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Abstract

This paper presents a new model for multi-issue negotiation under time constraints in an
incomplete information setting. The issues to be bargained over can be associated with a single
good/service or multiple goods/services. In our agenda-based model, the order in which issues are
bargained over and agreements are reached is determined endogenously, as part of the bargaining
equilibrium. In this context we determine the conditions under which agents have similar preferences
over the implementation scheme and the conditions under which they have conflicting preferences.
Our analysis shows the existence of equilibrium even when both players have uncertain information
about each other, and each agent’s information isits private knowledge. We also study the properties
of the equilibrium solution and determine conditions under which it isunique, symmetric, and Pareto-
optimal.

0 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Negotiation is a means for agents to communicate and compromise to reach mutually
beneficial agreements [11,14,18,29,30,40]. In such situations, agents have a common
interest to cooperate, but have conflicting interests over exactly how to cooperate. Put
differently, agents can mutually benefit from reaching agreement on an outcome from a
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set of possible outcomes, but have conflicting interests over the set of outcomes. In this
context, the main problem that confronts agents is to decide how to cooperate—before
they actually enact the cooperation and obtain the associated benefits. On the one hand,
each agent would like to reach some agreement rather than disagree and not reach any
agreement. But, on the other hand, each agent would like to reach an agreement that is as
favourableto it as possible.

To this end, a number of negotiation models that address this problem have been
developed and applied to data allocation in information servers, resource allocation and
task distribution [18,19,27,31,32]. Apart from these, another application area in which
agent-mediated negotiation has received considerable attention isin the field of electronic
commerce [22—24,35,36]. In this domain, which is the main focus of this paper, theaimis
to build software agents that will optimally negotiate with other agents on behalf of users
for buying and selling goods/services. Here we look at one-to-one negotiation between
a buyer and a seller. In order to develop software agents for such bilateral encounters,
we first examine the important features of real-life bargaining situations that need to be
incorporated in the software agents. To this end, the three crucial features of most practical
bargaining processes are as follows[28]:

(1) Thetime constraints of the bargainers.
(2) Theinformation state of the bargainers.
(3) The number of issues to be bargained over.

We first explain the role of timein negotiation. Consider an e-commerce scenario in which
a buyer agent and a seller agent negotiate over the price of a good or service. The buyer
clearly prefersalow price, while the seller prefersahigh one (hence the competitive nature
of the encounter). In addition to attempting to obtain the best price, agentsal so usually need
to ensure that negotiation ends before a certain deadline. However, the end point may not
be the only way in which timeinfluences negotiation behaviour. Consider the casein which
the serviceis provided immediately after negotiation ends successfully (say at price P and
time 7). In some situations, it is not sufficient merely for an agent to ensure that 7 is any
time less than its deadline. This may be the case, for instance, because one of the agents,
say the buyer, could be losing utility with time as a result of not getting the service. On
the other hand, the seller may perhaps gain more utility by providing the service as late as
possible. Thus, in this case, the seller triesto maximize T (within the limit of its deadline)
and the buyer triesto minimize T'. In short, it is clear that agents can have different attitudes
toward time. Generaly speaking, the most common time effects in bargaining situations
are time discounting and deadlines [10,21]. An agent that gains utility with time and has
the incentive to reach alate agreement (within its deadline) is said to be a strong or patient
player. An agent that loses utility with time and tries to reach an early agreement is said
to be aweak or impatient player. Aswe will show, this disposition and the actual deadline
itself strongly influence the negotiation outcome.

The second crucial feature of a bargaining process is information. During negotiation,
each agent has to make decisions about generating offers and counter-offers in such a
way that its own utility from the final agreement is maximized. An essential input to
this decision making process is information; here defined as knowledge about all factors
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which affect the ability of an individual to make choicesin a given situation. For instance,
in bargaining between a buyer and a seller, information includes not only information
about an agent’s own parameters (such as its reservation price or its preferences over
possible outcomes), but also those of its opponent. In most realistic cases agents have
only incomplete information about their opponent.

To this end, game theoretic models have already been proposed for bargaining with
incomplete information. For instance, Rubinstein [34] developed a model in which agents
have incompl ete information about time preferences. Fudenberg et a. [12] analyse buyer-
seller negotiation in which reservation prices are uncertain. Sandholm and Vulkan [37]
consider uncertainty over agent deadlines. All these modelsare built on the assumption that
information about the uncertain parameter (in the form of possible values and a probability
distribution over them) isthe agents' common knowledge. However, in practice, perhapsthe
main way of acquiring information about the opponent is through learning from previous
encounters. In such cases, an agent’s beliefs about its opponent will not be known to its
opponent. We therefore study the strategic behaviour of agents by treating each agent’s
information asits private knowledge.

The third key feature is the number of issues that have to be negotiated. In many of
the applications that are conceived in the domain of e-commerce, it is important that the
agents should not only bargain over the price of a product, but also take into account
issues such as the delivery time, quality, payment methods, and other product specific
properties. In such multi-issue negotiations, one approach is to bundle al the issues and
discuss them simultaneously as a complete package. This allows the players to exploit
trade-offs among different issues, but requires complex computations to be carried out
[4,17]. The other approach, which is computationally simpler, is to negotiate the issues
sequentially. A second and more important reason why parties may choose to settle issues
one by one is the strategic implications of the choice of the negotiation procedure (i.e.,
issue-by-issuevs. complete package). When there are two objectsto negotiate, the decision
to negotiate them simultaneously or one by one is by no means neutral to the outcome
[2,38]. Although issue-by-issue negotiation minimizes the complexity of the negotiation
procedure, an important question that arises is the order in which the issues are bargained
over. Thisordering is called the negotiation agenda and it has been shown to be one of the
factorsthat determinesthe outcome of negotiation [9]. For instance, if there are two issues,
X and Y, the two agendas XY and Y X can lead to two different outcomes. The agents
need not have identical preferences over these outcomes and one of them may prefer the
agenda XY to Y X, while the other may prefer Y X to XY. Given this fact, exploring the
role of the bargaining agenda, and how players might manipulate it, is timely, especially
given that many real-life negotiationsinvolve multiple issues.

There are two ways of incorporating agendas in the negotiation model. Oneisto fix the
agenda exogenoudly as part of the negotiation procedure. Considering the above example,
one of the agendas, say XY is imposed exogenously. Then the bargainers have to settle
X first, and will be allowed to negotiate Y only after X is settled. The other way, which
is more flexible, is to alow the bargainers to decide which issue they will negotiate next
during the process of negotiation. This is called an endogenous agenda [16] and is the
approach we explorein this paper.
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Existing game theoretic models for issue-by-issue negotiation [1,9,16], which are
basically extensions of [33,34], have two main shortcomings. Firstly, they study the
strategic behaviour of agents by treating the information they have as common knowledge.
In practice however, the information that a player has about its opponent is mostly acquired
through learning from previous encounters. An agent’s beliefs about its opponent will
therefore not be known to its opponent. Secondly, these models do not consider agent
deadlines. We overcomethese problems by considering each agent to haveits own deadline
and by treating each agent’s information state as its private knowledge. In this case we
obtain the connection between this private knowledge and the existence of equilibrium for
single issue negotiation. We then extend this model for multi-issue negotiation and study
the properties of the equilibrium solution.

To provideasetting for our negotiation model, we consider the casein which negotiation
needs to be completed by a specified time, which may be different for different parties
(since this is the most realistic case). Apart from the agents' respective deadlines, the
time at which agreement is reached can affect the agents (patient or impatient) in different
ways [7]. To this end, Fatima et a. [7] presented a single-issue model for negotiation
between two agents under time constraints and in an incomplete information setting by
considering the agents information as its private knowledge. Within this context, they
determined optimal strategies for agents but did not address the issue of the existence
of equilibrium. Here we adopt this framework and prove that mutual strategic behavior
of agents, where both use their respective optimal strategies, results in equilibrium. We
then extend this framework for multi-issue negotiation. The order in which issues are
bargained over and agreements are reached is determined by the equilibrium strategies.
The time of equilibrium agreement may not be equal for al the issues. Consequently,
the outcome of multi-issue negotiation can be implemented in two ways. sequentially or
simultaneously. We then determine conditions under which agents have similar, aswell as
conflicting, preferences over the implementation scheme. Finally, we study the properties
of the equilibrium solution.

This work extends the state of the art in multi-issue negotiation by presenting a more
realistic negotiation model that captures the three aspects, mentioned above, that are
associated with many real-life bargaining situations. Firstly, it is a model for negotiating
multiple issues. Secondly, it takes the time constraints of bargainers into consideration,
both in the form of agent deadlines and their discounting factors. Thirdly, it allows agents
to have incomplete information about each other, and each agent’s information is treated
asits private knowledge. Although we study bargaining in which agents have one specific
information state and the agendais endogenous, our negotiation framework is general and
can be used for exploring awide range of negotiation environmentsby changing the agents
information states or the way in which the players manipulate the agenda.

The paper is organised as follows. Section 2 describes the components that make up a
negotiation model. In Section 3, we describe the single issue negotiation model. Section 4
extends this for negotiating multiple issues. Section 5 discusses related work. Finaly,
Section 6 gives some conclusions and suggests some topics for future work. Appendix A
provides a summary of notation employed throughout the paper.
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2. Components of a negotiation model
The four components of a negotiation model are as follows [31]:

(1) The negotiation protocol.

(2) The negotiation strategies.

(3) Theinformation state of agents.
(4) The negotiation equilibrium.

The protocol specifies the rules of encounter between the negotiation participants. That
is, it defines the circumstances under which the interaction between agents takes place,
what deals can be made and what sequences of offers are allowed. In general, agents
must reach agreement on the negotiation protocol to use before negotiation proper begins.
A negotiation protocol can be designed for handling a single issue or multiple issues.
Within the class of multi-issue negotiations, we can have protocols that negotiate on al
the issues together or one by one.

An agent’s negotiation strategy is a specification of the sequence of actions (usually
offers or responses) the agent plans to make during negotiation. There will usually be
many strategies that are compatible with a particular protocol, each of which may produce
a different outcome. For example, an agent could concede in the first round or bargain
very hard throughout negotiation until its timeout is reached. It followsthat the negotiation
strategy that an agent employs is crucial with respect to the outcome of negotiation. It
should aso be clear that the strategies which perform well with certain protocols will not
necessarily do so with others. The choice of a strategy to use is thus a function not just of
the specifics of the negotiation scenario, but aso the protocol in use.

An agent’s information state describes the information it has about the negotiation
game. Von Neumann and Morgenstern [26] introduced the fundamental classification of
gamesinto those of compl ete information and those of incompl eteinformation. The former
category is basic. In these gamesthe players are assumed to know all relevant information
about the rules of the game and players preferences that are represented by utility
functions. In the latter category, information may be lacking about a variety of factors
in the bargaining problem. Thus each player may have some private information about
his own situation that is unavailable to the other players, while having only probabilistic
information about the private information of other players. Following Harsanyi [14,15],
models of games of incomplete information proceed from the assumption that all players
start with the same probability distribution on this private information and that these priors
are common knowledge. This is modelled by having the game begin with a probability
distribution, known to all players. Thus players not only have priors over other players
private information, they also know what priors the other players have over their own
privateinformation. Strategic models of incomplete information thusinclude an extralevel
of detail, since they specify not only the actions and information available to the other
playersin the course of the game, but also their probability distributions and information
prior to the start of the game.

A negotiation mechanism consists of a negotiation protocol together with the negoti-
ation strategies for the agents involved. A negotiation mechanism has to be stable (i.e,
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a strategy profile must constitute an equilibrium), the earliest concept of which was the
Nash equilibrium for games of simultaneous offers [25]. Two strategies are in Nash equi-
librium if each agent’s strategy is abest responseto its opponent’sstrategy. Thisis aneces-
sary condition for system stability where both agents act strategically. For sequential offer
protocols, the Nash equilibrium concept was strengthened in several ways by requiring
that the strategies stay in equilibrium at every step of the game [39]. In summary, ratio-
nality, as understood in game theory, requires that each agent will select an equilibrium
strategy when choosing independently. Given this, game theory prescribes the following
main criteria[28] for evaluating the equilibrium outcome:

(1) Uniqueness. If the solution of the negotiation gameis unique, then it can beidentified
unequivocally.

(2) Efficiency. An agreement is efficient if there is no wasted utility (i.e., the agreement
satisfies Pareto-optimality). An outcomeis Pareto-efficient if thereisno other outcome
that improves the payoff of one agent without making another agent worse off. All
other things being equal, Pareto-efficient solutions are preferred over those that are
not.

(3) Symmetry. A bargaining mechanism is said to be symmetric if it does not treat the
players differently on the basis of inappropriate criteria. Exactly what constitutes
inappropriate criteria depends on the specific domain. For example, if the bargaining
outcomeremainsthe sameirrespective of which player starts the processof bargaining,
then it is said to be symmetric with respect to the identity of the first player.

(4) Distribution. This property relates to the issue of how the gains from trade are split
between the players; does the outcome split the gains equally between the traders or
does it favour one agent more than the other? In this paper, our aim is not to design
a negotiation mechanism that divides the gains fairly among players but to study the
outcome that results when both agents are self-interested.

With these broad guidelines in mind, many different models can be designed. Below, we
report on the development of a new model based on negotiation decision functions (see
Section 3.2) for bargaining over multiple issues. We first describe the single issue model
and study its equilibrium strategies and outcomes. We then extend this model for multi-
issue negotiation and study its equilibrium properties.

3. The single-issue negotiation model

We first describe the single issue negotiation protocol and obtain the agents optimal
strategies. We then prove that the optimal strategy profiles form sequential equilibrium.

3.1. The negotiation protocol
Here we adopt what is basically an aternating offers protocol [28]. Let b denote the

buyer, s the seller and let [IP¢, RP?] denote the range of valuesfor pricethat are acceptable
to agent a, wherea € {b, s}. We let a denote agent a’s opponent. A value for price that is
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acceptable to both » and s (i.e., the zone of agreement) is the interval [RP*, RP?] and
(RP? — RP*) is known as the price-surplus. The buyer’sinitial price, IP?, has avalue less
than the seller’'s reservation price. Similarly, the seller’s initial price has a value greater
than the buyer’s reservation price. In other words, both IP? and IP* lie outside the zone of
agreement.

The agents aternately propose offers at timesin 7 = {0, 1,...}. Each agent has a
deadline. T denotes agent a’s deadlinewhere T € 7. Let p; . = denote the price offered
by agent b at time ¢. Negotiation starts when the first offer is made by an agent. The
agent who makes the initial offer is selected randomly at the beginning of negotiation.
When an agent, say s, receives an offer from agent b at timer, i.e., p;_, , it rates the
offer using its utility function U*. If the value of U* for pj _ at timet is greater than
the value of the counter-offer agent s is ready to send in the next time period, ¢/, i.e.,
Us(phnt) = Uf(pi/_)b, ') for ¢’ =t + 1, then agent s accepts the offer at time r and
negotiation ends successfully in an agreement. Otherwise a counter-offer is made in the
next time period, ¢'. Thus the action, A*, that agent s takes at time ¢, in response to the
offer p,__ ,isdefined as:

Quit ift> 79,
A*(t, p}.,) = | Acoept. it U () > U (1),
Offerp!  , att' otherwise.

Agents tilities are defined with the following two von Neumann-Morgenstern utility
functions[17] that incorporate the effect of time discounting

U(p, 1) = Uy (p)Uf (1) D

U4 and U/ are unidimensional utility functions. Here, preferences for attribute p, given
the other attribute 7, do not depend on thelevel of 7. U} is defined as:

RP? — p  for the buyer,
p—RP*  fortheseller.

U isdefinedas Uf (1) = (8“)", where 8¢ isthe discounting factor. Thuswhen (§¢ > 1) the
agent is patient and gains utility with time and when (§¢ < 1) the agent is impatient and
loses utility with time. The utility from conflict is lower than the utility from any of the
possible agreements for both agents. Each agent prefersto reach an agreement, rather than
disagree and not reach any agreement at all, since the utility from an agreement is always
higher than conflict utility. Consequently, it is optimal for agent a to offer RP* at the latest
by its deadline, if it has not done so earlier, and avoid a conflict (see Section 3.5 for details
on an agent’s optimal strategy). Agents are said to have similar time preferences if both
gain on time or both lose on time. Otherwise they have conflicting time preferences.

U“(p)Z{

3.2. Counter-offer generation

The tactics for generating offers and counter-offers are defined as follows. Since both
agents have a deadline, we assume that they use a time-dependent tactic (e.g., linear (L),
Boulware (B) or Conceder (C) [3]) for generating offers. In these tactics, the predominant
factor used to decide which value to offer next is time ¢. These tactics vary the value of
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price depending on ¢ and 7¢. The initia offer is a point in the interval [IP?, RP¢]. The
constant k* multiplied by the size of interval determines the price to be offered in the
first proposal by agent a. The offer made by agenta toagenta attimer (0<t < T%) is
modelled as afunction ¢ depending on time as follows:

i _ JIPT 9% () (RPY —IPY) fora =b,
RP + (1— ¢4 (1))(IP* — RP%) fora=s.

a—a —

A wide range of time-dependent functions can be defined by varying the way in which
¢“(t) is computed (see [3] for more details). However, functions must ensure that 0 <
(1) < 1, ?(0) = k¢ (where k liesin the interval [0, 1]), and ¢“(T%) = 1. That is, the
offer will always be between the range [IP4, RP“], at the beginning it will give the initial
constant and when the deadline is reached it will offer the reservation value. The initial
offer is IP? if k? =0, lies between IP* and RP? for 0 < k* < 1, and is RP? for k = 1.
Thus by varying £ between O and 1, the initial price that is offered can be varied between
IP* and RP“. Since we want |P? to be the initial offer, we set k¢ to 0. Function ¢“(¢) is
called the negotiation decision function (NDF) and is defined as follows:

L\
o=+ 1-)(5) @

These NDFs represent an infinite number of possible tactics, one for each value of v (see
[3] for more details). However, depending on the value of v, three extreme sets show
clearly different patterns of behaviour (see Fig. 1).

(1) Boulware (B) [30]. For this tactic, ¥ < 1 and close to zero. The initia offer is

maintained till time is amost exhausted, when the agent concedes up to its reservation
value. Fig. 1 shows the Boulware function for v = 0.02.

b | Price (Conceder)

RP

(Boulware)

[ I I [ [
0.2 0.4 0.6 0.8 1

Fig. 1. Negotiation decision functions for the buyer.
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(2) Conceder (C) [29]. For thistactic, ¥ > 1. The agent goesto its reservation value very
quickly® and maintains the same offer till the deadline. Fig. 1 shows the Conceder
function for ¢ = 50.

(3) Linear (L) Finally, when v = 1, priceisincreased linearly.

The value of a counter offer depends on the initial price (IP) at which the agent starts
negotiation, the final price (FP) beyond which the agent does not concede, the time ¢ at
which it offersthe final price, and . These four variablesform an agent’s strategy.

Definition 1. An agent’s strategy S“ is defined as a quadruple whose elements are the
initial price (IP*) at which the agent starts negotiation, the final price (FP*) beyond which
the agent does not concede, time (%) at which thefinal priceis offered, and ¢¢. Thus

S4=(IP", FP*, 1%, y“).

Agent a usesits strategy, S¢, to generate an offer, p; _ 4 forz <1“. Different strategies
can be defined for different values of these four elements. For example, when b starts
making offers at s’s reservation price, and offers its own reservation price at a time, say
T, and uses an extreme Boulware NDF, then S? isdefined as S = (RP, RP?, T, B). Note
that the B in S? isavaluefor y that gives the Boulware function. In general, we use B,
C, and L to indicate a value for ¢ that gives the Boulware, Conceder, and Linear NDFs
respectively. When both agents use strategies of this form, negotiation can end either in
an agreement or a conflict, depending on the four elements that constitute each agent’s

strategy.

Definition 2. The negotiation outcome (O) is an element of ((p, 1), 5). The pair (p, 1)
denotes the price and time of agreement where p € [RP*, RP”] and ¢ € [0, min(T*, T)].
C denotesthe conflict outcome.

As an illustration, when agent b’s strategy is defined as S? = (IP?, RP?, T¥, B) and
agent s’s strategy is defined as S7 = (IP°, RP*, T¢, B), the outcome (O;) that results is
shown in Fig. 2(a) (i.e., the point where Si’ and Sj converge). As shown in the figure,
agreement isreached at aprice RP* + (price-surplus/2) and at atimecloseto 7°. Similarly
when the NDF in both strategies is replaced with C, then agreement (0) is reached at
the same price but towards the beginning of negotiation. If the agents’ strategies do not
converge before the deadline, then negotiation results in a conflict. Thisis illustrated in
Fig. 2(b), where both agents use the extreme Boulware NDF, but offer the final price at
different times, thereby resulting in conflict.

Since agents are assumed to be Von Neumann and Morgenstern [26] expected utility
maximizers, we need to determine the four elements of each agent’s strategy that will give

1 As increases (decreases) ¢ becomes more Conceder (Boulware). At very high (low) values of v, ¢ isan
extreme Boulware (Conceder). In our discussion, Boulware always refers to the extreme Boulware for which the
function generates the initial price from the beginning until the time point just prior to 7', and the final price at
time 7. Similarly Conceder aways refers to the extreme Conceder.
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Price  (a) Price  (p)

Zone of

agreement

Fig. 2. Negotiation outcome for Boulware and Conceder functions. (a) Agreement. (b) Conflict.

it maximum possible utility. An agent’s optimal strategy depends on the information it has
about the negotiation parameters. We therefore define the information state for each agent
and then show how the optimal strategies are determined.

3.3. Agents' information states

Each agent has a reservation limit, a deadline, a utility function and a strategy.
Thus the buyer and seller each have four parameters denoted (RP?, 7%, U?, §?) and
(RPS, TS, U, S%) respectively. The outcome of negotiation depends on all these eight
parameters. The information state, 74, of an agent a is the information it has about the
negotiation parameters. An agent’s own parameters are known to it, but the information it
has about the opponent is not complete. We define 1 and I* as:

I"=(RP". 7", U" ", L}, L})
and
F=(RP, T, U8 L) L),

where RP?, T?, U? and S? are the information about the buyer’s own parameters and L*
and L] areits beliefs about the seller. Similarly, RP*, T, U® and S° are the seller's own
parameters and Li’j and L? areits beliefs about the buyer. L§ and L3, are two probability

distributions? that denote agent b’s beliefs about agent s’s deadline and reservation price.
Lj isann-tupleof ordered pairsof theform (7%, o), where 1 < i < n. Thefirst elementin
apair, T, (where T € 7 for 1 <i < n) denotes a possible value for the seller’s deadline
and the second element, «, denotes the probability with which the seller’s deadlineis 7.

2 The difference between this model and [6,7] isthat in the latter, agents have abinary probability distribution
over their opponent’s reservation value and deadline whereas here we consider the more general case by taking a
probability distribution over n values.
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In other words, the pairs are possible time values for agent s’s deadline and the associated
probabilities. One of the n possible values is agent s’s actual deadline. The pairs are
assumed to be arranged in ascending order of timevalues,i.e, T} < T ;for1<i<n-—1.

Lj, isanalogousto L; and denotesthe buyer’sbeliefs about the seller’sreservation price.
The elements of L) are pairs are denoted (RP;, 8) where 1 < i < m. The first element
is a possible value for the seller’s reservation price and ;' is the associated probability.
Similarly L? and L? are two probability distributions that denote the seller's beliefs about
the buyer’s deadline and reservation price. The elements of L? are of the form (77, a?)
(where T/” € T for 1<i < n) and the elements of L’ are of the form (RP?, g7). For our

present analysiswe consider the case where RP; < RP% , i.e., the highest possible value for
the seller’sreservation priceislessthan thelowest possible valuefor the buyer’ sreservation
price.2 We treat the agents' beliefs as being static* and not changing during negotiation.

Thus agents have uncertain information about each other's deadline and reservation
value. Moreover, agents do not know their opponent’s utility function or strategy. In
other words, an agent’s information state models two® parameters of the opponent: the
opponent’s reservation price and its deadline. Each agent’s information state is its private
information that is not known to its opponent.

3.4. Negotiation scenarios

On the basis of the relationship between agent deadlines and their discounting factors,
we define six negotiation scenarios. An agent negotiatesin one of these six scenarios. The
buyer believes that with probability o}, the seller’s deadlineis 7;°. This givesrise to three
relations between agent deadlines. All the n possible seller deadlines could be less than
the buyer’s deadline, some of them could be less and the others greater, and finally al of
them could be greater than the buyer’s deadline. For each of the two possible realizations
of the buyer’s discounting factor, these three relations can hold between agent deadlines. In
other words, negotiation can take place in any one of the six scenarios, N1, ..., Ng, listed
in Table 1. The set of negotiation scenarios for the seller can be defined in the same way.

The scenario combinations that are possible for the two agents to interact are listed in
Table 2. For instance, when agent b isin scenario N1, T* islessthan T°. In such asituation,
agent s can only be in one of the four scenarios N2, N3, N5 or Ng, since T* can be less
then 7% in only these four scenarios. Recall that one of the possible val uesisthe opponent’s
actual deadline. Thisimplies that when agent b isin scenario N1, agent s can neither bein
scenario N1 nor in N4. Thusin general when agent a isin scenario N1, agent a may bein
any one of the four scenarios—N>, N3, N5, or Ng. The remaining scenario combinations,
listed in Table 2 can be obtained using similar reasoning. Note that it is possible for the
agentsto have equal deadlinesin the following cases: when both agentsarein scenario No,

3 Future work will deal with the situation where RP; > RP%,.

4 Future work will deal with the situation where an agent learns and changes its beliefs during negotiation.

5An agent’s information state may be different for different negotiations. Also, as shown in [5], the
information states of agents strongly influence the negotiation outcome. It would therefore be interesting to study
the negotiation process by modelling other parameters of the opponent. Future work will deal with such a study.
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Table 1
Possible negotiation scenarios for agent b
Negotiation scenario Relationship between agent deadlines Discounting factor
Ny TS <TP sb>1
No T£<Tb<T1§+l fork+1<n sb>1
N3 Tb <71 8>1
Ny TS < TP sb<1
Ng T£<Tb<T1§+l fork+1<n sb <1
Neg b <71§ 8 <1
Table 2
Possible negotiation scenarios for buyer-seller interactions
Agent a Agent a
N1 N2, N3, N5, Ng
N> N1, N3, N3, N4, Ns, Ng
N3 N1, N3, N4, N5
Ny N2, N3, N5, Ng
Ns N1, N3, N3, N4, N5, Ng
Ng N1, N3, N4, N5

or when both agents are in scenario N5, or when agent a isin scenario No and agent a is
in scenario Ns. For all the other combinations, the agents have different deadlines.

3.5. Optimal strategies

We describe how optimal strategies are obtained for players that are von Neumann—
Morgenstern expected utility maximizers. The discussion is from the perspective of the
buyer (although the same analysis can be taken from the perspective of the seller). In order
to simplify the discussion we first assume that LS, contains a single element, which is the
seller’s reservation price, and obtain the optimal strategy. We then extend the analysis to
the more general case where L, contains m elements.

Each agent’s optimal strategy is determined on the basis of its own information state,
i.e., the buyer’'s optimal strategy is determined on the basis of I° and the seller’s optimal
strategy is determined on the basis of 7°. We then determine if this mutua strategic
behavior of agents resultsin equilibrium.

3.5.1. Optimal strategies for the buyer when L), containsa single element

In al the six scenarios, the strategies should ensure agreement by the earlier deadline
(i.e, TSif TS < TP and T? if T? < T¥). Otherwise the agent with the earlier deadline quits
and negotiation ends in a conflict, a situation which both agents prefer to avoid. We begin
with scenario N1 where all the n possible values for the seller’s deadline are less than T°.
Since 8” > 1 in scenario N1, the buyer prefers to reach agreement at the latest possible
time and at the lowest possible price. As T* < T? in scenario N1, the latest possible time
for reaching an agreement is 7;; .



SS Fatima et al. / Artificial Intelligence 152 (2004) 1-45 13

“Pncc @N | Price ®N 5
RP® : rRP?
S S
RP R RP
b Sn
P P
Time Time
§ S S S b S S
Price T] T} T, T° price 11 Tj T T T, Ty
b A (©N 3 5 A (@N 4
RP RP
b
S
o
RP® RP®
w® P .
¢ Time
Time :
g b
RP® rRP®
RP® RP®
PP P ° :
Time i Time
S S S S S S S
Ty T; Ty T Ty T, T T T,

Fig. 3. Buyer strategies in different scenarios when Lj, contains asingle element.

The outcome of negotiation depends on both agents' strategies. Since both agents use
a time-dependent strategy, an agent always plays a strategy that offersits own reservation
price at its deadline. The buyer does not know the seller’s deadline, but it has a lottery
(LY) over n possible values for the seller’s deadline. So the buyer knowsthat if the seller’'s
deadlineis 77, then the seller will play astrategy, S7, that offersRP* at 7;*. The probability
that the seller’s deadlineis 7} is o, i.e., the seller will play strategy S; with probability
o . From its lottery (L7) the buyer knows that the seller can play » different strategies,
and will play strategy S; with probability o . In other words, although the buyer does not
know the seller’s actual strategy, it knows® the possible strategies the seller can play and
the associated probabilities.

Since the maximum possible value for the seller’s deadline is less than T?, the buyer
can minimize the price of agreement by waiting for the seller to offer RP*. Thus the

6 Note that the buyer does not know the seller’'s complete strategy. It only knows the seller’s final price and
the time at which the price is offered.
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optimal price of agreement, denoted Pf, is RP*. As an agent’s utility also depends on
time, and 8” > 1, the buyer tries to maximize the time of agreement. Since the buyer has n
possible valuesfor the seller’sdeadline, it hasn strategiesto choose from. At time ¢ during
negotiation, strategy Sj’ is defined as (IP?, RP®, TJ.S, B) foradl r < Tjs. At al later times,
(i.e., between Tjs and T;7) the strategy offersthe price RP*. Thusthe earliest time at which
agreement can be reached using strategy Sj’ is Tjs and the latest time is 77 If the seller’s

actua deadlineislessthan 77, then Sj? resultsin conflict. These strategies are depicted in
Fig. 3(a). Out of these n strategies, the one that gives the buyer the maximum expected
utility (EU?) isits optimal strategy (S%). Agent b’s expected utility from strategy Sﬁ?, is.

j-1 n
EUS =Y o UP(C) + oS UP(RPS. TS) + > oy UP(RP'.1) ©
x=1 y=j+1

where 7/ <t < T,.

Thisisthe general expression for the buyer’s EU from different strategies. Here, the value
of ¢+ depends on the opponent’s strategy. In Section 3.5.2 we will explain how to obtain
the value of ¢. For the present assume that this value is known to us. For this given value
of ¢, the expected utility depends on the probability distribution («*), the utility function
(U"), and ;. For example, the EU for different values of j between 1 and 15 isillustrated
in Fig. 4. In this example, «* was defined as a Poisson distribution and 5” was 1.6 (avalue
greater than 1). As seen in the figure, EU’j’. is maximum at j = 7, indicating that the
optimal time for entering the zone of agreement, denoted 75, is 75 . The optimal strategy
is therefore S2. In this figure, the time points are at uniform discrete intervals. However,
thisis not necessary as long as the conditions for convergence of agents’ strategies (listed

3e+16 T T T T T T T

250+16

20416

1.5+16

Buyer’s Expected Utility

1e+16

5e+15 |

Strategy |

Fig. 4. Buyer's EU for the possible strategies in scenario Ny .
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Table 3
Optimal buyer strategies in different negotiation scenarios when L; contains a single element. T’ denotes the
second time period, i.e, if negotiation beginsat timet, 7/ = + 1

Negotiation scenario Time ¢ during negotiation Optimal strategy
N1 t<Ty (IPP RPS, 7%, B)
t>T3 (RPS,RPS, TS, L)

Ny 1< TS (IPP RPS, T, B)
TS <t<T} (RPS,RPS, T/, L)

t> T} (RPS,RP?, T?_ B)

N3 1<Tb (IPY, RPY, T2 B)
Ny 1<T (IP?,RPS, T, C)
t>T (RPS,RPS, TS, L)

Ns 1T (IPY, RPS, T, C)
T'<t<Ty (RPS,RPS, T}, L)

t>T$ (RPS,RP?, 7%, B)

Ng t<T (IPY,RPY, T/, C)
t>T (RPP RPP, T L)

in Section 3.5.3) are satisfied. For a higher value of §?, EU? is maximum at a higher value

of j. Lowering the value of §” causes the pesk of the curve to shift left. In other words
T3 increases as §° increases and 7§ decreases as 8” decreases. For §* =1, EU® isat a
maximum for j = 1. This happens because the agent is indifferent to time. Higher values
of j result in some conflict situations and thus give a lower utility. But when §? > 1, the
agent gains utility with time and the maximum utility is obtained for j > 1.

The buyer’s optimal strategy for scenario N islisted in Table 3. Let Sg(t) denote the
price generated by the buyer's optimal strategy at time z. The buyer’s action function for
scenario N1 is defined as follows:

Quit ifr> 717,

AP (1, p'_,) = { Accept if pt_, <SL(),
Offer Sf,’ (t") inthe next time period /'  otherwise.

In the definition of an agent’s action given in Section 3.1, the opponent’s offer is accepted
if the utility from the opponent’s offer at time ¢ is greater than or equal to the utility of the
offer the agent iswilling to generate at time ¢’. But here, in order to decide when to accept
the seller’s offer, the price offered by the seller at time (p!_, ) is compared with the price
generated by the buyer’s optimal strategy (Sf;) at time¢. Thisisbecause the seller’s actual
deadline is not known to the buyer, and ¢ could be the seller’s deadline, in which case the
seller quits and negotiation endsin a conflict if the buyer does not accept the offer at time
t. S0 even though the buyer’s utility increases with time, it has to accept the seller’s offer
if pl_, < Sﬁ (#) and thereby avoid the chance of a conflict.

In scenario N2, the seller’s deadline can be either less than or greater than 7. Since
some of the possible values for the seller’s deadline are less than 7%, the buyer’s optimal
strategy would be to wait for the opponent to offer RPS. If 7% < T?, the latest time by
whichthe seller will offer RP* is 7). Thusuntil 7,7, the buyer need not offer a price greater
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than RP*. If an agreement is not reached by T}, it implies that the seller’s deadline is
greater than T” and to avoid conflict, the buyer needs to offer its reservation price RP”
at Tb. Thus agent » should enter the zone of agreement at the latest possible time (to
ensure that agreement is not reached earlier than that), remain at RP® until 7;7 and then
offer/accept its own reservation price, RP?, at 7. The possible times for entering the zone
of agreementare 77, .. ., T’ . These strategies are depicted in Fig. 3(b), where strategy Sj?

enters the zone of agreement at TJ:‘. The expected utility for strategy Sj? is:
j-1
EUS =) o U(C) + oS UP(RP', T))

x=1

k n
+ > UP(RP . a)+ Y «iU’(p.12) (4)
y=j+1 z=k+1
where RP* < p < RP” and TS <u<T)andT} <2< T?.
Asfor scenario N1, assume that the values of p, 1, and r2, are known. In Section 3.5.2 we
will explain how to obtain these values. For the given values of p, t1, and t2, the values
of EU’J’. for different values of j between 1 and 15 and §° = 1.6 (where «* is a Poisson
distribution) are depicted in Fig. 5. As seen in the figure, the value of j for which EU’J’. is
maximum depends on the value of k. For higher values of 57, we get the same pattern asin
Fig. 5 but the peak of the curve shiftsto theright. Lowering the value of §” shiftsthe peak to
theleft. In other words, the optimal time (7;) for entering the zone of agreement increases

as 8% increases and decreases as §” decreases. Fig. 6 shows EU? for §° = 1. As seen from
the figure, EU? is maximum at j = 1. This happens because, for 8% = 1, the agent is
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Fig. 5. Buyer's EU for different strategies in scenario N when 8% > 1.
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Fig. 6. Buyer's EU for different strategies in scenario N when 8% = 1.

indifferent to time. Higher values of j result in some conflict situations and thus give a
lower utility. But when §° > 1, the agent gains utility with time and the maximum utility is
obtained for j > 1. The buyer’'s optimal strategy for scenario N islisted in Table 3. The
buyer’s action function for scenario N2 is the same as that for scenario Nj.

In scenario N3, the buyer gains utility withtime (i.e., §° > 1) and 7> < T} . The buyer's
optimal strategy hereis S? = (IP”, RP?, T?, B). This strategy (shown in Fig. 3(c)) enters
the zone of agreement at the latest possible time, which is close to the earlier deadline 72,
and thereby maximizes the time of agreement. It aso optimizes the price of agreement by
offering RP? only at 7°.

In the remaining three scenarios, N4 to Ng, 8 < 1 and the buyer loses utility with time.
In scenario N4 (shown in Fig. 3(d)), it is clear that the buyer can optimize both the price
and the time of agreement by offering RP* right from the beginning of negotiation, until
T, (see Table 3). Contrast this with Sﬁ of scenario N1, in which the zone of agreement is
entered at 77, whereas hereit is entered at the beginning of negotiation using the Conceder
function (since 8% < 1).

In scenario Ns, the buyer's optimal strategy is to offer RP* from the beginning of
negotiation until 7,;7. If 7% < T}, then negotiation ends at the latest by 7;7. Otherwise
it continues beyond T;/. The buyer then has to concede up to RP? in order to ensure
agreement (see Fig. 3(€)). This strategy is listed in Table 3.

Finaly, in scenario Ng, the buyer’s optimal strategy is to offer RP? right from the
beginning of negotiation until 7% (see Fig. 3(f)). This is because when the buyer is
in scenario Ng, the possible scenarios for the opponent are N1, N2, N4 or Ns. Since
the seller also behaves strategically, in none of these scenarios will agent s concede
beyond RP?, until time T, using its optimal strategy. Thus for the price RP, the time
of agreement is optimized in strategy S° using the Conceder function. Table 3 lists the
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buyer’s optimal strategiesin all the six negotiation scenarios. The buyer’s action function
in al the scenariosis the same as that for scenario Ni.

3.5.2. Optimal strategies for the buyer when L, contains more than one element

Optimal strategies for the buyer when Lj, contains more than one element remain the
same as those obtained in Section 3.5.1 in some, but not all, negotiation scenarios. Only
those optimal strategies (listed in Table 3) that depend on the opponent’s reservation price
change, while the others remain the same. More specifically, the optimal strategies in
scenarios N3 and Ng remain the same, whilethosein scenarios N1, N2, N4, and N5 change
when L3, contains more than one element. We analyze each of these four scenarios below.
The buyer’s action function, A?, does not depend on the number of elementsin Lj, and
therefore remains the same as defined in Section 3.5.1 for all the scenarios.

As mentioned in Section 3.3, the information state of the buyer, 7°, has n possible
values for the seller’s deadline and m possible values for its reservation price. Also, recall
that agent b believesthat ;' isthe probability that the opponent’s reservation price is RP;
and that aj. is the probability that the opponent’s deadline is T].S. The probability that the
seller has the reservation price RP; and deadline 7} is thus the product of ;" and o}, and
is denoted y;! i

Consider scenario N, first. The possible buyer strategiesfor this scenario are depicted in
Fig. 7. The number of possible strategieshereism x n. We use Sf ; to denote the strategy

that starts making offersat IP?, offers RPS at T¢ using the Boulware function, and does not
change the price thereafter. The strategy that yields the highest EU is the buyer’s optimal
strategy. Let I and J denotethe valuesof i and j that give agent b the highest utility. Here
we need to find these two values. Contrast thiswith the case where L), had asingle element
which required finding only the optimal value of j,i.e., J.

p A Price
RP

Fig. 7. Possible buyer strategies in scenario N1 when Li, contains more than one element.
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The outcome of negotiation depends on both the buyer’s and the seller’s strategy. The
buyer does not know the seller’s strategy, but it has two lotteries, L}, and L7, over the
seller’sreservation price and deadline. So if the seller’s reservation price and deadline are
RP; and TJ.S, thenit playsstrategy S; j that offersRP; at Tjs . The probability with which the
seller plays strategy S; i isy; ;. Thus although the buyer does not know the seller’s actual
strategy, it knows that the se{ ler can play m x n different strategies and the associated
probabilities.

Consider the strategy Sf,’w. This strategy results in an agreement only if the seller’'s
actual reservation priceis RP;, and its deadlineis 7). All the other values for the seller’s
reservation price or deadline result in aconflict. Thusthe EU from strategy Sf;,,n is:

m—1 n n—1
EUS =" vl UP @)+ > v JUP©) + vy UP(RP,.T). (5)
x=1y=1 x=1

In general, strategy Sfjj resultsin conflict if either the seller’s reservation price is higher
than RP;, or its deadlineisless than Tjs. The utility from Sffj istherefore:

i—-1 n j—1
BUZ, =22 7aU @+ 3 v U (©
c=1d=1 c=1

n
+ri U RPLTY) + ) v U (RP 1)
x=j+1

m j—1 n
+ (Zy;,zvhw)w;,jvh(m, )+ Y .U (pa @) ©6)

y=i+1\z=1 7=j+1
where RP} < p1 < RP} and RP}, < p2 < RP}
and T]:‘ <1 < T} and Tj:‘ <n<T).

In the above expression, the values of p; and p> depend on two factors. the opponent’s
strategy and the identity of the player that makes amove at the earlier deadline. The values
of t1 and r2 depend only on the opponent’s strategy. Although the buyer does not know the
opponent’s actual strategy, it does know that the opponent will also behave strategically.
This strategic behavior depends on the opponent’s scenario. Recall that when the buyer’'s
scenario is N1, the seller can be in any of the four scenarios: N2, N3, Ns, or Ng. We know
from Section 3.5.1 that in scenario Ng, an agent’s optimal strategy isto offer its reservation
price using the Conceder function. Thusif agent s isin scenario Ng, its optimal strategy is
to offer RP* using the Conceder function. In addition to the seller’s strategy, the values of
p1 and p» aso depend on who makes an offer at the earlier deadline. The player that makes
an offer at the earlier deadline could be the buyer or the seller, depending on who made
theinitial offer. Consider the case where it is the seller’s turn to make a move at the earlier
deadline. The seller’s optimal strategy in scenario Ng is to offer RP* using the Conceder
function. As per the buyer’s action function, the buyer accepts the seller’s offer at T]:‘. We
therefore get p1 = p2 =RP} and 11 =12 = Tjs. On the other hand, if it is the buyer’s turn
to make amove at the earlier deadline, it offers RP{. For z > j, RP; > RP*, and the seller
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accepts the buyer’s offer at time Tjs. Thismakes py = p, =RP; andnn =1 = Tjs. Using
similar analysis, it can be seen that when agent s isin any of the remaining three scenarios
(N2, N3, 0r N5), weget p1 = p2 =RP}, 11 =T}, and 1o = T if the seller makes an offer at
the earlier deadline; and p1 = p2 =RP}, 11 =T, and r, = T if the buyer makes an offer
at the earlier deadline. The buyer knows who will make an offer at the earlier deadline,
since the decision about which player will make the initia offer is made at the beginning
of negotiation and thereafter players take turns aternately at each successive time period.
Since the buyer does not know the seller’s scenario, we associate equal probabilities with
each of the four possible seller’s scenarios, N1, N3, Ns, and Ng. Let eu’{ denote the value
of Eq. (6) when the seller’s scenario is N2, N3, or Ns. Also, let eufz’ denote the value of
Eq. (6) when the seller’s scenario is Ng. The buyer’s EU therefore becomes:

EU?; = jeuf + jeu). 7)

Thevaluesof i and j for which Eq. (7) isat amaximum are denoted 7 and J. The buyer’'s
optimal strategy for scenario N1, intermsof 7 and J, islisted in Table 4.

In scenario N2, the buyer usesastrategy Sff ; of theform depictedin Fig. 8. Thisstrategy
Startsat IP?, offers RP; at Tjs using the Boulware function, keeps the price constant at RP;
until 7;f, and thereafter uses the Boulware function again to offer RP® at 7°. Itisclear from
Fig. 8 that i can vary between 1 and m and j can vary between 1 and k. Thus there are
m x k possible strategies and the one that yields the maximum EU is the buyer’s optimal
strategy. Let 1 and J denotethe values of i and j respectively that give the highest utility.
Here we need to find these two values. Contrast this with the case where L7, had asingle
element, which required finding only J. The buyer’s EU from strategy Sl.‘j j is:

EU; ; = EU + EU} + EUS, (8)
Table4

Optimal buyer strategies in different scenarios when Li, contains more than one element

Negotiation scenario Time ¢ during negotiation Optimal strategy

N1 t<Ty (IP° RPS. T3, B)

t>T5 (RPS,RPS, T3, L)

N2 t<Ty (IP?,RPS. T3, B)

TS <t<Tf (RPS,RPY, T¢, L)

t>T) (RPS,RP, TP, B)

N3 1<Tb (IP?, RPY, 7% B)

Ny t<T (IP°.RPS. T', C)

t>T (RPS,RPS T35 L)

Ns 1<T (IPP RPS. T/, C)

T <t<T§ (RPS,RPY, T§, L)

t>T) (RP,RP, TP, B)

Ng t<T (IPY,RPY T’ C)

t>T (RPY,RP?, TP, L)
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Fig. 8. The buyer’s strategy Sf’ i in scenario No where Li, contains more than one element.

Here, the term EU’{ denotes agent b’s EU if the seller’s actual reservation price is higher
than RP?, Eug denotes its EU if the seller’s actual reservation price is equal to RP;, and
Eug denotes its EU if the seller’s actual reservation price is lower than RP;. We obtain
each of these three terms bel ow.

For EUl{ (i.e., for RP* > RP}), the seller’s deadline can be either less than or equal to
T;}, or it can be greater than or equal to 7}’ , (seeFig. 8). If 7° < T, then negotiation ends

inaconflict. EUY istherefore given by:

i—1 k n
EU}’=Z<Z%§,yU"<5>+ > v UP(pa, T”)) ©)

x=1\y=1 y=k+1

where (RPS < p1 <RPY).

Note that the value of p; depends on the opponent’s strategy and the identity of the
player that makes an offer at the earlier deadline. The four possible seller scenarios for
the second term of Eq. (9) (i.e, T* > T?) are N1, N, N4, or Ns. For each of these
scenarios, the seller’s strategic behavior gives p; = RP? if the buyer makes a move at
the earlier deadline, and p1 = RP’,’ if the seller makes a move at the earlier deadline. Note
that in order to get these values for p1, the buyer and seller strategies need to converge
before the earlier deadline. The conditions for convergence of agents' strategies are listed
in Section 3.5.3. Also note that the value of RP? is present in the seller’s information state
and is not known to the buyer. The buyer can therefore only take p1 = RP? as the closest
approximation.
The next term, EU’;, isthe buyers EU when RP® isequal to RP; and is:



22 SS Fatima et al. / Artificial Intelligence 152 (2004) 1-45

j—1
EUZ =) v U (©) + v ;U" (RPL.T;)
x=1
n
+ Z v UPRPL )+ Yyl U (p2. 1) (10)
x=j+1 x=k+1

where (RP} < p2 <RP?) and (T} < < T)) and (T} <12 < T7).

The possible scenarios for the seller for the third term of Eq. (10) are N2, N3, N5, Or Ng.
Considering the seller’s strategic behavior, we get 11 = T if the seller’'s scenariois Ng and
t1 = T; otherwise. The possible scenarios for the seller, for the fourth term of Eq. (10),
are N1, No, N4, or Ns. Considering the seller’s strategic behavior, we get 1, = T for all
the four scenarios. The value of p, depends on the player that makes a move at the earlier
deadline. If the buyer makes amove at the earlier deadline, we get p» = RP”. On the other
hand, if the seller makes a move at the earlier deadline we get p> = RP‘}. Asfor p1, since
the buyer does not know RP%, it can only take p» = RP? as the closest approximation for
all possible seller scenarios.
Thelast term, EU’; (i.e, for the case RP* > RP}) isasfollows:

m j—1
EUs= ) (Zy;,yUb(c’) +v; U (ps. T})

x=i+1 \y=1

k n
+ > U (pat+ Y V)f,yUb(Ps,m)) (11)

y=j+1 y=k+1
where (RP} < p3 < RPY) and (RP}, < ps <RP}) and
(RP} < ps <RP") and (T} <13 < T}) and (T <14 < T").

The possible scenarios for the seller for the second and third terms of Eq. (11) are N2, N3,
Ns, or Ng, while for the fourth term they are N1, N2, Ny, or Ns. Considering the seller’s
strategic behavior we get 13 = TJ:‘ if the seller’'s scenario is Ng, and 13 = T; otherwise. For
al the possible seller’s scenarios 14 = T?. The values of p3, pa, and ps depend on the
identity of the player that makesamove &t the earlier deadline. ps = ps4 = RP;, if the seller
makes amove at the earlier deadline, and p3 = p4 = RP; if the buyer makes amove at the
earlier deadline. Finaly, ps = RP‘; if the seller makes a move at the earlier deadline and
ps = RP? if the buyer makes amoveat the earlier deadline. Again, asfor p1, the buyer can
only take ps = RP? as an approximation.

Thebuyer'sutility from strategy S7 ;, isthe sum of EUY, EU%, and EU3. Let eu] denote

the value of Eq. (8) if the seller's scenario is Ng, and eug denote its value otherwise. As
each of the four possible scenarios for the seller is equally probable, EU? i becomes:
EU;; = e + Jeus. (12)

The values of i and j that give the buyer the maximum EU are denoted I and J. The
buyer’s optimal strategy for scenario No, intermsof I and J, islisted in Table 4.
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Fig. 9. The buyer's strategy, S[.b, when Li, contains more than one element. (a) Scenario N4. (b) Scenario Ns.

In the next scenario, i.e.,, N3, the buyer’'s optimal strategy does not depend on the
opponent’s reservation price. Thus the buyer’s optimal strategy when L, contains more
than one element is the same as its optimal strategy when L, contains a single element.
Thisisalso truefor scenario Ng.

In negotiation scenario N4, the buyer's optimal strategy is to offer the opponent’s
reservation price, RP*, immediately after negotiation starts and continue to offer the same
price until negotiation ends. The possible strategies that the buyer can use when L3, has
more than one element are of the form Sf’, where 1 < i < m. Thisis shown in Fig. 9(a).
The buyer'sEU from strategy S is:

i—-1 n n m n
EU =" "y UPO+ )y UPRPL )+ Y D s UP(prr) (19)
x=1y=1 x=1 x=i+1ly=1

whereRP, < p1 <RPjand 7' <t < Ty and 77 < 12 < T

The values of 11 and r» depend on the opponent’s scenario, while p1 depends on the
opponent’s scenario and the identity of the player that makes a move at 7’ or the earlier
deadline. If the opponent is in scenario Ng, then r1 =t = T’. On the cother hand, if the
seller’'s scenario is N2, N3, or Ns, thenty =T and 1, = T;. If the seller’s scenario is Ng,
p1=RP;}, if the seller makesamove at time 7’ and p1 = RP! if the buyer makes amove
at time 7'. On the other hand, if the seller’s scenario is N2, N3, or N5, p1 = RP% if the
seller makes amove at the earlier deadline and p1 = RP; if the buyer makes a move at the
earlier deadline. Let eu’{ denote the value of Eq. (13) if the seller’s scenario is Ng and let
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eu‘z’ denote its value if the seller’s scenario is N2, N3, or Ns. All the four possible seller’'s
scenarios being equally probable, EUf? becomes:

EU? = Jeu] + 3eu). (14)

The buyer’s optimal strategy for scenario Ny islisted in Table 4.
Finaly, in scenario N5 the buyer’s possible strategies are of the form Sf’ shown in

Fig. 9(b). The expected utility from S? is:

i—1 k n
EU? :Z(Zy;’yU}’(a)—i— Z y)f,yUh(pl, Tb))

x=1\y=1 y=k+1

k n
+ Z Vix Ub(sz?’ tl) + Z VinU(p2, 12)
x=1 x=k+1

m k n
+ ) (Z%f,yUb(p& B+ Y sz,yUb(m,m)) (15)

x=i+1\y=1 y=k+1

where (7' <n < T)) and (T' <, < T") and (T' <13 < T3)

and (T' < t4 < T?) and (RP%. < p1 < RPY) and (RP{ < p2 < RPY)
and (RP} < p3 <RP}) and (RP; < ps <RP”).

Using similar analysis, as for scenario N> for the buyer, we get the following values. The
values of 11, 12, t3 and 14 depend on the seller’s scenario. We get 11 = T’ if the seller’s
scenario is N, and 1 = T otherwise. We get 13 = T” if the seller’s scenario is Ns, and
13 =T, otherwise. Similarly, 1 = 14 = T? for al possible seller scenarios. The values
of p1, p2, and p4 depend on the identity of the player that makes a move at the earlier
deadline. The value of p3 depends on the identity of the player that makes a move at
T’ or the earlier deadline. We get p1 = p» = pa = RP? if the buyer makes a move at
the earlier deadline, and p1 = p2 = p4 = RP’,’ if the seller makes a move at the earlier
deadline. Finaly, pz = RP;, if the seller’'s scenario is Ng and the seller makes a move at
T'. But p3 = RP; if the seller’s scenario is Ng and the buyer makes amove at 7. For the
remaining seller’s scenarios, ps = RP;, if the seller makes a move at the earlier deadline
and p3 = RP} if the buyer makes amove at the earlier deadline. Since RP’; isnot known to
the buyer, it can only take RP? as the values of p1, p» and pg. Let eu’{ denote the value of
Eq. (15) if the seller’s scenario is Ng, and eug denote its value otherwise. The expression
for EU? therefore becomes

EU? = e} + 3ell. (16)

The buyer’s optimal strategy for scenario Ns islisted in Table 4. Optimal strategiesfor the
seller, 3, can be obtained in the same way.

1 Yo
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3.5.3. Conditionsfor convergence of optimal strategies

It is clear from Section 3.5.2, that when both agents use their respective optimal
strategies, the outcome of negotiation depends on RP;, 77, RP’,’, and TJ”. For instance,
consider the case where the buyer's scenario is N1, and T} hasavalue greater than T* and
RPS hasavaluelessthan RP*. Here, the buyer startsat | P> and uses the Boulware function
to offer RP; at time T;. Agent s quitsat T* and since T° < T7, negotiation ends in a
conflict. Thusin scenario N1, RP; in the buyer’s optimal strategy should be greater than or
equal to the seller’s actual reservation price (RP*) and T; should be less than or equal to
the seller’s actual deadline (7*) for the buyer and seller strategies to converge. Likewise,
when the seller’'s scenariois N1, RP’,’ in the seller’s optimal strategy should be less than or
equal to the buyer’s actual reservation price and T}’ in the seller’s optimal strategy should
be less than or equal to the buyer’s actual deadline. The outcomes given in Table 6 will
result only if the agents’ beliefs about each other satisfy the conditionsfor convergence of
optimal strategieslisted in Table 5. If these conditions are not satisfied, bargaining will end
in aconflict. Furthermore, the more accurate agent a’s beliefs about agent a are, the closer
T{ and RP{ areto 7“ and RP“ respectively.

The outcomes of negotiation, i.e., the price and time of agreement for all possible
scenarios, when the conditions for convergence of optimal strategies are satisfied, are
summarised in Table 6. For instance, consider row 1, where the buyer’s scenario is N1
and the seller'sscenariois N». Here T% < T since the buyer’s scenario is N1. The buyer’s
optimal strategy in scenario N1 is to offer a price lower than RPS, (whenever it is the
buyer'sturn) at al timesz lessthan T;. At any timet greater than or equal to 7'y, the buyer
acceptsthe seller’s offer if the seller offersa price lower than or equal to RP’; otherwise it
offers RP; . Recall that in scenario N2, the seller will always offer a price higher than RP;
before T* and offer RP* at 7. When the conditionsfor convergence of optimal strategies
are satisfied, the possible values for the seller’sreservation price and deadline are shown in
Fig. 10 ascircles. One of the circlesisthe seller’s actual reservation price and deadline. Let
(RPZ, T7) (shown asthe shaded circle) bethe seller’s actual reservation price and deadline.
Attime T; it could be the buyer’s or the seller’s turn to make a move. Consider the case
where it is the buyer'sturn at 7;. As per its optimal strategy, the buyer offers RP) at T
if the offer it receives in the previous time period is higher than IP?. In scenario N», the
price that the seller offers in the previous time period lies in the range [RP?, R%], i.e.,

Table5
Conditions for convergence of optimal strategies
Negotiation scenario Condition for convergence
Buyer's strategy Seller’s strategy

N1 RP) > RP* and 7§ < T° RPY <RPY and 70 < 17
N RPS > RP* and 7§ < T° RPY <RPY and 70 < 17
N3 None None
Na RPS > RP’ RPb < RP?
Ns RPS > RPS RP) < RPP

Ng None None
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Table 6
Negotiation outcome for different scenarios. The symbol v denotes the outcome if 7% < T?, A denotes the
outcomeif 7% < 7%, and ¢ denotes the outcome if 7% = T?

Negotiation Negotiation Negotiation Negotiation

scenario outcome scenario outcome

(price, time) - (price, time)

Buyer Seller Buyer Seller

1 N Ny (RPS, T%) or (RPS, T%) Ny Ny (RP, T%) or (RPS, T%)
2 N N3 (RPS, T%) or (RPS, T%) Ny N3 (RP, T%) or (RP, T%)
3 M Ns (RPS, T%) or (RPS, T%) Na Ns (RP,T%) or (RPS, T%)
4 N Ng (RPS, T3%) or (RPS, T3) Na Neg (RP.T") or (RPS, T")
5 N N1 (RP?, Tb) or (RPE, T?) Ns Ny (RP?, TP) or (RPL, T?)
6 N N ((RPS,T%) or (RPS, %))V Ns No ((RPS, T%) or (RP§, T%))V
((RP, TPy or (RPY, T?)) & ((RP?, Tb) or (RP2, 7)) &
((RPP. %) or (RP, T))0 ((RPP, T?) or (RP, T))¢)
7 N N3 (RPS, T%) or (RPS, T%) Ns N3 (RP,T%) or (RP, T%)
8 N Ny (RP?, Tb) or (RPE, T?) Ns Ny (RP?, TP) or (RPE, T?)
9 N, Ns ((RPS,T%) or (RPS, %))V Ns Ns ((RPS, T%) or (RP§, T%))V
((RP, TPy or (RPY, T?)) & ((RP?, Tb) or (RPE, 7)) &
((RPS. T) or (RPY, T))¢) ((RPS, T) or (RPY, T))¢)
10 N, Ng (RPS, T3%) or (RPS, T+) Ns Neg (RP.T") or (RPS, T")
11 N3 Ny (RP?, Tb) or (RPE, T?) Ng Ny (RPP, T?) or (RPE, TD)
12 Nj No (RP?, Tb) or (RPE, T?) Ng No (RPY. ) or (RPL, T?)
13 N3 Ng (RPP, %) or (RPE, T?) Ng Na (RPP, 7"y or (RP}, T")
14 N3 Ns (RP?, Tb) or (RPE, T?) Ng Ns (RP®. T") or (RP4, T")

a value greater than IP”. Thus the buyer offers RP; at T;. The seller accepts RP; since
RP; is greater than the seller’s actual reservation price, RP;, and T} is the seller’s actual
deadline. In other words an agreement takes place at price RP; and at time 7; if it is the
buyer’s turn to make amove at 7). In the same way it can be seen that for al the circles
shownin Fig. 10 an agreement occurs at (RP;, 7*) if it isthe buyer’sturn to make an offer
arTs.

On the other hand, if it is the seller’s turn to make an offer at 7] it offers RP; because
RP* = RP;. Since RP; < RP;, the buyer accepts the seller’s offer at 7;. So an agreement
takes place at price RPS and at time T; if it isthe seller’s turn to make amove at 7;;. In
the same way it can be seen that for al the circles shown in Fig. 10, an agreement occurs
a (RP, T9) if itisthe seller’sturn to make an offer at 75. Thus when the buyer’s scenario
is N1 and the seller’s scenario is N2, the outcome is (RP$, T%) if the buyer has to make
amove at T* and the outcome is (RP*, T%) if the seller has to make amove at T¢. The
remaining entriesin Table 6 can be obtained using similar analysis.

The similarity between these results and those of Sandholm and Vulkan [37] on
bargaining with deadlines is that, in both cases, the price-surplus always goes to the
agent with the longer deadline. However, the key difference is that in [37] the deadline
effect overrides time discounting, whereas here the deadline effect does not override time
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RP

Fig. 10. Possible values for the seller’s reservation price and deadline when the buyer’'s scenario is N1. Strategy
Sﬁ’ ; isthe buyer's optimal strategy for scenario N1.

discounting. This happens becausein [37] the agents always make offersthat lie within the
zone of agreement. In our model, agentsinitially make offersthat lie outside this zone, and
thereby delay the time of agreement. Thus when agents have conflicting time preferences,
in our case, agreement is reached near the earlier deadline, but in [37] agreement is reached
towards the beginning of negotiation.

The outcomeslisted Table 6 are possible only if this mutual strategic behavior of agents
leads to equilibrium (i.e., neither agent has the motivation to deviate from its optimal
strategy). In the following subsection we prove this with respect to the standard game
theoretic solution concept of sequential equilibrium [20,28].

3.6. Equilibrium agreements

Recall that an agent’s information state does not contain the opponent’s strategy
or its utility function. This makes negotiation a game, G, of incomplete information.
Furthermore, agents have uncertain information about each other’s reservation price and
deadline. Theextensivegame, G, isformally defined asa5-tuple (N, H, P, 3%, 3°). The set
N = {b, s} denotesthe set of players, each member of the set H isahistory, P isthe player
function that assigns a member of A/ to each history. The player that initiates negotiation
is chosen randomly, the players then take turns as defined in the negotiation protocol. The
set J¢ denotes the set of agent a’s information sets. Let 7 denote the ith element of J¢.
The first three levels of the extensive form of game, G, are shown in Fig. 11. One of the
players, say agent a, starts negotiation. The EUs that agents get from the terminal histories
depend on their negotiation scenarios, and are as determined in Section 3.5.2. For instance,
if agent a’sscenariois N1, thenits utility from the terminal historieswould be oneof m x n
possible values.

We first introduce the notion of information set. In this game G, an agent may not know
which of the nodes it is actually at. Agent a’s information set [20,28], 77, is defined as
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Fig. 11. Extensive form of the negotiation game.

a subset of its decision nodes such that when play reaches one of the decision nodes in
the information set, and it is the agent’s turn to make a move, it does not know which of
these nodesit isactually at. Thisis because although an agent knows the offer made by the
opponent, it does not know the actual strategy that was used to make the offer. For instance,
in Fig. 11, when it is agent a’s turn to make a move (at level 2), it does not know agent
a’s actual strategy. The nodes labelled 2, ..., 3, ..., 4 thus form agent a’s information
set, 7§

Sirllce agents have uncertain information about the opponent, we use the solution
concept of sequential equilibrium for the game G. There are three key notions related to
sequential equilibrium [20,28] of an extensive game: assessment, sequential rationality,
and consistency. An assessment in an extensive game is a pair (o, ), where o is a
strategy profile and o is a function that assigns to every information set a probability
measure on the set of histories in the information set: « is referred to as the belief
system. In Fig. 11, agent a believes that agent a plays strategy Sl.“j with probability yl.‘;.,
ie, ({87, Sip - - -, ng})(sg.) = )/I-‘;-. Recall that yl-‘;- is obtained from agent a’s lotteries,
L9 and L{, and is equal to o x ﬂj. An assessment is sequentialy rationa if for each
information set of each player a € \V, the strategy of player a isabest response to the other
player’'s strategies, given a’s beliefs at that information set. An assessment is consistent if
there is a sequence ((o, u"))52; of assessments that converges to (o, 1) and has the
properties that each strategy profile " is completely mixed and that each belief system
w" isderived from o using Bayes' rule. An assessment is a sequential equilibrium of an
extensive gameif it is sequentially rational and consistent [20,28].

Theorem 1. The assessment (o, i)y,y in which o, = S for scenario x, o; = Sf for
scenario y, and p({S7;, fz,...,Sf,‘m})(Si“j) = yi‘; for l<i<mand1l<j<nforms
a sequential equilibrium of thegame G, for 1< x < 6and1 < y <6.
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Proof. Let the negotiation scenario for one of the agents, say agent a, be N7 and let the

opponent’s scenario be N4, i.e., x = 1 and y = 2. The first three levels of the extensive
form of this game are shown in Fig. 11. At node 1, one of the players, say agent a, starts
negotiation. Agent a hasm x n possible strategies, and it selects a strategy at node 1. Once
it selects a strategy at node 1, it generates offers using that strategy every time it has to
make a move. Agent a’s strategy S“ isas defined in Section 3.5.2. Agent a’s utility from
any of these m x n dtrategies depends on the opponent’s strategy. Although agent a does
not know the opponent’s strategy, it has beliefs about the opponent’s reservation price and
deadline. Agent a believesthat therearem x n different (reservation price, deadline) pairs
and also hasthe associated probabilitiesin thetwo lotteries L4 and LZ . Recall that an agent
aways plays a strategy that offers its own reservation price at its deadline. Thus agent a
believes (on the basis of its otteries L4 and L) that y,"; is the probability with which the

opponent will play the strategy S“ iy that offers RP“ attime T“ The different strategiesthat
agent a can play and the expressions for compui ng agenta s utility for different strategies
areasgivenin Section 3.5.2. Agent a gets maximum EU from strategy S5 defined in terms
of RP4 and T¢. Thus as per agent a’s beliefs about the opponent, strategy S¢ is agent a’s
optimal strategy. Once this strategy is selected, agent a uses it, from the beginning to the
end of negotiation, to generate an offer whenever it isitsturn.

At level 2 of thetreg, it isagent a’s turn. From agent a’s perspective of the game tree,
I{‘ formsitsinformation set since it does not know the strategy used by agent a. However,
agent a too has beliefs about agent a’s strategy in the form of lotteries L}, and L. Agent
a believesthat agent a will play strategy S i with probability y;* f where strategy S’ i isa
strategy that offers the final price RP{ at time Tj“. Agent a’s EU if it plays strategy Sf,y q
forl< p <mand1l< g <ndependson agent a’sstrategy and is given by the expression:

m n
BUS =2 2 ViiEUY(S].0S15)- (an
i=1j=1
The values of p and ¢ that give agent a the maximum EU form its optimal strategy. We
know from Section 3.5.2 that agent a's optimal strategy is Sf;‘ for p=1Iandqg=J.No
matter which node in the information set (Z¢) agent  is at, strategy S¢ is better than all
the other strategies. The strategy Sf;‘ isagent a's optimal strategy which agent a uses, from
the beginning to the end of negotiation, to make an offer whenever it isits turn.

Thus strategy S5 is agent a’s optimal strategy whenever it is agent a’s turn to make
an offer, for a = b and a = s. The assessment (o, 1),y is therefore sequentially rational.
This holds good for all other scenario combinations. We know from Section 3.5.2 that the
number of possible strategies may be different for different scenarios but the condition
for sequentia rationality holds good for all possible scenario combinations. Thus the
assessment (o, i)« y issequentialy rational for 1<x <6and 1<y <6.

The second condition for sequential equilibrium is consistency of the strategy profile
and the beliefs. The assessment (o, 1),y in which o, = S¢ for scenario x, o; = Sﬁ
for scenario y, and w({S{;, S5, ... mn})(Sl“J) = yl“ fori<i<mandl<j<nis
consistent since it isthelimit ase — 0 of assessments (0%, u®) where

oy = (eviy. evio. ... A=)y, ..., ey, (18)



30 SS Fatima et al. / Artificial Intelligence 152 (2004) 1-45

ogz(ss... (1—8),...,8), and (19)

1 ({811 12 - S D (ST5) = v (20)
for1<i<m, 1<j<n, andforeverye.

Theentry (1 —¢) ino; isfor agent a’s optimal strategy.

The assessment (o, 1)y, inwhich o, = S5 for scenario x, o; = S‘AZ for scenario y, and
w({Sg1, S19 -+ s S D(SE) = y“ forl<i<mandl<j<n |sthereforea$quent|al
equilibrium of thegamed for 1< x<6andl<y<6. O

Theorem 2. If the conditions for convergence of optimal strategies are true, the time of
agreement is unique for each possible scenario combination. The price of equilibrium
agreement is uniqueif the agents have different deadlines, and RP{ = RP“ for T¢ < T.

Proof. It is straightforward to verify the uniqueness of the time of equilibrium agreement
from Table 6. In Table 6, the price of agreement is either RP® or RP) for T° < T, ie,
inrows 1, 2, 3, 4, 6, 7, 9, and 10. On the other hand the price of agreement is either
RP? or RP? for 75 > T?, i.e, rows5, 6, 8, 9, 11, 12, 13, and 14. Thus for each scenario
combination, there are two possible values for the price of agreement. When the agents
have different deadlines, the price of agreement is either RP* or RP{ for T¢ < T4, Recall
from Section 3.3 that RP%, > RP;. The price of agreement for 75 = T? is either RP* or
RP”. This means that the equmbrlum solution cannot be unique when 7% = 7. But when
the agents have different deadlines, the equilibrium solution isuniqueif RP§ =RP¢. O

Theorem 3. The equilibrium agreement is Pareto-optimal if

(1) both agents gain utility with time, or
(2) both agentslose utility with time and one of themisin scenario Ng.

Proof. Consider the case where both agents gain utility with time. This happensin rows 1,
2,5,6,7,11, and 12 of Table 6. The equilibrium outcomein these casesis either (RP*, T*)
or (RPS, T%) if TS < T, either (RP?, T?) or (RP4, T?) if T® < T*, and either (RP*, T?) or
(RP?, Th) if 7% = T*. In other words, the time of agreement |salwaysthe earlier deadline.
The utility of an agent can be changed by changing the price, or the time of agreement, or
both. When both agents gain utility with time, the time of agreement can only be decreased,
since the agent with the earlier deadline quits if agreement is not reached by its deadline.
Consider the case where T* < T?. Since the time of agreement can only be decreased and
both agents gain utility with time, a change in time decreases the utility of both agents.
The price of agreement here is either RP® or RP;. If the price of agreement is RP, it
can only be increased, since a price below RP® will never be acceptable to the seller. So
there are three possible changes to the equilibrium agreement (RP*, T¢): a decrease in
time, adecreasein price, or both. Thefirst change decreasesthe utility of both agents. The
second change increases the seller’s utility but decreases the buyer’s utility. Finaly, the
third change decreases the buyer’s utility and can either increase or decrease the seller’s
utility. In other words, in none of the three possible changes to the equilibrium agreement
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is it possible to improve the utility of both agents. Likewise, it is not possible to increase
the utility of both agents when the outcome is (RP;, 7*). The equilibrium agreements
(RP*, T%) and (RP}, T¥) for T° < T? are thus Pareto-optimal. In the same way it can
be seen that the equilibrium agreements (RP?, 7%) and (RP, %) for T* > T are Pareto-
optimal; and the agreements (RP*, T%) and (RP?, T?) for T* = T'? are also Pareto-optimal.

When both agents lose utility with time and one of them is in scenario Ne, the
equilibrium agreement is either (RP*, T') or (RP$, T”) for T* < T?, and either (RP?, T")
or (RP4, T") for T? < T*. This corresponds to rows 4, 10, 13, and 14 of Table 6. Here,
the time of agreement can only be increased and since both agents|ose utility with time, a
change in time decreases the utility of both agents. If the price of agreement is RP*, then
price can only be increased. This decreases the buyer’s utility and increases the seller’s
utility. If the price of agreement is RP}, then price can either be increased or decreased.
An increase in price decreases the buyer’s utility and increases the seller’s utility, while
a decrease in price increases the buyer’s utility and decreases the seller’s utility. In other
words, it is not possible to improve the utility of both agents simultaneously when both
agents lose utility with time and one of themisin scenario Ng. O

Our analysis therefore shows that even when players have incomplete and uncertain
information about each other, and each agent’s information is its private knowledge, a
unique equilibrium agreement existsfor 7%  T"* under the conditions|listed in Theorem 2.
When these conditions are not satisfied, there are two possible equilibrium solutions for
each possible scenario combination.

4. The multi-issue negotiation model

We extend the above model for multi-issue bargaining. The buyer, b, and the seller,
s, that each have deadlines, bargain over the price of two distinct goods/services, X
and Y. Here, T denotes agent a’s deadline for reaching agreement on both the issues.
Negotiation on all the issues must end by the earlier of the two deadlines. We consider
two goods/servicesin order to simplify the discussion but thisis a general framework that
works for more than two goods/services. As we will show in Section 4.6, this framework
can in fact be used for negotiating multiple issues associated with a single good/service
and multiple goods/services.

4.1. Agents information states

Let the buyer's reservation values for X and ¥ be RP% and RP, and the seller’s
reservation prices be RPS, and RP}, respectively. Also, let S denote agent a’s strategy
for issue X and S§ denote agent a’s strategy for issue Y. The buyer'sinformation state is.

1" =(RP%,RPY, TP, U, S%, Y, LS, Ly, LY)

whereRP, RPY, T?, U?, 8%, and % aretheinformation about its own parametersand ¢,
L and L3} are three probability distributions that denote its beliefs about the opponent’s
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parameters. As described in Section 3.3, L}, L, and L3, denote the buyer’s beliefs about
theseller’sdeadline, itsreservation valuefor X, and itsreservation valuefor Y respectively.
Analogously, the seller’sinformation state is defined as:

I* =(RPY,RP}, T*, U*, %, Sy, LY, L%, LY).

Each agent’sinformation state isits private knowledge.
4.2. The negotiation protocol

Again we use an alternating offers negotiation protocol. There are two types of offers.
An offer on just one good is referred to as a single offer and an offer on two goods is
referred to as a combined offer. One of the agents starts by making a combined offer. The
other agent can accept/reject part of the offer (single issue) or the complete offer. If it
rejects the compl ete offer, then it sends a combined counter-offer. This process of making
combined offers continues until agreement is reached on one of the issues. Thereafter
agents make offers only on the remaining issue (i.e., once agreement is reached on an
issue, it cannot be renegotiated). Negotiation ends when agreement is reached on both the
issues or adeadlineisreached. Let SSX (t) denote the price generated by agent b’s optimal
strategy for issue X at time z. Thusthe action, A®, that agent s takes at time ¢ on asingle
offer is as defined in Section 3.5.1. Its action on a combined offer, A*(r, X} _ .Y} _ ), is
defined as:

Quit ifr>T°,

Accept X} it X, >80,
AS(t, X5, Y} ,) = | Accent Y, ify, >80,

Offer 85, (/) at ¢’ if X not accepted,

Offer §3, () at ¢’ if Y]_  not accepted.
The agents’ utility functions are defined as:
(RP% — px) (%) + (RP}, — py)(89)"  for b,
(px —RPY)(8%)" + (py —RP})(8})"  fors.

Note that the discounting factors are different for different issues. This allows an agent to
have a different attitude towards time for different issues.

U%(px, py.t) =

4.3. Negotiation agenda

A negotiation agenda defines the order in which the issues are negotiated. If agents
define this order before negotiating the issues, then the agenda is said to be exogenous.
On the other hand, if the agents are allowed to decide what issue they will negotiate
next during the process of negotiation, then the agenda is said to be endogenous. In the
proposed negotiation model, although agents initially make offers on both issues, thereis
no restriction on the price they offer. Thus by initially offering a price that lies outside the
zone of agreement, an agent can effectively delay the time of agreement for that issue. For
example, the buyer can offer a very low price which will not be acceptable to the seller
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and the seller can offer a price which will not be acceptable to the buyer. In this way, the
order in which the issues are bargained over and agreements are reached is determined
endogenously as part of the bargaining equilibrium rather than imposed exogenously as
part of the gametree.

Two implementation rules are possible for this protocol. One is sequential implementa-
tion in which agreement on an issue is implemented as soon as it is settled; and the other is
simultaneous implementation in which agreement is implemented only after all the issues
are settled. We first show how to obtain equilibrium outcomes for multi-issue negotiation
and then compare the outcome that results from the sequential implementation with that of
the simultaneous implementation.

4.4. Equilibrium outcomes

As agents negotiate over the price of two distinct goods/services, the equilibrium
strategies for the single issue model can be applied to X and Y independently of each
other. Since T¢ denotes agent a’s deadline for reaching agreement on both issues, the
relationship between agent deadlines is the same for both issues. However, as mentioned
in Section 4.2, an agent can have different discounting factors for the two issues. Thus if
agent a’s negotiation scenario for issue X is N1, its scenario for issue Y can be either Np
or Ny. Likewise, if agent a’s scenario for issue X is No, its scenario for issue Y can be
either N2 or N5. Agent a’s possible scenarios for two issues are listed in Table 7. For the
scenarioslisted in Table 7, the equilibrium price and time of agreement for each of the two
issues can be obtained from Table 6. For instance, if the buyer’s scenario for issues X and
Y are N1 and N4, and the seller’s scenarios for issues X and Y are N2 and Ns, the price
and time of equilibrium agreement for issue X is either (RP, 7°) or (RP; ., T*) and for
issue Y itiseither (RP}, T¥) or (RP),, T*).

4.5. Implementation schemes

Let (px,t) and (py, T) denote the agreementson issues X and Y respectively. Payoffs
for this outcome depend on the rules by which agreements are implemented. Two possible
implementation rules are as follows.

Table 7

Agent a’s possible scenario combinations for

two issues

Issue X Issue Y

N1 N1 0r Ny
N Ny or Ng
N3 N3z or Ng
Ny Ny or Np
Nsg Ns or Np

Ng Ng or N3
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e Sequential implementation. Exchange of a good/service takes place at the time of
agreement on price for that good/service. Agents' utilities (Ugy,) from agreements
(px.t) and (py, 7) are:

Uba((px, 1), (py, D) = (RP% — px) (8%)" + (RP} — py) (7).

Ugeqm?x, 1), (py,7)) = (px — RP§<)(5§()t + (py — RP;,)(SSY)r,

e Simultaneous implementation. Exchange of goods/services takes place only after
agreement is reached on the prices of all the goods. Agents’ utilities (U4,,) for this
rule are:

Ul (.. (o 0) = (RPY, = ) (65)"™ "+ (RPY — p ) 6}) ™"

Ugim((va t)’ (PY, T)) = (pX _ Rp;() (8§()maX(t,t)

Theorem 4. If the time of agreement is equal for both issues, each agent gets equal
utility from the two implementation schemes. If the time for agreement is different for
the two issues and one of them is agreed at 7', the outcome generated by sequential
implementation is better than that for simultaneous implementation, for both agents. For
all other possible values of ¢+ and 7, the agents have conflicting preferences over the
implementation scheme.

Proof. From Table 6 we know that there are five possible valuesfor the time of agreement
onanissue: T/, T?, T*, T}’, or Ty. When there are two issues to be negotiated, the time
of agreement may be equal for both issues or it may be different. Consider the case where
the time of agreement is equal for both issues, i.e., t = . For this case, the agents’ utilities
from the two implementation schemes are as follows:

Useq = U= (RPX — px)(8%)" + (RP} — ) (5)".
Useq = Usim= (px = RPX)(6%)" + (pr —RPY)(5;)".
Each agent gets equal utility from the two different implementation schemes. The agents

preferences for the two implementation schemes, for al possible values of ¢+ and t are
shownin Table8. Whent =T’ and t # T’, agents' utilities are asfollows:

Ul = (RP% — px)(8%)" + (RP} — pv) (83",
Ubm=(RP% — px) (5%)" + (RP} — pr)(3%)".
Ul = (Px —RPY)(5%)" + (v —RP}) (8",
Ubm= (RP% — px) (8%)" + (RP} — pr)(59)".

We know from Table 6 that the time of agreement on an issueis 7’ only when both agents
lose utility on time on the issue and one of the agentsisin scenario Ng. This corresponds
torows4, 10, 13, and 14 of Table 6. Since both agentslose utility on time, they both prefer
the sequential implementation scheme for issue X. Thetime of agreementonissue Y ist.
Since T > T’, an agent’s utility for issue Y is equal for the two implementation schemes.
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Table 8
Agents’ preferences over the implementation schemes for all possible values of time of agreement on two issues
T’/ b TS Tb Ts
T’ Useq—U‘ Umq U“ Useq>U” Useq>U” Umq U“
T U&q> Ud, Ubq=USm x Uky > UL, x
s s
USeq <Ugm
TS Uby>Udn x Ubq=USm x Ubg<USn
Udq > Us
TV U&q>Udn U?q>Us x Ubq=USm x
U$q <Ugm
75 Uéleq>U§m X Useq<U X Um—U‘
Useq > Udm

But the combined utility from the two issues is higher for the sequential implementation
scheme for both agents. Thuswhen ¢ = T’ and © # T’, both agents prefer the sequential
implementation scheme. This correspondsto thefirst row and the first column of Table 8.

Whent =T“ and r =T, agents have conflicting preferences over the implementation
scheme. Let a represent the buyer. Here, the time of agreement for issue Y is TJ". Note
that T}’ is always less than or equal to 7% when the conditions for convergence of optimal
strategies are satisfied. We also know from Table 6 that the time of agreement is T}’ only
when agents have conflicting time preferences (seerows 11 and 12). Agents' utilitiesfrom
the two implementation schemes are as follows:

Ul = (RP% — px)(8%)" + (R — pr) (%)
Ulm=(RP} — px) (8%)" + (RP} — py)(s3)"".
Ul = (px — RPY)(8%)" + (pv — RPY) (53) .

Ulm= (R} = px) (0%)" + (R} = pr) (39)"

Each agent gets equal utility from the two schemes for issue X. Since TJ" < TP,
and the buyer loses utility with time, it prefers sequential implementation for issue Y,
while the seller prefers simultaneous implementation because it gains utility with time
on issue Y. The buyer's combined utility for the two issues is therefore higher for
sequential implementation whilethe seller’s combined utility is higher for the simultaneous
implementation scheme. The same result holds good when a represents the seller. Thus
when t =T and = = T, agents have conflicting preferences over the implementation
scheme.

The entries marked “ x” in Table 8 indicate that agreement cannot be reached at the
corresponding times for the two issues. For instance, it is not possible for agreement on
issue X to bereached at 7% and issue Y to be reached at T;. Thisis explained as follows.
From Table 6 we know that the time of agreement on an issue is T; when the buyer-
seller scenario combination for the issue is (N1, Ng) or (N2, Ng) (see rows 4 and 10 of
Table 6). Consider the buyer-seller scenario combination (N1, Ng) for issue Y. Here the
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buyer-seller scenario combinations that are possible for issue X are (N1, Ng), (N1, N3),
(Ng, Ng), or (N4, N3). We know from Table 6 that in none of these four combinationsthe
time of agreement is 7. The same result holds good for the other scenario combination
forissue Y, i.e, (N2, Ng). In other words, when the time of agreement for an issueis T3,
the time of agreement for the other issue cannot be 7. Using similar analysis, it can be
seen that the time of agreement on the two issues cannot be 7¢ and le. Thus the agents
areindifferent to the implementation scheme when r = 7, both agents prefer the sequential
schemewhent = T’ and T # T, and have conflicting preferences over the implementation
schemewhent =T andt =T;. O

4.6. Multi-issue negotiation for a single good/service

The previous subsection described bargaining over the price of more than one
good/service. But since this is a genera framework it can also be used for negotiating
multiple issues associated with asingle good/service. Let issue X be the price of aservice
and issue Y bethe quality of service. The utility functionsfor the buyer and seller are:

U’ (px. py.t) = (RP% — px)(8%)" + (pr — RP})(8%)"

and

U* (px, py, ) = (px — RPY) (8%)" + (RP} — pr) (8})"-
Since both issues are associated with a single good/service, only simultaneous implemen-
tation appliesin this case. The optimal and equilibrium strategiesfor X and Y still remain
the same. Thus the framework can be used for negotiating multiple issues associated with
a single good/service and multiple goods/services.

4.7. Properties of the equilibrium solution

Themain focusin the design of a negotiation model is on the properties of the outcome,
since the choice of a model depends on the attributes of the solution it generates. We
therefore study some important properties [28] of the equilibrium agreement.

(1) Uniqueness. If the solution of the negotiation gameis unique, then it can be identified
unequivocally.

Theorem 5. The proposed negotiation model hasa unique equilibriumagreement if agents
have different deadlinesand RP; = RP for T < T, for each issue.

Proof. Consider a single issue. When agents have different deadlines, i.e., 7% < T4, we
know from Theorem 2 that if RP7 = RP“ then the equilibrium solution for the issue is
unique. In genera, if there are n different issues to be negotiated, there is aunique solution
for al n issues only if there is a unique solution for each individual issue, i.e., when
RP{ = RP“ foreachissue. O
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(2) Symmetry. A bargaining mechanism is said to be symmetric if it does not treat the
players differently on the basis of inappropriate criteria. Exactly what constitutes
inappropriate criteria depends on the specific domain.

Theorem 6. The equilibrium agreement for multiple issues is independent of the identity
of thefirst player if agents have different deadlines, and RP} = RP* for T¢ < T, for each
issue.

Proof. The equilibrium price of agreement for a single issue depends on the identity of
the player that makes a move at time 7. If it is agent a’s turn to make an offer at 7¢,
the equilibrium priceis RP*. On the other hand if it isagent a’s turn, then the equilibrium
price is RP{. But if RP7 = RP“, the equilibrium solution is unique and does not depend
on the identity of the agent that makes an offer at time 7¢. When there are n issues to be
negotiated, the equilibrium outcomefor all the n issuesisindependent of theidentity of the
agent that makes an offer at time 7¢, if the equilibrium outcome for each of the n issuesis
unique, i.e., if RP4 = RP for T¢ < T4, for eachissue. O

(3) Efficiency. An agreement is efficient if there is no wasted utility, i.e., the agreement
satisfies Pareto-optimality. The equilibrium solution in the proposed model is Pareto-
optimal under the conditionsgivenin Theorem 7.

Theorem 7. The equilibrium agreement for » issues is Pareto-optimal if the agreement on
each individual issue is Pareto-optimal and each agent has the same discounting factor for
all n issues.

Proof. From Table 7, we know an agent’s possible scenario combinations for multiple
issues. Since each agent has the same discounting factor for al the n issues, each agent
isin the same scenario for al n issues. We aso know from Theorem 3 that the outcome
for asingleissue is Pareto-optimal either when both agents gain utility with time, or when
both lose utility with time and one of them is in scenario Ng. If both agents gain utility
with time, we know from Table 6 that for 7¢ < T4, the equilibrium agreement is either
(RP*, T%) or (RP{, T“). Since both agents gain utility with time, a change in the time of
agreement lowers the utility of both agents. A change in the price of agreement has the
following effect on agents’ utilities. Let agent « bethe seller. If Pe" denotesthe equilibrium
price onissue i and 6% denotes agent a’s discounting factor for all the issues, the agents
utilitiesfrom all n issues are:

"™ Y1 (RPY — Pl) forb,

ve(pL ..., P, T = s .
(Fe 1) {(SS)T > (PL—RPY) fors.

Let A; denote the change in price of issue i. Also let AU? denote the overall change in
agent a’'s utility from achangein price of al the n issues. The differencein utilities, AU¢,
is:

—@HT YT A forb,

AU = g
{(SS)T Yl,4;  fors.
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Since s’ > 0and 8* > 0, AU® > 0if AU? <0and AU® <0if AU? > 0. In other words,
it is not possible to increase the utility of both agents when both gain utility with time.
The same result holds good if a represents the buyer. Likewise, the equilibrium solutions
(RP?, Ty and (RPS, T?), for T* = T, are Pareto-optimal. In the same way it can be seen
that it is not possible to increase the utility of both agents when both lose utility with time
and one of them isin scenario Ng. O

(4) Distribution. The distribution property of negotiation outcome relates to the issue
of how the gains from trade are divided between agents. The equilibrium price
(P! for issue i) and the equilibrium time (7, for issue i) of agreement reflect the
relationship between the agents' bargaining powers. We say that an agent has more
(less) bargaining power over PL, if P! ismore (less) favourableto it than its opponent.
Similarly, an agent has more (less) bargaining power over T!, if T/ is more (less)
favourableto it than its opponent.

Theorem 8. For the equilibrium agreement, the relation between the agents' bargaining
powers over price is as follows. If agents have equal deadlines, agent a has more
bargaining power than agent a on all the issues if agent a makes an offer at 7¢. For
T% < T4, & has more bargaining power than agent a on all the issues if agent « makes
an offer at 7. For T® < T?, the price-surplus is split between » and s in the ratio
(RP” — RPS):(RP — RP*) if b makes an offer at T%. For T? < T¥, the price-surplus is
split between b and s inthe ratio (RP? — RP%):(RP? — RP) if s makes an offer at 7°.

Proof. We know from rows 6 and 9 of Table 6 that there are four buyer-seller scenario
combinations in which agents can have equal deadlines: (N2, N2), (N2, Ns), (N5, N2),
or (Ns, Ns). Consider the case where the buyer-seller scenario for one of the issues is
(N2, N»). From Table 7, we know that the four possible buyer-seller scenario combinations
for each of the remaining issues are (N2, N2), (N2, Ns), (Ns, N2), or (N5, N5). The offer
generated by an agent’s optimal strategy in scenarios N2 and N5 is RP‘} inthetimeinterval
[T4, T{, and itis RP* at time 7. Consider the case where the buyer makes an offer (i.e.,
its reservation price) at its deadline. Thisis a combined offer since we know from Table 6
that in al the possible scenarios for each issue, the time of agreement for each issue is
the earlier deadline. Thus at time 7* the buyer makes a combined offer that includes its
reservation price for each of the n issues. Since the conditions for convergence of optimal
strategies are satisfied, we know that RP? > RP} for each issue. The seller’s action for
each issue at T, which is equal to T, isto accept an offer greater than or equal to RP*.
Since RP? > RP* for each of the 1 issues, the seller accepts the price of every issuein the
buyer’s combined offer. Agreement on al the issues therefore takes place at 7%. The price
of agreement is the buyer’sreservation price for each issue.

On the other hand, if it is the seller’s turn to make an offer at time T, for each issue
it offers its reservation price, which the buyer accepts. Thus if the buyer makes an offer
at T?, the seller has more bargaining power because it gets the entire price-surplus on all
the issues and if the seller makes an offer at T'?, the buyer has more bargaining power
because it gets the entire price-surplus on all the issues. In the same way the relationship
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between agents' bargaining power can be verified for the remaining three scenarios for
equal deadlines, (N2, Ns), (N5, N2), of (N5, Ns).

For T¢ < T4, the equilibrium outcome for each issueis (RP4, T%) if agent a makes an
offer at time 7¢ and the outcomeis (RP}, T“) if agent a makes an offer at time 7¢. Thus
agent a gets the entire price-surplus on all the issues and has more bargaining power if
agent a makes an offer at time T%. The distribution of price-surplus, if agent a makes an
offer at 7%, can be verified in thesameway. O

Theorem 9. Agents have equal bargaining power over time on an issue if both gain utility
with time on the issue, or if both lose utility with time on the issue and one of themisin
scenario Ng.

Proof. We know from Table 6 that when both agents gain utility with time on an issue, the
time of equilibrium agreement is the earlier deadline. Since the time of agreement cannot
be greater than T¢ for T < T4, both agents get the maximum possible utility from time
on the issue and thus have equal bargaining power.

Likewise, when both agents lose utility with time on an issue and one of them is in
scenario Ng, the time of agreement is T’. This gives the agents equal bargaining power
since both of them get the maximum possible utility from time ontheissue. O

Theorem 10. If agents have conflicting time preferences on an issue, and neither agent
isin scenario Ng for the issue, the agent that gains utility with time has more bargaining
power over time on that issue.

Proof. We know from Table 6 (seerows 1, 2, 3,5, 6, 7, 8, 9, 13, and 14) that when agents
have conflicting time preferences on an issue and neither agent is in scenario Ng for the
issue, the time of equilibrium agreement is the earlier deadline. In other words, although
the agent that loses utility with time prefers an early agreement, an agreement only takes
place at the latest possible time. This givesthe stronger agent the maximum possible utility
from time and it therefore has more bargaining power than the opponent. O

5. Related work

Game theoretic models can be divided into two types; those that deal with complete
information and those that deal with incomplete information. In the former setting, agents
know each other’s characteristics as well as their own. In the latter setting, agents lack
information about some specific parameters. For instance there could be uncertainty over
player’s discounting factors, their reservation values, or their deadlines. These models
study the strategic behavior of agents when there is information uncertainty.

Initial game theoretic research typically dealt with coordination and negotiation issues
by assuming that agents have complete information about each other and then giving pre-
computed solutions to specific problems [25,26]. However this complete information as-
sumption is limiting because uncertainty is endemic in most realistic applications. For this
reason, Harsanyi [14,15] originated research in bargaining with incomplete information.
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He gave a generalized solution for two person bargaining games with incomplete infor-
mation. However, there was no notion of timing issues in this model. Another important
model of strategic bargaining is Rubenstein’s infinite horizon alternating offer game [33].
Thismodel takes the time preferences of bargainersinto consideration in the form of their
discounting factors but again assumes complete information. It was later extended in [34]
for bargaining with incomplete information about time preferences. However, thisis an
infinite horizon model that considers uncertainty over player’s discounting factors. One of
the players, say player 2, may be one of two types: weak (for high discounting factor) and
strong (for low discounting factor). Player 1 adopts an initial belief about the identity of
player 2. Player 1's preference is known to player 2. Agreement is reached in the first or
second time period. Its main result is the existence of a unique sequential equilibriumwhen
player 1'sbelief that player 2 is of typeweak, is higher than acertain threshold and another
unique equilibrium when this belief islower than the threshold.

Other models of incomplete information have also been formulated for different
environments and the strategic behavior of agents is studied. Fudenberg and Tirole
[13] analyse an infinite horizon bargaining game by taking the players valuations,
and a probability distribution over them, as common knowledge. Fudenberg et al. [12]
subsequently analysed buyer-seller infinite horizon bargaining gamesin which reservation
prices are uncertain, but time preferences are known. Sandholm and Vulkan [37] consider
uncertainty over agent deadlines. However, a common feature of al these models is that
they treat the information state of agents as common knowledge.

All the above models deal with single issue negotiation. However, in many real-life
bargaining situations, there is more than one issue over which players want to negotiate.
As mentioned in the introduction, multiple issues can be negotiated using the bundled
approach or the issue-by-issue approach. Although the fact that the negotiation outcome
depends on the choice of the negotiation approach’ was first noted by Schelling [38] in
1956, the literature on issue-by-issue negotiation is small (albeit growing). This includes
the work of Fershtman [9] who extends Rubinstein’s complete information model [33] for
splitting a single pie to multiple pies. This model imposes an agenda exogenously, and
studiesthe relation between the agenda and the outcome of the bargaining game. However,
this work is based on the assumption that both players have identical discounting factors
and does not consider agent deadlines. Similar work in a complete information setting
includes[16], but it considers an endogenous agenda.

Closer to our work is that of Bac and Raff [1] who developed a model that has an en-
dogenous agenda. They extended Rubinstein’s model [34] for single pie bargaining with
incomplete information by adding a second pie. In this model the price-surplusis known
to both agents. For both agents, the discounting factor is assumed to be equal over al the
issues. One of the players knows its own discounting factor and that of its opponent. The
other player knowsits own discounting factor, but is uncertain of the opponent’s. This fac-
tor can take one of two values, 6z with probability I7, and §;, with probability 1 — I7. How-
ever, these probabilities are again common knowl edge. Thus agents have asymmetricinfor-
mation about discounting factors. However, they do not associate deadlines with players.

7 As Theorem 4 shows, issue-by-issue negotiation again is not neutral to the implementation scheme.
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In summary, existing models for multi-issue negotiation [1,9,16] are typically exten-
sions of single issue models [33,34] and they tend not consider agent deadlines. In addi-
tion, they treat the information state of agents as common knowledge. The main difference
between these modelsand oursisthat firstly, our model considers both agent deadlinesand
discounting factors and uses negotiation decision functions for counter offer generation.
Secondly, in our case the players are uncertain about the opponent’s reservation value and
deadline. Each agent knows its own reservation value and deadline but has a probability
distribution over its opponent’s reservation value and deadline. Moreover, the discounting
factor can be different for different issues and the players have no information about the op-
ponent’s discounting factors. Our analysisis thus more comprehensive, since we consider
al possible negotiation scenarios (i.e., §* > 1 and § < 1). Thirdly, we treat each agent’s
information state as its private knowledge which is not known to its opponent. Thisisin
contrast to the above mentioned models, where the information state of agentsistreated as
common knowledge. In most realistic cases, an agent’sinformation state isnot known toits
opponent. We therefore treat each players beliefs about its opponent as private knowledge
and obtain the connection between this private knowledge and the existence of equilib-
rium. Our model is therefore closer to most real-life bargaining situations than the existing
models. The fourth point of difference lies in the attributes of the solution. Comparing
the solution properties of multi-issue models, we see that the existing modelsdo not have a
unique equilibrium solution. The equilibrium solution in our model depends on theidentity
of the player that makesamoveat 7’ or the earlier deadline, but is unique and symmetric
under certain conditions. Finally, asis the case with our model, the equilibrium solution is
not always Pareto-optimal in the other models.

6. Conclusions and futurework

This paper presented a new model for multi-issue negotiation under time constraintsin
an incomplete information setting. The issues to be bargained over can be associated with
a single good/service or multiple goods/services. The order in which issues are bargained
over and agreements are reached is determined endogenoudly, as part of the bargaining
equilibrium, rather than imposed exogenoudly, as part of the game tree. Our analysis
shows that even when each agent’sinformation is private knowledge, a unique equilibrium
exists under certain conditions. Furthermore, we determine conditions under which agents
have similar as well as conflicting preferences over the implementation scheme. Finally,
we studied the properties of the equilibrium solution and determined conditions under
which the equilibrium solution is unique, symmetric, and Pareto-optimal. As highlighted
in Section 5, we believe this model is closer to most rea-life bargaining situations than
othersthat exist in the literature.

In practice, there is awide range of environmentsin which negotiation can take place.
For instance, in some applications the buyer may know the seller’s reservation price but the
seller may not know the buyer’sreservation price. Or the seller may know the buyer’s dead-
line, but the buyer may not know the seller’s deadline. The information state of agentsthus
varies from application to application (the influence of the agents' information states on
the equilibrium outcome has been explored in [5]). Apart from this, each application will
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requirethe playersto manipulate the agendain adifferent way. For instance, some applica-
tions may require bargaining over al the issues to occur simultaneously, while others may
be more suited to issue-by-issue negotiation. Within the issue-by-issue negotiation, there
can be different agendas. Yet another possibility is for agents to bargain over the agenda
prior to the bargaining over the issues. Although we studied bargaining in which agents
had one specific information state and the agenda was endogenous, our negotiation frame-
work is general and can be used for exploring a wide range of negotiation environments
by changing the agents' information states or the way in which the players manipulate the
agenda. In [8], for example, the strategic behavior of agents was studied by alowing the
agents to negotiate the agenda before they negotiate the prices of individual issues. The
key result of this study is that in some scenarios agents have conflicting preferences over
the agenda, while in others they have similar preferences. However, since agents have in-
complete information about each other, they do not have the ability to identify scenarios
in which they have similar preferences. We therefore presented an extended negotiation
protocol that alows agentsto identify such scenarios through a mediator.

Asit currently stands, our framework treats the agents' beliefs about their opponent as
being static. In future, we will introduce learning into the model to allow agents to learn
these parameters dynamically during negotiation, and reach a stage where the conditions
for convergence are satisfied. Secondly, we studied the process of negotiation for the case
where agents’ beliefs about each others reservation price do not overlap (i.e., the highest
possible value for the seller’s reservation price in the buyer’s information state was lower
than the lowest possible value for the buyer’s reservation price in the seller’s information
state). The model can be made more general by allowing these beliefs to have overlapping
values. Thirdly, in our present work we studied the strategic behavior of self-interested
agentsthat use time-dependent strategies to maximize their own benefit. In future, it would
beinteresting to study the bargaining process by combining time-dependent tactics with tit
for tat tacticsin order to obtain afair distribution of gainsfrom trade.
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Appendix A. A summary of notation

b Buyer

s Seller

a An element of the set {b, s}
a Agent a’s opponent

[ Buyer'sinitial price
1P Seller’sinitia price
RP”  Buyer'sreservation price
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RPS Seller’s reservation price

p),_, Priceofferedby btos attimer

A“ Action taken by agent a

B Boulware negotiation decision function

C Conceder negotiation decision function

L Linear negotiation decision function

14 Information state of agent a

1¢ Information set of agent a

T Agent a’sdeadline

3¢ Agent a’s discounting factor

u“ Agent a’s utility

S Agent a’s strategy

S4 Agent a’s optimal strategy

L¢ A lottery over agent a’s deadline

LS, A lottery over agent a’s reservation price

B Probability that agent a’s reservation priceis RP!

a;? Probability that agent a’sdeadlineis TJF‘

yi‘; Probability that agent a’s reservation priceis RP{ and deadlineis Tj“

N; Negotiation scenario i

o Strategy profile

u Belief system

o Negotiation outcome

EU“ Agent a’s expected utility

EUY  Agent a’s maximum expected utility

RP§  Agenta’sreservation price for issue X

RPS Agent a’sreservation price for issue Y

LS Agent a’s beliefs about a’s reservation price for issue X

LS Agent a’s beliefs about a’s reservation price for issue Y

5% Agent a’s discount factor for issue X

5% Agent a’s discount factor for issue Y

Ug Agent a’s utility for the sequential implementation scheme

U,  Agenta’sutility for the simultaneousimplementation scheme

T’ Time a which the second offer is made, i.e., if negotiation starts at time «,
T'=t+1

P! Equilibrium price for issue i

T! Time of equilibrium agreement for issue i
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