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We investigate a steady flow of compressible fluid with inflow boundary condition on the
density and slip boundary conditions on the velocity in a square domain Q ∈ R2. We show
existence if a solution (v,ρ) ∈ W 2

p(Q ) × W 1
p(Q ) that is a small perturbation of a constant

flow (v̄ ≡ [1,0], ρ̄ ≡ 1). We also show that this solution is unique in a class of small
perturbations of the constant flow (v̄, ρ̄). In order to show the existence of the solution
we adapt the techniques known from the theory of weak solutions. We apply the method
of elliptic regularization and a fixed point argument.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and main results

The problems of steady compressible flows described by the Navier–Stokes equations are usually considered with the ho-
mogeneous Dirichlet boundary conditions on the velocity. It is worth from the mathematical point of view, as well as in the
eye of applications, to investigate different types of boundary conditions. A significant feature of the compressible Navier–
Stokes system is its mixed character: the continuity equation is elliptic in the velocity whereas the continuity equation is
hyperbolic in the density. If we assume that the flow enters the domain, then the hyperbolicity of the continuity equation
makes it necessary to prescribe the density on the inflow part of the boundary. A time-dependent compressible flow with
inflow boundary condition has been considered by Valli and Zajaczkowski in [18]. The authors showed existence of a global
in time solutions under some smallness assumptions on the data. They also obtained a stability result and existence of
a stationary solution.

Plotnikov and Sokolowski investigated shape optimization problems with inflow boundary condition in 2D [16] and
3D [15], working with weak solutions. The analysis of domain dependence and other qualitative aspects of compressible
flows in the framework of strong solutions encounters a barrier of lack of general existence results. Hence it is worth to
cite two recent papers [13] and [14] by Plotnikov, Ruban and Sokolowski. In [13] an isentropic flow in a bounded domain
past an obstacle is investigated. The authors show existence of a strong solution to the system with the right-hand side
dependent on the obstacle. The result is subject to a certain condition on the geometry of the boundary and the boundary
data. Next the convergence of appropriately defined finite differences with respect to the deformation of the obstacle is
shown, that enables to define the shape derivative of the drag functional. In [14] Plotnikov, Ruban and Sokolowski investi-
gated a complete heat-conducting system, showing existence of a strong solution for potential mass forces. A convergence
to the solution of incompressible system when the viscosity tends to zero is also shown. The results are again subject to
restrictions on the boundary and the boundary data similar as in [13].

Regular solutions to problems with inflow boundary conditions have been investigated by Kellogg and Kweon [6] and
Kweon and Song [8]. The results obtained by these authors require some assumptions on the geometry of the boundary
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in the neighborhood of the points where the inflow and outflow parts of the boundary meet. In [7] Kweon and Kellogg
investigated the case when the inflow and outflow parts of the boundary are separated, obtaining regular solutions.

What seems to be interesting is to investigate an inflow condition on the density combined with slip boundary conditions
on the velocity, that allow to describe precisely the action between the fluid and the boundary. The slip boundary conditions
have been investigated by Mucha [9] for incompressible flows, and also by Fujita [3] and Mucha and Pokorny [10] for
compressible flows.

Here we investigate a steady flow of a viscous, barotropic, compressible fluid in a square domain in R2 satisfying inho-
mogeneous slip boundary conditions on the velocity combined with an inflow condition on the density. We impose that
there is no flux across the bottom and the top of the square, so that it can be considered a finite, two-dimensional pipe.
From the analytical point of view our domain prevents the singularity that appears in a general domain where the inflow
and outflow parts of the boundary coincide.

We show existence of a solution that can be considered as a perturbation of a constant solution (v̄ ≡ (1,0), ρ̄ ≡ 0).
Under some smallness assumptions we can show an a priori estimate in a space W 2

p(Q ) × W 1
p(Q ) that is crucial in the

proof of existence of the solution. Now let us formulate the problem under consideration more precisely.
The stationary compressible Navier–Stokes system describing the motion of the fluid, supplied with the slip boundary

conditions, reads

ρv · ∇v − μ�v − (μ + ν)∇ div v + ∇p(ρ) = 0 in Q ,

div(ρv) = 0 in Q ,

n · T
(

v,ργ
) · τ + f v · τ = b on Γ,

n · v = d on Γ,

ρ = ρin on Γin, (1.1)

where Q = [0,1]× [0,1] is a square domain in R2 with the boundary Γ and Γin = {x ∈ Γ : v̄ ·n(x) < 0}. We will also denote
Γout = {x ∈ Γ : v̄ · n(x) > 0} and Γ0 = {x ∈ Γ : v̄ · n(x) = 0}. Next, b ∈ W 1−1/p

p (Γ ), d ∈ W 2−1/p
p (Γ ) and ρin ∈ W 2−1/p

p (Γin)

are given functions. v = (v(1), v(2)) is the velocity field of the fluid and ρ is the density of the fluid. We assume that the
pressure is a function of the density of the form p(ρ) = ργ for some γ > 1. The outward unit normal and tangent vectors
are denoted respectively by n and τ . We assume d = 0 on Γ0, what means that there is no flow across these parts of the
boundary. Moreover,

T(v, p) = 2μD(v) + ν div vI − pI

is the stress tensor and

D(v) = 1

2

{
vi

x j
+ v j

xi

}
i, j=1,2

is the deformation tensor. μ and ν are viscosity constants satisfying μ > 0 and ν +2μ > 0 and f > 0 is a friction coefficient.
The slip boundary conditions (1.1)3,4 are supplied with the condition (1.1)5 prescribing the values of the density on the
inflow part of the boundary. Under the assumptions on μ and ν the momentum equation (1.1)1 is elliptic in u, whereas the
continuity equation (1.1)2 is hyperbolic in ρ .

Our method would also work with no modification if we considered a perturbation of the constant flow (v̄, ρ̄) satisfy-
ing (1.1)1 with a term ρ F on the r.h.s. provided that ‖F‖Lp was small enough.

Since T(v̄, ρ̄γ ) = 0, the constant flow (v̄, ρ̄) fulfills Eqs. (1.1) with boundary conditions f v̄ · τ = f τ (1) and n · v̄ = n(1) .
Our main result is

Theorem 1. Assume that ‖b − f τ (1)‖
W 1−1/p

p (Γ )
, ‖d −n(1)‖

W 2−1/p
p (Γ )

and ‖ρin −1‖
W 2−1/p

p (Γin)
are small enough and f is large enough.

Then there exists a solution (v,ρ) ∈ W 2
p(Q ) × W 1

p(Q ) to the system (1.1) and

‖v − v̄‖W 2
p
+ ‖ρ − ρ̄‖W 1

p
� E, (1.2)

where E is a constant depending on the data, i.e. on d, ρin, b, the constants in the equation and the domain, that can be arbitrarily
small provided that the data is small enough.

Moreover, if (v1,ρ1) and (v2,ρ2) are two solutions to (1.1) satisfying the estimate (1.2) then (v1,ρ1) = (v2,ρ2).

There are several difficulties in the proof of Theorem 1 that result, roughly speaking, from the mixed character of the
problem. In a general domain a singularity appears in the points where the inflow and outflow parts of the boundary meet
and we cannot apply the method used in this paper to obtain an a priori estimate. However, there is another difficulty in
the analysis of the steady compressible Navier–Stokes system, independent on the domain. This difficulty lies in the term
u · ∇w . Namely, if we want to apply some fixed point method then this term makes it impossible to show the compactness
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of the solution operator. We overcome this difficulty applying the method of elliptic regularization. We solve a sequence of
approximate elliptic problems and show that this sequence converges to the solution of (1.1). This is a well-known method
that has been usually applied to the issue of weak solutions [12,10], and differs from the approach of Kweon and Kellogg
used to derive regular solutions in [6,7].

Let us now outline the strategy of the proof, and thus the structure of the paper. In Section 2 we start with removing
inhomogeneity from the boundary conditions (1.1)4,5. It leads to the system (2.3), and we can focus on this system instead
of (1.1). In the same section we define an ε-elliptic regularization to the system (2.3) and introduce its linearization (2.4). In
Section 3 we derive an ε-independent estimate on a solution of the linearized elliptic system (Theorem 2). Although linear,
the system (2.4) has variable coefficients and thus its solution is not straightforward. In order to solve (2.4) we apply the
Leray–Schauder fixed point theorem in Section 4, using a modification of the estimate from Theorem 2. In Section 5 we
use the a priori estimate to apply the Schauder fixed point theorem to solve the approximate elliptic systems. In Section 6
we prove our main result, Theorem 1. The proof is divided into two steps. First we show that the sequence of approximate
solutions converges to the solution of (2.3) and thus prove the existence of the solution to (1.1) satisfying the estimate (1.2).
Next we show that this solution is unique in a class of small perturbations of the constant flow (v̄, ρ̄). We see that the
estimate from Theorem 3 is in fact used at three stages of the proof, therefore we show it in a detailed way in Section 3.

2. Preliminaries

In this section we remove the inhomogeneity from the boundary conditions (2.3)4,5. Then we define an ε-elliptic reg-
ularization to the system (1.1). We also make some remarks concerning the notation. Let us construct u0 ∈ W 2

p(Q ) and

w0 ∈ W 2
p(Q ) such that

n · u0|Γ = d − n(1) and w0|Γin = ρin − 1. (2.1)

Due to the assumption of smallness of d − n(1)|Γ and ρin − 1|Γin we can assume that

‖u0‖W 2
p
,‖w0‖W 2

p
� 1. (2.2)

Now we consider

u = v − v̄ − u0 and w = ρ − ρ̄ − w0.

One can easily verify that (u, w) satisfies the following system:

∂x1 u − μ�u − (ν + μ)∇ div u + γ (w + w0 + 1)γ −1∇w = F (u, w) in Q ,

(w + w0 + 1)div u + ∂x1 w + (u + u0) · ∇w = G(u, w) in Q ,

n · 2μD(u) · τ + f u · τ = B on Γ,

n · u = 0 on Γ,

w = 0 on Γin, (2.3)

where

F (u, w) = −(w + w0 + 1)(u0 · ∇u + u · ∇u0) − w(u0 · ∇u0) − (w + w0 + 1)u · ∇u − γ (w + w0 + 1)γ −1∇w0

+ μ�u0 + (ν + μ)∇ div u0 − (w0 + 1)u0 · ∇u0,

G(u, w) = −(w + w0 + 1)div u0 − (u + u0) · ∇w0 − ∂x1 w0

and

B = b − 2μn · D(u0) · τ − f τ (1).

In order to prove Theorem 1 it is enough to prove the existence of a solution (u, w) to the system (2.3) provided that
‖u0‖W 2

p
,‖w0‖W 2

p
and ‖B‖

W 1−1/p
p (Γ )

are small enough. As we already mentioned, the presence of the term u · ∇w in the

continuity equation makes it impossible to show the compactness of a solution operator if we try to apply fixed point
methods directly to the system (2.3). We overcome this difficulty applying the method of elliptic regularization. The method
consists of adding an elliptic term −ε�w to the r.h.s. of (2.3)2 and introducing an additional Neumann boundary condition.
Since the density is already prescribed on the inflow part of the boundary by (2.3)5, we impose the Neumann condition
only on the remaining part of the boundary. While we are passing to the limit with the density in W 1

p -norm, the Neumann
condition will disappear. Similar approach has been applied to the issue of inviscid limit for the incompressible Euler system
in [5]. Consider a following linear system with variable coefficients:
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∂x1 uε − μ�uε − (ν + μ)∇ div uε + γ (w̄ + w0 + 1)γ −1∇wε = Fε(ū, w̄) in Q ,

(w̄ + w0 + 1)div uε + ∂x1 wε + (ū + u0) · ∇wε − ε�wε = Gε(ū, w̄) in Q ,

n · 2μD(uε) · τ + f uε · τ = B on Γ,

n · uε = 0 on Γ,

wε = 0 on Γin,

∂ wε

∂n
= 0 on Γ \ Γin, (2.4)

where (ū, w̄) ∈ W 2
p(Q )× W 1

p(Q ) are given functions and Fε(ū, w̄) and Gε(ū, w̄) are regularizations to F (ū, w̄) and G(ū, w̄)

obtained by replacing the functions u0 and w0 by their regular approximations uε
0 and wε

0.
Let us define an operator Tε : D ⊂ W 2

p(Q ) × W 1
p(Q ) → W 2

p(Q ) × W 1
p(Q ):

(uε, wε) = Tε(ū, w̄) ⇔ (uε, wε) is a solution to (2.4), (2.5)

where D is a subset of W 2
p(Q )× W 1

p(Q ) that we will define later. Using the operator Tε we define an ε-elliptic regulariza-
tion to the system (2.3).

Definition 1. By an ε-elliptic regularization to the system (2.3) we mean a system

(uε, wε) = Tε(uε, wε). (2.6)

We want to show the existence of a solution to the ε-elliptic regularization to the system (2.3) applying the Schauder
fixed point theorem. The strategy has been outlined in the introduction. In Section 4 we show that Tε is well defined, which
means that for given (ū, w̄) there exists a unique solution to (2.4) (Theorem 3). In fact we show that Tε is well defined
for ε small enough, but it suffices since we are interested in small values of ε .

In Section 5 we show that Tε satisfies the assumptions of the Schauder fixed point theorem and thus we solve the
system (2.6) for ε small enough.

As we already said, the key point is to derive an ε-independent estimate for the system (2.4), which is used at different
stages of the proof. We derive such estimate in the next section. Before we proceed, we will finish this introductory part
with a few remarks concerning notation.

For simplicity we will denote

a0(w̄) = γ (w̄ + w0 + 1)γ

ν + 2μ
,

a1(w̄) = γ (w̄ + w0 + 1)γ −1,

a2(w̄) = γ (w̄ + w0 + 1)γ −2. (2.7)

By C we will denote a constant that depend on the data and thus can be controlled, not necessarily arbitrarily small. If
the constant depend not only on the data, but also on ε , we will denote it by Cε . Finally, by E we will denote a constant
dependent on the data that can be arbitrarily small provided that the data is small enough.

Since we will usually use the spaces of functions defined on Q , we will omit Q in the notation of a space, for example
we will denote the space L2(Q ) by L2. The spaces of functions defined on the boundary will be denoted by L2(Γ ), etc.

We do not distinguish between the spaces of vector-valued and scalar-valued functions, for example we will write
u ∈ W 2

p instead of u ∈ (W 2
p)2.

3. A priori estimate for the linearized elliptic system

In this section we show an ε-independent estimate on ‖uε‖W 2
p
+‖wε‖W 1

p
, where (uε , wε) is a solution to (2.4). The first

step is an estimate in H1 × L2. Next we eliminate the term div u from (2.4)2 applying the Helmholtz decomposition and the
properties of the slip boundary conditions. Then we derive the higher estimate using interpolation.

3.1. Estimate in H1 × L2

In order to prove a priori estimates on H1-norm of the velocity and L2-norm of the density for the system (2.4) let us
define a space

V = {
v ∈ H1(Q ;R2): v · n|Γ = 0

}
. (3.1)

The estimate is stated in the following lemma.



T. Piasecki / J. Math. Anal. Appl. 357 (2009) 447–467 451
Lemma 1. Assume that ε , ‖ū‖W 2
p

and ‖w̄‖W 1
p

are small enough and f is large enough. Then for sufficiently smooth solutions to

system (2.4) the following estimate is valid

‖u‖W 1
2

+ ‖w‖L2 � C
[∥∥Fε(ū, w̄)

∥∥
V ∗ + ∥∥Gε(ū, w̄)

∥∥
L2

+ ‖B‖L2(Γ ) + E‖w‖W 1
p

]
, (3.2)

where V ∗ is the dual space of V .

Before we start the proof, we shall make a remark concerning the term ‖w‖W 1
p
, that is rather unexpected in an energy

estimate. Its presence is due to the functions a1(w̄) and (w̄ + w0 + 1) on the r.h.s. of (2.4). However, this term does not
cause any problems when we apply (3.2) to interpolate in the proof of Theorem 2, since it is multiplied by a small constant.

Proof of Lemma 1. The proof is divided into three steps. First we multiply (2.4)1 by u and integrate over Q . We obtain
an estimate on ‖u‖H1 in terms of the data and ‖w‖L2 . Then we apply the second equation to estimate ‖w‖L2 and finally
combine these estimates to obtain (3.2). For simplicity we will write F and G instead of Fε(ū, w̄) and Gε(ū, w̄).

Step 1. We multiply (2.4)1 by u and integrate over Q . Using the boundary conditions (2.4)3,4 we get∫
Q

2μD2(u) + ν div2 u dx +
∫
Γ

(
f + n(1)

2

)
|u|2 dσ +

∫
Q

[
a1(w̄)

]∇wu dx =
∫
Q

F u dx +
∫
Γ

B(u · τ )dσ . (3.3)

The boundary term on the l.h.s. will be positive provided that f is large enough. Next we integrate by parts the last term
of the l.h.s. of (3.3). Using (2.4)2 we obtain∫

Q

[
a1(w̄)

]∇wu dx = −
∫
Q

[
a1(w̄)

]
div uw dx −

∫
Q

uw∇[
a1(w̄)

]
dx

=
∫
Γ

[a2(w̄)]
2

w2n(1) dσ − 1

2

∫
Q

w2[∂x1a2(w̄) + (ū + u0)∇a2(w̄)
]

dx − 1

2

∫
Q

[
a2(w̄)

]
div(ū + u0)w2 dx

−
∫
Q

[
a2(w̄)

]
G(ū, w̄)w dx − ε

∫
Q

[
a2(w̄)

]
w�w dx −

∫
Q

uw∇[
a1(w̄)

]
dx.

Since n(1)|Γout ≡ 1, using (3.3) and the Korn inequality ((A.1), Appendix A) we get

C Q ‖u‖2
W 1

2
+

∫
Γout

[
a2(w̄)

]
w2 dσ

�
∫
Q

a2(w̄)div(ū + u0)w2 dx

︸ ︷︷ ︸
I1

+
∫
Q

[
a2(w̄)

]
G w dx +

∫
Q

F u dx +
∫
Γ

B(u · τ )dσ

︸ ︷︷ ︸
I2

+ ε

∫
Q

[
a2(w̄)

]
w�w dx

︸ ︷︷ ︸
I3

+
∫
Q

uw∇[
a1(w̄)

]
dx

︸ ︷︷ ︸
I4

+
∫
Q

w2[∂x1 a2(w̄) + (ū + u0)∇a2(w̄)
]

dx

︸ ︷︷ ︸
I5

. (3.4)

Obviously we have I1 � E‖w‖L2 . Now we have to deal with the term with �w . Due to the boundary conditions (2.4)5,6
we have

I3 = ε

∫
Q

[
a2(w̄)

]
w�w dx = −ε

∫
Q

[
a2(w̄)

]|∇w|2 dx − ε

∫
Q

w∇[
a2(w̄)

]∇w dx. (3.5)

Using Hölder inequality we get∣∣∣∣
∫
Q

w∇[
a2(w̄)

]∇w dx

∣∣∣∣ �
∥∥∇[

a2(w̄)
]∥∥

Lp
‖w∇w‖Lp∗ �

∥∥∇[
a2(w̄)

]∥∥
Lp

‖∇w‖L2‖w‖Lq � C‖∇w‖2
L2

,

where q = 2p
p−2 < +∞ and p∗ = p

p−1 . Thus the term with ε on the r.h.s. of (3.4) will be negative provided that ‖w̄‖W 1
p

will

be small enough. Next,

I4 �
∣∣∣∣
∫

uw∇[
a1(w̄)

]
dx

∣∣∣∣ � C
∥∥∇[

a1(w̄)
]∥∥

Lp
‖u‖W 1

2
‖w‖L2 � E

(‖u‖2
W 1

2
+ ‖w‖2

L2

)
.

Q
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The last term of the r.h.s. is the most inconvenient and it must be estimated by W 1
p-norm of w , and this is the reason why

this term appears in (3.2). Fortunately it is multiplied by a small constant what will turn out very important in the proof of
Theorem 2. We have

I5 � C
∥∥a2(w̄)

∥∥
W 1

p
‖w‖2

W 1
p
� E‖w‖2

W 1
p
.

Provided that the data is small enough, using the trace theorem to estimate the boundary term and the Hölder inequality
we get

‖u‖2
W 1

2
+ C

∫
Γout

w2 dσ � C
[∥∥Fε(ū, w̄)

∥∥
V ∗ + ∥∥Gε(ū, w̄)

∥∥
L2

+ ‖B‖L2(Γ )

](‖u‖W 1
2

+ ‖w‖L2

) + E‖w‖2
W 1

p
. (3.6)

Step 2. In order to derive (3.2) from (3.6) we need to find a bound on ‖w‖L2 . From (2.4)2 we have

∂x1 w = G − (ū + u0) · ∇w − (w̄ + w0 + 1)div u + ε�w,

thus

w2(x1, x2) = w2(0, x2) +
x1∫

0

2w ws(s, x2)ds

=
x1∫

0

2w
[
G − (w̄ + w0 + 1)div u

]
(s, x2)ds

︸ ︷︷ ︸
S1

−
x1∫

0

2w(ū + u0) · ∇w(s, x2)ds + 2ε

x1∫
0

w�w(s, x2)ds

︸ ︷︷ ︸
S2

.

S1 can be estimated directly:∫
Q

S1 �
(‖G‖L2 + C‖u‖H1

)‖w‖L2 . (3.7)

It is a little more complicated to estimate S2. We have

S2 = −
x1∫

0

(ū + u0)
(1)∂s w2(s, x2)ds −

x1∫
0

(ū + u0)
(2)∂x2 w2(s, x2)ds + 2ε

x1∫
0

w�w(s, x2)ds.

Now we integrate first and second component by parts. In the second component we use the fact that the integration
interval does not depend on x2. We get

S2 = −(ū + u0)
(1)w2(x1, x2) +

x1∫
0

(ū + u0)
(1)
x1 w2(s, x2)ds

− ∂

∂x2

x1∫
0

(ū + u0)
(2)w2(s, x2)ds +

x1∫
0

(ū + u0)
(2)
x2 w2(s, x2)ds + 2ε

x1∫
0

w�w(s, x2)ds

= −(ū + u0)
(1)w2(x1, x2) +

x1∫
0

w2 div(ū + u0)(s, x2)ds − ∂

∂x2

x1∫
0

(ū + u0)
(2)w2(s, x2)ds + 2ε

x1∫
0

w�w(s, x2)ds

=: S1
2 + S2

2 + S3
2 + S4

2.

The integrals of S1
2 and S2

2 can be estimated in a direct way:∫
Q

|S1
2|,

∫
Q

|S2
2| � E‖w‖2

L2 . (3.8)

Next,

∫
S3

2 =
∫

∂

∂x2

[ x1∫
u(2)w2(s, x2)ds

]
dx =

∫
n(2)

[ x1∫
(ū + u0)

(2)w2(s, x2)ds

]
dσ .
Q Q 0 Γ 0
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Now we remind that w = 0 on Γin . Moreover, the boundary conditions yield (ū + u0)
(2) = 0 on Γ0. Finally, on Γout we have

n(2) = 0. Thus∫
Q

S3
2 = 0. (3.9)

Finally,

∫
Q

S4
2 dx =

1∫
0

[ 1∫
0

x1∫
0

w�w(s, x2)ds dx2

]
dx1 =

1∫
0

[ ∫
Px1

w�w(x)dx

]
dx1,

where Px1 := [0, x1] × [0,1]. We have

∫
Px1

w�w dx = −
∫

Px1

|∇w|2 dx +
∫

∂ Px1

w∇w · n dσ
(2.4)5,6

�
1∫

0

w wx1 (x1, x2)dx2,

thus

∫
Q

S4
2 dx � 2ε

1∫
0

1∫
0

w wx1 (x1, x2)dx2 dx1 = ε

∫
Q

∂x1 w2 dx = ε

∫
Γout

w2n(1) dσ . (3.10)

Combining (3.8), (3.9) and (3.10) we get∫
Q

S2 =
∫
Q

S1
2 + S2

2 + S3
2 + S4

2 � E‖w‖2
L2 + ε

∫
Γout

w2 dσ .

Combining this estimate with (3.7) we get

‖w‖2
L2 � C

(∥∥Gε(ū, w̄)
∥∥

L2
+ ‖u‖W 1

2

)2 + E‖w‖L2 + ε

∫
Γout

w2 dσ ,

and thus

‖w‖2
L2 � C

(∥∥Gε(ū, w̄)
∥∥

L2
+ ‖u‖W 1

2

)2 + Cε

∫
Γout

w2 dσ . (3.11)

Step 3. Substituting (3.11) to (3.6) we get

‖u‖2
W 1

2
+

∫
Γout

w2 dσ � C D
(‖u‖W 1

2
+ ‖w‖L2

) + C D2 + E‖w‖2
W 1

p
, (3.12)

where D = ‖Fε(ū, w̄)‖V ∗ + ‖Gε(ū, w̄)‖L2 + ‖B‖L2(Γ ) . Combining this inequality with (3.11) we get

(‖u‖W 1
2

+ ‖w‖L2

)2 + (C − ε)

∫
Γout

w2 dσ � C D
(‖u‖W 1

2
+ ‖w‖L2

) + D2 + E‖w‖2
W 1

p
,

thus for ε small enough we obtain (3.2). �
3.2. Estimate for ‖u‖W 2

p
+ ‖w‖W 1

p

The following theorem gives an ε-independent estimate on ‖uε‖W 2
p
+ ‖wε‖W 1

p
where (uε, wε) is a solution to (2.4).

Theorem 2. Suppose that (uε, wε) is a solution to (2.4). Then the following estimate is valid provided that the data, ‖ū‖W 2
p

and

‖w̄‖W 1
p

are small enough and f is large enough

‖uε‖W 2
p
+ ‖wε‖W 1

p
� C

[∥∥Fε(ū, w̄)
∥∥

Lp
+ ∥∥Gε(ū, w̄)

∥∥
W 1

p
+ ‖B‖

W 1−1/p
p (Γ )

]
, (3.13)

where the constant C depends on the data but does not depend on ε .
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The proof will be divided into three lemmas. In the first lemma we eliminate the term div u from (2.4)2.

Lemma 2. Let us define

H̄ := −(ν + 2μ)div uε + [
a1(w̄)

]
wε, (3.14)

where (uε , wε) is a solution to (2.4) and a1(w̄) is defined in (2.7). Then

‖∇ H̄‖Lp � C
[∥∥Fε(ū, w̄)

∥∥
Lp

+ ‖B‖
W 1−1/p

p (Γ )
+ ‖u‖

W 1−1/p
p (Γ )

+ ‖u‖W 1
p

] + E‖w‖W 1
p

(3.15)

and wε satisfies the following equation[
a0(w̄)

]
w + wx1 + (ū + u0) · ∇w − ε�w = H̃, (3.16)

where

H̃ = H̄(w̄ + w0 + 1)

ν + 2μ
+ G(ū, w̄). (3.17)

Proof. Let us rewrite (2.4)1 as

∂x1 uε − μ�uε − (ν + μ)∇ div uε + γ∇wε = Fε(ū, w̄) − [
a1(w̄) − γ

]∇wε .

Taking the two-dimensional vorticity of (2.4)1 we get

∂x1αε − μ�αε = rot
[

Fε(ū, v̄) − (
a1(w̄) − γ

)∇wε

]
in Q ,

αε = − f

μ
(uε · τ ) + B

μ
on Γ, (3.18)

where αε = rot uε = u(2)
ε,x1 − u(1)

ε,x2 . The boundary condition (3.18)2 has been shown in [11] in a more general case; a simplifi-
cation of this proof yields (3.18)2. Since our domain is a square, we can use the symmetry to deal with corner singularities
and apply the standard L p theory of elliptic equations [4] to obtain the estimate

‖αε‖W 1
p
� C

[∥∥Fε(ū, w̄)
∥∥

Lp
+ ∥∥(

a1(w̄) − γ
)∇wε

∥∥
Lp

+
∥∥∥∥− f

μ
(uε · τ ) + B

μ

∥∥∥∥
W 1−1/p

p (Γ )

]
. (3.19)

From the definition of a1(w̄) of (2.7) we see that ‖(a1(w̄) − γ )‖L∞ can be arbitrarily small provided that ‖w̄‖W 1
p

is small

enough. Moreover, from the boundary condition (2.4)4 we have uε = τ (uε · τ ) on Γ , thus (3.19) can be rewritten as

‖αε‖W 1
p
� C

[∥∥Fε(ū, w̄)
∥∥

Lp
+ ‖B‖

W 1−1/p
p (Γ )

+ ‖uε‖W 1−1/p
p (Γ )

+ E‖wε‖W 1
p

]
. (3.20)

Now we apply the Helmholtz decomposition of uε (see Appendix A, (A.2)):

uε = ∇φ + ∇⊥ A. (3.21)

For simplicity we omit the index ε in the notation of φ and A. We have n · ∇⊥ A = τ · ∇ A = ∂
∂τ A, thus the condition

n · ∇⊥ A|Γ = 0 yields A|Γ = const. Moreover,

rot u = rot
(∇φ + ∇⊥ A

) = rot ∇⊥ A = �A.

We see that A is a solution to the following boundary value problem:{
�A = αε ∈ W 1

p(Q ),

A|Γ = const.

Applying again the elliptic theory we get

‖A‖W 3
p
� ‖α‖W 1

p
� C

{∥∥Fε(ū, w̄)
∥∥

Lp
+ ‖B‖

W 1−1/p
p (Γ )

+ ‖uε‖W 1−1/p
p (Γ )

}
. (3.22)

Substituting the Helmholtz decomposition (A.2) to (2.4)1 we get

∂x1

(∇φ + ∇⊥ A
) − μ�

(∇φ + ∇⊥ A
) − (ν + μ)∇ div

(∇φ + ∇⊥ A
) + [

a1(w̄)
]∇w = Fε(ū, w̄),

but div∇φ = �φ and thus
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−(ν + 2μ)∇�φ + ∇([
a1(w̄)

]
w

) = F (ū, w̄) + μ�∇⊥ A + (μ + ν)∇ div ∇⊥ A − ∂x1∇⊥ A + ∂x1∇φ + w∇[
a1(w̄)

]
=: F̄ , (3.23)

what can be rewritten as

∇(−(ν + 2μ)�φ + γ a1(w̄)w
) = F̄ .

We have �φ = div u, thus F̄ = ∇ H̄ where H̄ is defined in (3.14). From (3.23) we have

‖ F̄‖Lp � C
[∥∥Fε(ū, w̄)

∥∥
Lp + ‖A‖W 3

p
+ ∥∥∇2φ

∥∥
Lp

] + ∥∥∇[
a0(w̄)

]∥∥
Lp

‖wε‖∞

� C
[∥∥Fε(ū, w̄)

∥∥
Lp + ‖A‖W 3

p
+ ‖φ‖W 2

p

] + E‖wε‖W 1
p

and from (3.22) and (A.3) we get (3.15). The proof is thus completed. �
In the next lemma we will use Eq. (3.16) to estimate ‖w‖W 1

p
in the terms of functions H̄ and G(ū, w̄).

Lemma 3. Under the assumptions of Theorem 2 the following estimate is valid:

‖wε‖W 1
p
+ ‖wε,x1‖Lp(Γin) � C‖H‖W 1

p
, (3.24)

where

H = H̄

ν + 2μ
+ G(ū, w̄). (3.25)

Proof. Throughout the proof we will omit the index ε denoting wε by w . The proof will be divided into four steps. First
we estimate ‖w‖Lp , then ‖wx1‖Lp and ‖wx2‖Lp and finally combine these estimates.

Step 1. Multiplying (3.16) by |w|p−2 w and integrating over Q we get∫
Q

a0(w̄)|w|p

︸ ︷︷ ︸
I1
1

+
∫
Q

|w|p−2 w wx1

︸ ︷︷ ︸
I2
1

+
∫
Q

(ū + u0) · ∇w|w|p−2 w

︸ ︷︷ ︸
I3
1

−ε

∫
Q

�w|w|p−2 w

︸ ︷︷ ︸
I4
1

=
∫
Q

H̃|w|p−2 w

︸ ︷︷ ︸
I5
1

. (3.26)

We have

I3
1 = 1

p

∫
Q

(u + u0) · ∇|w|p dx = − 1

p

∫
Q

|w|p div(ū + u0)dx + 1

p

∫
Γout

u(1)
0 |w|p dσ .

Next,

I2
1 = 1

p

∫
Q

∂x1 |w|p dx = 1

p

∫
Γ

|w|pn(1) dσ = 1

p

∫
Γout

|w|p dσ .

Combining the last two equations we get

−(
I2
1 + I3

1

)
� E‖w‖p

Lp
− C

∫
Γout

(
1 + u(1)

0

)|w|p dσ .

The boundary term is positive due to the assumption of smallness of u0. The term with �w:

I4
1 = ε

∫
Q

∇w · ∇(|w|p−2 w
)

dx − ε

∫
Γ

|w|p−2 w
∂ w

∂n
dσ .

The boundary term vanishes due to the conditions (2.4)5,6 and the first term of the r.h.s. is equal to

(p − 1)

∫
Q

|w|p−2|∇w|2 dx � 0.

The r.h.s. of (3.26) can be estimated directly:

I5
1 =

∫
H̃ |w|p−2 w dx � ‖H̃‖Lp

∫ (|w|(p−1)p∗)1/p∗
dx = ‖H̃‖Lp ‖w‖p−1

Lp
.

Q Q
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The smallness of w̄ and w0 in W 1
p implies that a0(w̄) � C > 0, thus combining the above estimates we get C‖w‖p

Lp
�

‖H̃‖Lp ‖w‖p−1
Lp

+ E‖w‖p
Lp

, thus

‖w‖Lp � C‖H̃‖Lp . (3.27)

Step 2. In order to estimate wx2 we differentiate (3.16) with respect to x2, multiply it by |wx2 |p−2 wx2 and integrate over Q .
We get∫

Q

[
a0(w̄)

]|wx2 |p

︸ ︷︷ ︸
I1
2

+
∫
Q

[
a0(w̄)

]
x2

w|wx2 |p wx2

︸ ︷︷ ︸
I2
2

+
∫
Q

|wx2 |p−2 wx2 wx2x1

︸ ︷︷ ︸
I3
2

+
∫
Q

(
(ū + u0)x2 · ∇w

)|wx2 |p−2 wx2

︸ ︷︷ ︸
I4
2

+
∫
Q

(
(ū + u0) · ∇wx2

)|wx2 |p−2 wx2

︸ ︷︷ ︸
I5
2

−ε

∫
Q

�wx2 |wx2 |p−2 wx2

︸ ︷︷ ︸
I6
2

=
∫
Q

H̃x2 |wx2 |p−2 wx2

︸ ︷︷ ︸
I7
2

.

We have

I3
2 = 1

p

∫
Q

∂x1 |wx2 |p dx = − 1

p

∫
Γin

|wx2 |p dσ + 1

p

∫
Γout

|wx2 |p dσ ,

but the condition w = 0 on Γin implies wx2 = 0 on Γin , thus

I3
2 = 1

p

∫
Γout

|wx2 |p dσ . (3.28)

Obviously we have I4
2 � E‖∇w‖p

Lp
. Next,

I5
2 = − 1

p

∫
Q

div(ū + u0)|wx2 |p dx + 1

p

∫
Γout

u(1)
0 n(1)|wx2 |p dσ .

Combining this equation with (3.28) we get

I3
2 + I5

2 = − 1

p

∫
Q

div(ū + u0)|wx2 |p + 1

p

∫
Γout

(
1 + u(1)

0

)|wx2 |p dσ .

The boundary term is nonnegative due to the smallness of u0.
The last part of the l.h.s.:

I6
2 = −ε

∫
Q

�wx2 |wx2 |p wx2 dx = ε

∫
Q

∇wx2 · ∇(|wx2 |p−2 wx2

)
dx + ε

∫
Γ

∂ wx2

∂n
|wx2 |p−2 wx2 dσ .

The first term equals
∫

Q (p − 1)|wx2 |p−2|∇wx2 |2 dx > 0 and the boundary term vanishes due to the boundary condi-
tion (2.4)4,5. Using the definition of a0(w̄) of (2.7) we get∫

Q

[
a0(w̄)

]
xi

w|wxi |p−2 wxi � C
∥∥(w̄ + w0)xi

∥∥
Lp

‖wxi ‖p−1
Lp

‖w‖W 1
p
� E‖w‖p

W 1
p
, (3.29)

thus I2
2 � E‖w‖p

W 1
p
. In order to estimate the r.h.s. we use the definition of H̃ and the Hölder inequality. We get

I7
2 =

∣∣∣∣
∫
Q

H̃xi |wxi |p−2 wxi dx

∣∣∣∣ � C‖H‖W 1
p
‖wxi ‖p−1

Lp
. (3.30)

The important fact that we could write H instead of H̃ on the r.h.s. easily results from the definition of H̃ of (3.17).
Combining the above estimates we get

‖wx2‖p
Lp � C

[
E‖∇w‖p

Lp
+ C‖H‖W 1

p
‖wx2‖p−1

Lp

]
. (3.31)
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Step 3. In order to estimate wx1 we differentiate (2.4) with respect to x1 and multiply by |wx1 |p−2 wx1 :∫
Q

a0(w̄)|wx1 |p

︸ ︷︷ ︸
I1
3

+
∫
Q

[
a0(w̄)

]
x1

|wx1 |p−2 wx1︸ ︷︷ ︸
I2
3

+
∫
Q

wx1x1 |wx1 |p−2 wx1︸ ︷︷ ︸
I3
3

+
∫
Q

(ū + u0) · ∇wx1 |wx1 |p−2 wx1

︸ ︷︷ ︸
I4
3

−
∫
Q

ε�wx1 |wx1 |p−2 wx1

︸ ︷︷ ︸
I5
3

=
∫
Q

H̃x1 |wx1 |p−2 wx1 − (ū + u0)x1 · ∇w|wx1 |p−2 wx1

︸ ︷︷ ︸
I6
3

.

We have

I3
3 = 1

p

∫
Q

∂x1 |wx1 |p dx = − 1

p

∫
Γin

|wx1 |p dσ .

Next,

−I5
3 = ε

∫
Q

∇wx1 · ∇(|wx1 |p−2 wx1

)
dx − ε

∫
Γ

∂ wx1

∂n
|wx1 |p−2 wx1 dσ .

The first term is nonnegative and the boundary term reduces to

ε

∫
Γin

wx1x1 |wx1 |p−2 wx1 dσ . (3.32)

Note that on Γin Eq. (3.16) takes the form:(
1 + ū1 + u1

0

)
wx1 − εwx1x1 = H̃|Γin .

Thus (3.32) can be rewritten as∫
Γin

[(
1 + ū1 + u1

0

)|wx1 |p − H̃ |wx1 |p−2 wx1

]
dσ .

Finally,

I4
3 = − 1

p

∫
Q

div(ū + u0)|wx1 |p dx − 1

p

∫
Γin

u1
0|wx1 |p dσ .

Combining the above results we get

C

∫
Q

|wx1 |p dx +
∫
Γin

(
1 − u1 − 1

p

)
|wx1 |p dσ

� 1

p

∫
Q

div(ū + u0)|wx1 |p dx +
∫
Q

H̃x1 |wx1 |p−2 wx1 dx −
∫
Q

[
a0(w̄)

]
x1

w|wx1 |p−2 wx1 dx

−
∫
Q

(ū + u0)x1 · ∇w|wx1 |p−2 wx1 dx +
∫
Γin

H̃|wx1 |p−2 wx1 dσ ,

thus using (3.30) and (3.29) we obtain

(C − E)‖wx1‖p
Lp(Q )

+
(

1 − 1

p
− E

)
‖wx1‖p

Lp(Γin)

� C‖H‖W 1
p
‖wx1‖p−1

Lp(Q ) + E‖∇w‖p
Lp(Q ) + ‖H̃‖Lp(Γin)‖wx1‖p−1

Lp(Γin) + E‖w‖p
W 1

p
. (3.33)

Step 4. Combining (3.33) and (3.31) we get

‖∇w‖p + ‖wx1‖p � C
[(‖H‖ 1 + ‖w‖Lp

)‖∇w‖p−1 + ‖H̃‖Lp(Γin)‖wx1‖p−1 ]
.
Lp Lp(Γin) W p Lp Lp(Γin)
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Combining this estimate with (3.27) we get

‖w‖Lp + ‖∇w‖Lp + ‖wx1‖Lp(Γin) � C
(‖H̃‖Lp + ‖H‖W 1

p
+ ‖H̃‖Lp(Γin)

)
. (3.34)

Due to (3.30) we have ‖H‖W 1
p

instead of ‖H̃‖W 1
p

on the r.h.s. and the proof of (3.24) is almost complete. Now it is enough

to note that due to the smallness of w̄ and w0 in W 1
p we have

‖H̃‖Lp � C‖H‖Lp and ‖H̃‖Lp(Γin) � C‖H‖Lp(Γin),

thus (3.34) can be rewritten as

‖w‖W 1
p
+ ‖wx1‖Lp(Γin) � C

[‖H‖W 1
p
+ ‖H‖Lp(Γin)

]
, (3.35)

but we have ‖H‖Lp(Γin) � ‖H‖Lp(Γ ) � C‖H‖W 1
p

by the trace theorem, thus (3.35) implies (3.24) �
In order to complete the proof of Theorem 2 we have to estimate H . We will make use of the interpolation inequality

(Lemma 11 in Appendix A).

Lemma 4. Under the assumptions of Theorem 2, ∀δ > 0 we have

‖H‖W 1
p
� δ‖u‖W 2

p
+ C(δ)

[∥∥Fε(ū, w̄)
∥∥

Lp
+ ∥∥Gε(ū, w̄)

∥∥
W 1

p
+ ‖B‖

W 1−1/p
p (Γ )

+ E‖w‖W 1
p

]
, (3.36)

where H is defined in (3.25).

Proof. For simplicity let us denote F := Fε(ū, w̄) and G := Gε(ū, w̄). Applying the interpolation inequality (A.4) to the
term ‖u‖W 1

p
in (3.15) we get

‖∇H‖Lp � C
[‖F‖Lp + ‖G‖W 1

p
+ ‖B‖

W 1−1/p
p (Γ )

+ ‖u‖
W 1−1/p

p (Γ )
+ δ1‖u‖W 2

p
+ C(δ1)‖u‖H1

] + E‖w‖W 1
p
.

In order to estimate ‖H‖Lp we need to apply the interpolation inequality (A.4) and then the energy estimate (3.2). We get

‖H‖Lp � δ2‖∇H‖Lp + C(δ2)
(‖F‖L2 + ‖G‖L2 + ‖B‖L2(Γ ) + E‖wε‖W 1

p

)
.

Combining the above estimates we get

‖∇H‖Lp + ‖H‖Lp � (1 + δ2)‖∇H‖Lp + C(δ2)
[‖F‖L2 + ‖G‖L2 + ‖B‖L2(Γ ) + E‖wε‖W 1

p

]
� δ3‖uε‖W 2

p
+ C(δ3)

[‖F‖Lp + ‖G‖W 1
p
+ ‖B‖

W 1−1/p
p (Γ )

+ ‖uε‖W 1−1/p
p (Γ )

+ E‖wε‖W 1
p

]
. (3.37)

Using the trace theorem, (A.4) and (3.2) we estimate the boundary term ‖u‖
W 1−1/p

p (Γ )
:

‖uε‖W 1−1/p
p (Γ )

� δ4‖uε‖W 2
p
+ C(δ4)

[‖F‖L2 + ‖G‖L2 + ‖B‖L2(Γ ) + E‖wε‖W 1
p

]
. (3.38)

Substituting (3.38) to (3.37) we get (3.36) with δ arbitrarily small since δ1 . . . δ4 can be arbitrarily small. �
We are now ready to complete

Proof of Theorem 2. Let us fix η > 0. Provided that w̄ and w0 are small enough, combining (3.24) and (3.36) we get

‖wε‖W 1
p(Q ) � η‖u‖W 2

p
+ C(η)

[∥∥Fε(ū, w̄)
∥∥

Lp
+ ∥∥Gε(ū, w̄)

∥∥
W 1

p
+ ‖B‖

W 1−1/p
p (Γ )

]
. (3.39)

The theory of elliptic equations applied to (2.4)1 yields

‖uε‖W 2
p
�

∥∥Fε(ū, w̄)
∥∥

Lp + ‖wε‖W 1
p
. (3.40)

Combining this estimate with (3.39) we get

‖uε‖W 2
p
+ ‖wε‖W 1

p
� η‖uε‖W 2

p
+ Cη

[∥∥Fε(ū, w̄)
∥∥

Lp
+ ∥∥Gε(ū, w̄)

∥∥
W 1

p
+ ‖B‖

W 1−1/p
p (Γ )

]
.

Choosing for example η = 1
2 we get (3.13). �
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4. Solution of the linear system

In this section we will show that the operator Tε is well defined. We have to show that the system (2.4) has a unique
solution (u, w) ∈ W 2

p × W 1
p for (ū, w̄) ∈ W 2

p × W 1
p small enough. The necessary result is stated in the following

Theorem 3. Assume that ‖ū‖W 2
p
+ ‖w̄‖W 1

p
is small enough. Then the system (2.4) has a unique solution (uε, wε) ∈ W 2

p × W 2
p and

the estimate (3.13) holds.

We shall make here one remark concerning the above theorem. The fact that (uε, wε) ∈ W 2
p × W 2

p is a consequence of
the ellipticity of the system (2.4), but the estimate on ‖w‖W 2

p
depends on ε . What will be crucial for us is that (3.13) does

not depend on ε .
The system (2.4) has variable coefficients thus its solution is not straightforward. In order to prove Theorem 3 we

will apply the Leray–Schauder fixed-point theorem. Given (ū, w̄) ∈ W 2
p × W 1

p we define an operator Sε
(ū,w̄)

: W 2
p × W 2

p →
W 2

p × W 2
p : (u, w) = Sε

(ū,w̄)
(ũ, w̃) ⇔ (u, w) is a solution to

∂x1 u − μ�u − (ν + μ)∇ div u + γ∇w = F ε
(ū,w̄)(ũ, w̃) in Q ,

div u + ∂x1 w − ε�w = Gε
(ū,w̄)(ũ, w̃) in Q ,

n · 2μD(u) · τ + f u · τ = B on Γ,

n · u = 0 on Γ,

w = 0 on Γin,

∂ w

∂n
= 0 on Γ \ Γin, (4.1)

where

F ε
(ū,w̄)(ũ, w̃) = −(

a1(w̄) − γ
)∇ w̃ + Fε(ū, w̄),

Gε
(ū,w̄)(ũ, w̃) = −(w̄ + w0)div ũ − (ū + u0) · ∇ w̃ + Gε(ū, w̄). (4.2)

We have to show that Sε
(ū,w̄)

is well defined and verify that it satisfies the assumptions of the Leray–Schauder theorem. The

reason to consider Sε
(ū,w̄)

on W 2
p × W 2

p instead of W 2
p × W 1

p is that it is straightforward to show its complete continuity.

4.1. Solution of the system with constant coefficients

In this section we show that the operator Sε
(ū,w̄)

is well defined. Thus we have to show that the system

∂x1 u − μ�u − (ν + μ)∇ div u + γ∇w = F in Q ,

div u + ∂x1 w − ε�w = G in Q ,

n · 2μD(u) · τ + f u · τ = B on Γ,

n · u = 0 on Γ,

w = 0 on Γin,

∂ w

∂n
= 0 on Γ \ Γin, (4.3)

where F , G ∈ W 1
p(Q ) are given functions, has a unique solution (u, w) ∈ W 2

p × W 2
p . We start with showing existence of a

weak solution to the system (4.3). Let us recall the definition of space V of (3.1) and introduce another functional space
W = {w ∈ H1(Q ): w|Γin = 0}. Consider a bilinear form on (V × W )2:

B
[
(u, w), (v, η)

] =
∫
Q

{
v∂x1 u + 2μD(u): ∇v + ν div u div v

}
dx +

∫
Γ

f (u · τ )(v · τ )dσ

− γ

∫
Q

w div v dx + γ

∫
Q

η div u dx + γ

∫
Q

η∂x1 w dx + γ ε

∫
Q

∇w · ∇ηdx

and a linear form on (V × W ):

F(v, η) =
∫

F · v dx +
∫

B(v · τ )dx +
∫

Gηdx.
Q Γ Q
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By a weak solution to the system (4.3) we mean a couple (u, w) ∈ V × W satisfying

B
[
(u, w), (v, η)

] = F(v, η) ∀(v, η) ∈ V × W . (4.4)

Using the definition of V and W we can easily verify that

B
[
(u, w), (u, w)

]
�

∫
Q

2μD2(u) + ν div2 u dx + ε

∫
Q

|∇w|2 dx � Cε

[‖u‖H1(Q ) + ‖w‖H1(Q )

]
,

thus existence of the weak solution to (4.3) easily follows from the Lax–Milgram lemma. Using standard techniques we
show that the weak solution belongs to W 2

p(Q ) × W 2
p(Q ) and

‖u‖W 2
p
+ ‖w‖W 2

p
� Cε

[‖F‖Lp + ‖G‖W 1
p
+ ‖B‖

W 1−1/p
p (Γ )

]
.

4.2. Complete continuity of Sε
(ū,w̄)

In this section we show that Sε
(ū,w̄)

is continuous and compact. Since it is a linear operator, it is enough to show its
compactness, and this is quite obvious due to elliptic regularity of the system (4.3). Namely, if we take a sequence (ũn, w̃n)

bounded in W 2
p × W 2

p , then the sequence(
F(ū,w̄)

(
ũn, w̃n)

, G(ū,w̄)

(
ũn, w̃n))

is bounded in W 1
p × W 1

p . Thus the sequence (un, wn) = Sε
(ū,w̄)

(ũn, w̃n) is bounded in W 3
p × W 3

p (the bound on ‖w‖W 3
p

depends on ε , but at this stage ε is fixed, so it does not matter). The compact imbedding theorem implies that (un, wn) has
a subsequence that converges in W 2

p(Q ) × W 2
p(Q ). Thus Sε

(ū,w̄)
is compact.

4.3. Leray–Schauder a priori bounds

Next we have to show a λ-independent a priori estimate on solutions to the equations (uλ, wλ) = λSε
(ū,w̄)

(uλ, wλ), that
read

∂x1 uλ − μ�uλ − (ν + μ)∇ div uλ + γ∇wλ = λF ε
(ū,w̄)(uλ, wλ) in Q ,

div uλ + ∂x1 wλ − ε�wλ = λGε
(ū,w̄)(uλ, wλ) in Q ,

n · 2μD(uλ) · τ + f uλ · τ = B on Γ,

n · uλ = 0 on Γ,

wλ = 0 on Γin,

∂ wλ

∂n
= 0 on Γ \ Γin, (4.5)

for λ ∈ [0,1]. Actually we should write (uε
λ, wε

λ), but we will omit ε as it should not lead to any misunderstanding. The
result is stated in the following

Lemma 5. Let (uλ, wλ) = λSε
(ũ,w̃)

(uλ, wλ), then

‖uλ‖W p
2

+ ‖wλ‖W p
2

� Cε

[∥∥F (ū, w̄)
∥∥

Lp
+ ∥∥G(ū, w̄)

∥∥
W 1

p
+ ‖B‖

W 1−1/p
p (Γ )

]
. (4.6)

Proof. The proof is very similar to the proof of Theorem 2. First we repeat the proof of Lemma 1 obtaining the λ-
independent energy estimate

‖uλ‖H1 + ‖wλ‖L2 � C
[∥∥F ε

(ū,w̄)(uλ, wλ)
∥∥

L2
+ ∥∥Gε

(ū,w̄)(uλ, wλ)
∥∥

L2
+ ‖B‖L2(Γ )

] + E‖w‖W 1
p
. (4.7)

Next we take the vorticity of (4.5):

∂x1αλ − μ�αλ = rot
(
λF ε

(ū,v̄)(uλ, wλ)
)

in Q ,

αλ = − f

μ
(uλ · τ ) + B

μ
on Γ,

where αλ = rot uλ . Thus

‖αλ‖W p � C
{∥∥F ε

(ū,v̄)(uλ, wλ)
∥∥

L (Q )
+ ‖B‖ 1−1/p + ‖uλ‖ 1−1/p

}
.

1 p W p (Γ ) W p (Γ )
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Now let uλ = ∇φλ + A⊥
λ . Substituting this decomposition to (4.5) we get

−(ν + 2μ)∇�φλ + ∇(γ wλ) = λF ε
(ū,w̄)(uλ, wλ) + μ�A⊥

λ − ∂x1 A⊥
λ + ∂x1∇φλ− =: F̄λ,

what can be rewritten as ∇(−(ν + 2μ)�φλ + γ wλ) = F̄λ. We denote as previously(−(ν + 2μ)div uλ + [
a1(w̄)

]
wλ

) = H̄λ.

Combining this identity with (4.5)2 we get an analog of (3.16):

ζλ(w̄)wλ + wλ,x1 + λ(ū + u0) · ∇wλ − ε�wλ = H̃λ, (4.8)

where ζλ(w̄) = γ
ν+2μ [1 +λ(w̄ + w0)] and H̃λ = 1+λ(w̄+w0)

ν+2μ H̄λ +λG . Now we can repeat step by step the proof of Theorem 2
obtaining the estimate

‖wλ‖W 1
p
� η‖uλ‖W 2

p
+ Cη

[∥∥F ε
(ū,w̄)(uλ, wλ)

∥∥
Lp

+ ∥∥Gε
(ū,v̄)(uλ, wλ)

∥∥
W 1

p
+ ‖B‖

W 1−1/p
p (Γ )

]
(4.9)

for each η > 0. The estimates for ‖uλ‖W 2
p

and ‖wλ‖W 2
p

now easily result from the system (4.5). Namely, applying the

standard elliptic theory to (4.5)1 we obtain an estimate

‖uλ‖W 2
p
� C

[‖wλ‖W 1
p
+ ∥∥F ε

(ū,w̄)(uλ, wλ)
∥∥

Lp

]
(4.10)

that does not depend on λ. Next, from (4.5)2 we get an elliptic estimate

‖wλ‖W 2
p
� Cε

(‖wλ‖W 1
p
+ ‖uλ‖W 1

p
+ ∥∥Gε

(ū,w̄)(uλ, wλ)
∥∥

Lp

)
. (4.11)

Combining (4.9), (4.10) and (4.11) we get

‖uλ‖W p
2

+ ‖wλ‖W p
2

� Cε

[‖B‖
W 1−1/p

p (Γ )
+ ∥∥F ε

(ū,w̄)(uλ, wλ)
∥∥

Lp
+ ∥∥Gε

(ū,w̄)(uλ, wλ)
∥∥

W 1
p

]
, (4.12)

but from the definition of F ε
(ū,w̄)

and Gε
(ū,w̄)

we have∥∥F ε
(ū,w̄)(uλ, wλ)

∥∥
Lp

+ ∥∥Gε
(ū,w̄)(uλ, wλ)

∥∥
W 1

p
� E

(‖uλ‖W 2
p
+ ‖wλ‖W 2

p

) + ∥∥Fε(ū, w̄)
∥∥

Lp
+ ∥∥Gε(ū, w̄)

∥∥
W 1

p

and thus (4.12) yields (4.6). �
Now we are ready to complete

Proof of Theorem 3. We have shown that the operator Sε
(ū,w̄)

satisfies the assumptions of the Leray–Schauder theorem.
Thus there exists a fixed point (uε, wε) = Sε

(ū,w̄)
(uε, wε). The fixed point is a solution to (2.4). Its uniqueness follows

directly from the estimate (3.13). �
We have shown the existence of a unique solution to the system (2.4) under some smallness assumptions on ū and w̄ .

Thus we define the domain D of the operator T :

D = {
(ū, w̄) ∈ W 2

p(Q ) × W 1
p(Q ): Theorem 3 holds for (ū, w̄)

}
. (4.13)

5. Solution of the regularized system

In this section we show existence of a solution to an ε-elliptic regularization to the system (2.3). The result is stated in
the following

Theorem 4. Assume that the data and ε > 0 are small enough and f is large enough. Then there exists a fixed point (u∗
ε, w∗

ε) =
Tε(u∗

ε , w∗
ε) and∥∥u∗
ε

∥∥
W 2

p
+ ∥∥w∗

ε

∥∥
W 1

p
� M, (5.1)

where M depends on the data but does not depend on ε and can be arbitrarily small provided that the data is small enough.

In order to prove Theorem 4 we apply the Schauder fixed point theorem to the operator Tε defined in (2.5). We start to
verify the assumptions of the Schauder theorem with the following

Lemma 6. Assume that u0 and w0 are small enough. Then Tε(B) ⊂ B for some ball B ⊂ W 2
p(Q ) × W 1

p(Q ).
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Proof. From the definition of Fε(ū, w̄) and Gε(ū, w̄) we have∥∥Fε(ū, w̄)
∥∥

W 1
p
+ ∥∥Gε(ū, w̄)

∥∥
W 1

p
� E + (‖ū‖W 2

p
+ ‖w̄‖W 1

p

)2
. (5.2)

Thus we can rewrite the estimate (3.13) as

‖uε‖W 2
p
+ ‖wε‖W 1

p
� C

[
D + (‖ū‖W 2

p
+ ‖w̄‖W 1

p

)2]
, (5.3)

where D can be arbitrarily small provided that ‖u0‖W 2
p

and ‖w0‖W 1
p

are small enough. In (3.13) we only need an estimate

on ‖Fε(ū, w̄)‖Lp that holds also for F (ū, w̄), but we will need the estimate in W 1
p to show the compactness of Tε and

this is the reason why we introduce the regularization Fε . Let us assume that the data is small enough to ensure D � 1
4C2 ,

where C and D are the constants from (5.3). Assume further that ‖ū‖W 2
p
+ ‖w̄‖W 1

p
�

√
D. Then from (5.3) we get

‖uε‖W 2
p
+ ‖wε‖W 1

p
� 2C D �

√
D.

Thus Tε(B) ⊂ B where B = B(0,
√

D) ⊂ W 2
p(Q ) × W 1

p(Q ). �
In the next lemma we show that Tε is a continuous operator on D, where D is defined in (4.13). The proof applies the

estimate (3.13) which requires some smallness assumption, but this assumption is also included in the definition of D and
therefore we can prove the continuity on the whole D.

Lemma 7. Tε is a continuous operator on D.

Proof. Let us have (u1, w1) = T (ū1, w̄1) and (u2, w2) = T (ū2, w̄2), then the functions u1 − u2 and w1 − w2 satisfy the
equations

∂x1 (u1 − u2) − μ�(u1 − u2) − (ν + μ)∇ div(u1 − u2) + γ (w̄1 + w0 + 1)γ −1∇(w1 − w2)

= Fε(ū1, w̄1) − Fε(ū2, w̄2) − γ
[
(w̄1 + w0 + 1)γ −1 − (w̄2 + w0 + 1)γ −1]∇w2

and

(w̄1 + w0 + 1)div(u1 − u2) + ∂x1 (w1 − w2) + (ū1 + u0) · ∇(w1 − w2) − ε�(w1 − w2)

= Gε(ū1, w̄1) − Gε(ū2, w̄2) − (w̄1 − w̄2)div u2 − (ū1 − ū2) · ∇w2,

supplied with boundary conditions

n · 2μD(u1 − u2) · τ + f (u1 − u2) · τ = 0 on Γ,

n · (u1 − u2) = 0 on Γ,

w1 − w2 = 0 on Γin,

∂(w1 − w2)

∂n
= 0 on Γ \ Γin. (5.4)

If (ū1, w̄1), (ū2, w̄2) ∈ D then the system on (u1 − u2, w1 − w2) satisfies the assumptions of Theorem 2 and thus (3.13)
yields

‖u1 − u2‖W 2
p
+ ‖w1 − w2‖W 1

p

�
∥∥Fε(ū1, w̄1) − Fε(ū2, w̄2)

∥∥
Lp

+ ∥∥Gε(ū1, w̄1) − Gε(ū2, w̄2)
∥∥

W 1
p

+ ∥∥[
(w̄1 + w0 + 1)γ −1 − (w̄1 + w0 + 1)γ −1]∇w2

∥∥
Lp

+ ∥∥(w̄1 − w̄2)div u2
∥∥

W 1
p
+ ∥∥(ū1 − ū2) · ∇w2

∥∥
W 1

p
. (5.5)

From the definition of Fε(ū, w̄) and Gε(ū, w̄) we directly get∥∥Fε(ū1, w̄1) − Fε(ū2, w̄2)
∥∥

Lp
+ ∥∥Gε(ū1, w̄1) − Gε(ū2, w̄2)

∥∥
W 1

p

+ ∥∥[
(w̄1 + w0 + 1)γ −1 − (w̄1 + w0 + 1)γ −1]∇w2

∥∥
Lp

+ ∥∥(w̄1 − w̄2)div u2
∥∥

W 1
p

� C
(‖ū1‖W 1

p
,‖w̄1‖W 1

p
,‖ū2‖W 1

p
,‖w̄2‖W 1

p

)[‖ū1 − ū2‖W 2
p
+ ‖w̄1 − w̄2‖W 1

p

]
.

In order to estimate the last term of the r.h.s. of (5.5) we have to use higher norm of w2:∥∥(ū1 − ū2) · ∇w2
∥∥

1 � C
(‖w̄2‖W 2

)‖ū1 − ū2‖W 2 .
W p p p
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Since on this level ε is fixed, we can use the elliptic regularity of the system (2.4) that yields

‖w̄2‖W 2
p
� Cε

[∥∥Fε(ū2, w̄2)
∥∥

Lp
+ ∥∥Gε(ū2, w̄2)

∥∥
W 1

p
+ ‖B‖Lp(Γ )

]
.

Combining the above estimates we get from (5.5):

‖u1 − u2‖W 2
p
+ ‖w1 − w2‖W 1

p
� Cε

[‖ū1 − ū2‖W 2
p
+ ‖w̄1 − w̄2‖W 1

p

]
, (5.6)

what completes the proof of continuity of Tε . �
Now we need to prove that Tε is a compact operator. The key is in the following lemma:

Lemma 8. Let us have (u, w) = Tε(ū, w̄). Then (u, w) ∈ W 3
p(Q ) × W 2

p(Q ) and

‖u‖W 3
p
+ ‖w‖W 2

p
� Cε

[‖ū‖W 2
p
+ ‖w̄‖W 1

p
+ E

]
. (5.7)

Proof. If (u, w) = Tε(ū, w̄) then in particular w satisfies

−ε�w = Gε(ū, w̄) − ∂x1 w − (ū + u0) · ∇w − (w̄ + w0 + 1)div u.

Thus by (3.13) we have

‖w‖W 2
p
� Cε

[∥∥Gε(ū, w̄)
∥∥

Lp
+ C

(‖u‖W 2
p
+ ‖w‖W 1

p

)]
� Cε

[∥∥Fε(ū, w̄)
∥∥

Lp
+ ∥∥Gε(ū, w̄)

∥∥
W 1

p
+ ‖B‖

W 1−1/p
p (Γ )

]
. (5.8)

Next, u satisfies the equation

−μ�u − (ν + μ)∇ div u = Fε(ū, w̄) − ∂x1 u − γ (w̄ + w0 + 1)γ −1∇w,

what yields

‖u‖W 3
p
� C

[∥∥Fε(ū, w̄)
∥∥

W 1
p
+ ‖w‖W 2

p

] (5.8)

� Cε

[∥∥Fε(ū, w̄)
∥∥

W 1
p
+ ∥∥Gε(ū, w̄)

∥∥
W 1

p
+ ‖B‖

W 1−1/p
p (Γ )

]
. (5.9)

Now, from (5.2) we get (5.7). �
With Lemma 8 the compactness of Tε is a straightforward consequence of the compact imbedding theorem. Namely,

if we take a sequence (ūn, w̄n) that is bounded in W 2
p(Q ) × W 1

p(Q ) and consider (un, wn) = Tε(ūn, w̄n), then from (5.7)

the sequence (un, wn) is bounded in W 3
p(Q ) × W 2

p(Q ). Thus the compact imbedding theorem implies the existence of a

subsequence (unk , wnk ) that converges in W 2
p(Q ) × W 1

p(Q ), what means that Tε is compact.

Proof of Theorem 4. The theorem results directly from the Schauder fixed point theorem for the operator Tε . �
6. Proof of Theorem 1

In this section we prove our main result, Theorem 1, passing to the limit with ε in (2.4). The proof will be divided into
two steps: the proof of existence of the solution and the proof of its uniqueness. These steps are quite separated since in
order to prove uniqueness we will go back to the original system (1.1) and modify the proof of the estimate (3.2).

Step 1: Existence. Consider a decreasing sequence εn → 0. If ε1 is small enough that Theorem 4 holds (what we can assume
without loss of generality), then for each n ∈ N Theorem 4 gives a solution (uεn , wεn ) to an εn-elliptic regularization to (2.3).

By (5.1) the sequence (uεn , wεn ) is uniformly bounded in W 2
p × W 1

p . The compact imbedding theorem implies that there

exists a couple (u, w) ∈ W 2
p × W 1

p such that (up to a subsequence)

uεn

W 2
p

⇀ u and wεn

W 1
p

⇀ w. (6.1)

From the definition of Fε and Gε we easily get

Fε(uε , wε)
Lp→ F (u, w) and Gε(uε, wε)

Lp→ G(u, w). (6.2)

We have to show that (u, w) satisfies the system (2.3). Clearly we have

�uεn

Lp
⇀ �u, ∇ div uεn

Lp
⇀ ∇ div u,

∂x1 wεn

Lp
⇀ ∂x1 w, ∇w

Lp
⇀ w. (6.3)
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Thus it remains to show convergence in nonlinear terms, but this is also straightforward. We have ∀φ ∈ Lq:∫
Q

φ(wε + w0 + 1)γ −1∇wε dx =
∫
Q

φ
[
(wε + w0 + 1)γ −1 − (w + w0 + 1)γ −1]∇wε +

∫
Q

φ(w + w0 + 1)γ −1∇wε dx.

Since φ(w + w0 + 1)γ −1 ∈ Lq , the second term converges to
∫

Q φ(w + w0 + 1)γ −1∇w dx. The first term∣∣∣∣
∫
Q

φ
[
(wε + w0 + 1)γ −1 − (w + w0 + 1)γ −1]∇wε dx

∣∣∣∣ �
∥∥φ

[
(wε + w0 + 1)γ −1 − (w + w0 + 1)γ −1]∥∥

Lq
‖wε‖W 1

p

ε→0→ 0,

since by the compact imbedding theorem wε
Lq→ w ∀1 � q < +∞. Thus∫

Q

φ(wε + w0 + 1)γ −1∇wε dx →
∫
Q

φ(w + w0 + 1)γ −1∇w dx. (6.4)

Similarly we can show that

(wε + w0 + 1)div uε + (uε + u0) · ∇wε

Lp
⇀ (w + w0 + 1)div u + (u + u0) · ∇w. (6.5)

From (6.2), (6.3), (6.4) and (6.5) we see that (u, w) satisfies (2.3)1,2 a.e. in Q . The trace theorem implies that

wε |γin

Lp(Γin)
⇀ w|Γin , u|Γ Lp(Γ )→ u|Γ , D(u)

Lp(Γin)
⇀ uΓ . (6.6)

Thus u satisfies (2.3)3,4 a.e. on Γ and w satisfies (2.3)5 a.e. on Γin . Now take v = u + u0 + v̄ and ρ = w + w0 + ρ̄ , where
u0 and w0 are extensions to the boundary data defined in (2.1) and (v̄, ρ̄) ≡ ([1,0],1) is the constant solution. Then (v,ρ)

satisfies the system (1.1).
In order to show the estimate (1.2) we repeat the proof of Theorem 2 obtaining

‖u‖W 2
p
+ ‖w‖W 1

p
� C

[∥∥F (u, w)
∥∥

Lp
+ ∥∥G(u, w)

∥∥
W 1

p
+ ‖B‖

W 1−1/p
p (Γ )

]
. (6.7)

We have∥∥F (u, w)
∥∥

Lp
+ ∥∥G(u, w)

∥∥
W 1

p
� D + (‖u‖W 2

p
+ ‖w‖W 1

p

)2
, (6.8)

where D can be arbitrarily small provided that the data is small enough. From (6.7) and (6.8) we conclude (1.2).

Step 2: Uniqueness. In order to prove the uniqueness of the solution in a class of small perturbations of the constant flow
(v̄, ρ̄) consider (v1,ρ1) and (v2,ρ2) both being solutions to (1.1) satisfying the estimate (1.2). We will apply the ideas of
the proof of the energy estimate (3.2) in order to show that

‖v1 − v2‖2
H1 + ‖ρ1 − ρ2‖2

L2
= 0. (6.9)

For simplicity let us denote the differences u := v1 − v2 and w := ρ1 − ρ2. We will follow the notation of constants
introduced before, namely E shall denote a constant dependent on the data that can be arbitrarily small provided that the
data is small enough, whereas C will denote a constant dependent on the data that is controlled, but not necessarily small.
In order to show (6.9) it is enough to prove that

‖u‖H1 � E‖w‖L2 (6.10)

and

‖w‖L2 � C‖u‖H1 . (6.11)

If we subtract the equations on (v1,ρ1) and (v2,ρ2) there appears a term ρ
γ
1 −ρ

γ
2 . We will use the fact that ρ1,ρ2 ∼ 1 ⇒

ρ
γ
1 − ρ

γ
2 ∼ γ (ρ1 − ρ2), more precisely, we can write

ρ
γ
1 − ρ

γ
2 = (ρ1 − ρ2)

1∫
0

γ
[
tρ1 + (1 − t)ρ2

]γ −1
dt

︸ ︷︷ ︸
I
γ
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and we have Iγ � γ . Now we easily verify that the difference (u, w) satisfies the system

w v2 · ∇v2 + ρ1u · ∇v2 + ρ1 v1 · ∇u − μ�u − (μ + ν)∇ div u + Iγ ∇w = 0,

ρ1 div u + w div v2 + u · ∇ρ2 + v1 · ∇w = 0,

n · 2μD(u) · τ |Γ = 0,

n · u|Γ = 0,

w|Γin = 0. (6.12)

We modify the proof of (3.2), multiplying (6.12)1 by ρ1u and integrating over Q (the reason why we take ρ1u instead of u
will be explained soon). We get∫

Q

(
2μD2(u) + νρ1 div2 u

)
dx +

∫
Q

[
(ρ1 − 1)D(u) : ∇u + D(u) : (u ⊗ ∇ρ1)

]
dx

︸ ︷︷ ︸
I1

−Iγ

∫
Q

wρ1 div u dx +
∫
Γ

ρ1 f u2 dσ

−
∫
Q

wu∇ρ1 dx

︸ ︷︷ ︸
I2

+
∫
Q

ρ2
1 u2 · ∇v2 dx

︸ ︷︷ ︸
I3

+
∫
Q

uwρ1 v2 · ∇v2 dx

︸ ︷︷ ︸
I4

+
∫
Q

ρ2
1 (v1 · ∇u) · u dx

︸ ︷︷ ︸
I5

= 0.

We have |I1| + |I2| + |I3| + |I4| � E(‖u‖2
H1 + ‖w‖2

L2
). Now let us split I5 into two parts:

2I5 =
∫
Q

(
ρ2

1 v(1)
1 − 1

)
∂x1 |u|2 + ρ2

1 v(2)
1 ∂x2 |u|2 dx

︸ ︷︷ ︸
I1
5

+
∫
Q

∂x1 |u|2 dx

︸ ︷︷ ︸
I2
5

.

We have |I1
5| � E‖u‖2

H1 and I2
5 = ∫

Γ
|u|2n(1) dσ . The last term can be integrated by parts and combined with the boundary

term involving friction. Thus applying the Korn inequality (A.1) we get

C‖u‖2
H1

+
∫
Γ

(
ρ1 f + n(1)

)|u|2 dσ − Iγ

∫
Q

w div u dx � E‖u‖2
H1 .

For the friction coefficient f large enough the boundary term will be positive and thus

‖u‖2
H1 � C

∫
Q

wρ1 div u dx. (6.13)

The reason why we multiplied (6.12)1 by ρ1u is that now we have this function on the r.h.s. of (6.13) instead of div u. In
order to derive (6.10) from (6.13) we express ρ1 div u in terms of w using Eq. (6.12)2. Thus we can rewrite (6.13) as

‖u‖2
H1 � −

∫
Q

w2 div v2 dx

︸ ︷︷ ︸
I6

−
∫
Q

w v1 · ∇w dx

︸ ︷︷ ︸
I7

−
∫
Q

wu · ∇ρ2 dx

︸ ︷︷ ︸
I8

. (6.14)

Obviously |I6| � E‖w‖2
L2

and, since p > 2, we have |I8| � ‖∇ρ2‖Lp ‖w‖L2‖u‖Lq for some q < ∞. Thus from the imbedding

theorem we get |I8| � E(‖w‖2
L2

+ ‖u‖2
H1 ). Integrating by parts in I7 and using the boundary conditions we get

−2I7 =
∫
Q

w2 div v1 dx −
∫

Γout

v(1)
1 dσ .

The boundary term is positive since v(1)
1 ∼ 1, thus −I7 � C‖∇v1‖∞‖w‖2

L2
= E‖w‖L2

2
. Combining the estimates for I6, I7

and I8 we get (6.10).
Now in order to complete the proof we have to show (6.11). Note that it is useless to multiply (6.12)2 by w since we

would obtain a term w2 div v2. Thus we adapt again the approach from the proof of (3.2) and write an expression on a
pointwise value of w2:
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w2(x1, x2) =
x1∫

0

w ws(s, x2)ds

= −
x1∫

0

ρ1

v(1)
1

w div u(s, x2)ds −
x1∫

0

1

v(1)
1

(
w2 div v2 + wu · ∇ρ2

)
(s, x2)ds −

x1∫
0

v(2)
1

v(1)
1

w∂x2 w(s, x2)ds

=: w2
1 + w2

2 + w2
3.

Note that we have ρ1, v(1)
1 ∼ 1 and thus ∀δ > 0:∫

Q

w2
1 dx � C

(‖w‖L2‖div u‖L2

)
� δ‖w‖2

L2
+ C(δ)‖u‖2

H1 . (6.15)

Next we easily get
∫

Q w2
3 dx � E(‖w‖2

L2
+‖u‖2

H1 ), and we only have to deal with w2
3. We have

∫
Q w2

3 dx = ∫ 1
0 [∫Px1

w2
3 dx]dx1.

Consider the inner integral∫
Px1

w2
3 dx = −

∫
Px1

∂x2

v(2)
1

v(1)
1

w2 dx +
∫

∂ Px1

w2 v(1)
1 v(2)

1 n(2) dσ .

The boundary term vanishes and thus∫
Q

w2
3 � C

∥∥∥∥∂x2

v(2)
1

v(1)
2

∥∥∥∥∞
‖w‖2

L2
� E‖w‖2

L2
. (6.16)

Choosing for example δ = 1
2 in (6.15) we get (6.11), what completes the proof of (6.9). We have shown that the solution is

unique, and thus completed the proof of Theorem 1.
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Appendix A

Lemma 9 (Korn inequality). Let V = {v ∈ H1(Q ): (n · v)|Γ = 0}. Then ∃C = C(Q ):∫
Q

2μD2(u) + ν div2 u dx � C Q ‖u‖2
W 1

2
. (A.1)

The proof can be found in [9, Lemma 2.1] or in [17, Lemma 4].

Lemma 10 (Helmoltz decomposition). For v ∈ W 1
p(Q ) there exists a couple of functions (φ, A) ∈ (W 2

p)2 such that n · ∇⊥ A|Γ = 0

v = ∇φ + ∇⊥ A. (A.2)

Moreover,

‖φ‖W 2
p
+ ‖A‖W 2

p
� C‖v‖W 1

p
. (A.3)

The proof can be found in [2]. The last auxiliary result we need is the following interpolation inequality:

Lemma 11. ∀ε > 0 ∃C(ε, p, Q ) such that ∀ f ∈ W 1
p(Q ):

‖ f ‖Lp � ε‖∇ f ‖Lp + C(ε, p, Q )‖ f ‖L2 . (A.4)

Proof. Inequality (A.4) results from the following inequality [1, Theorem 5.8]:

‖ f ‖Lp � K‖ f ‖θ

W 1
2
‖ f ‖1−θ

L2
(A.5)

for each 2 � p < ∞, where θ = n(p−2)
2p and K = K (p, Q ). Using Cauchy inequality with ε we get (A.4). �
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