
, σ =

(
1 0
0 1

)
, I = B̂ĝ + Ĵ = Ĵ =

(
1
1

)
, µ = mesΩ =

4π
3

,

Â − B̂σ =

(
2 −3

−1 2

)
is an M-matrix , N = (Â − B̂σ)−1Iµ =

(
20π
3
4π

)
,

S2 =

{
φ ∈ C | ‖φ1‖2τ ≤

20π
3

, ‖φ2‖2τ ≤ 4π
}

.

It follows from Theorem 4 that system (25) has exactly one globally exponentially stable 2π-periodic attractor in S2.
Remark 2. To the best of our knowledge, the above global dynamical behaviors of systems (24) and (25)may not be obtained
in earlier literature because of non-autonomous characteristic of the system.
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6. Conclusions

In this paper, global dynamics for a class of non-autonomous reaction-diffusionneural networkswith time-varying delays
is investigated by employing the properties of a diffusion operator and the method of delayed inequalities analysis. In
particular, we have estimated the existence range of the attracting sets and the periodic attractors which were obtained
in [8,13], etc.. And in many applications, this estimate is of great interest. Furthermore, from Theorems 1–4, we conclude if
reaction-diffusion terms satisfy weaker conditions, the main effect for the stability of solutions of neural networks model
(1) just comes from network parameters. In additional, the given algebra criteria in Theorems 1–4 can be easily checked in
practice, and it will bring some convenience for those who design and verify these neural networks.
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