

Thue-Morse at multiples of an integer

Johannes F. Morgenbesser ${ }^{\text {a,b,1,2 }}$, Jeffrey Shallit ${ }^{\text {c }}$, Thomas Stoll ${ }^{\mathrm{b}, *, 2}$
${ }^{\text {a }}$ Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
${ }^{\text {b }}$ Institut de Mathématiques de Luminy, Université de la Méditerranée, 13288 Marseille Cedex 9, France
c School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

A R T I C L E I N F O

Article history:

Received 27 September 2010
Revised 29 January 2011
Accepted 18 February 2011
Available online 13 April 2011
Communicated by Greg Martin

MSC:

11N25
11A63
68R15

Keywords:

Thue-Morse sequence
Sum of digits
Congruences
Arithmetic progressions

Abstract

Let $\mathbf{t}=\left(t_{n}\right)_{n \geqslant 0}$ be the classical Thue-Morse sequence defined by $t_{n}=s_{2}(n)(\bmod 2)$, where s_{2} is the sum of the bits in the binary representation of n. It is well known that for any integer $k \geqslant 1$ the frequency of the letter " 1 " in the subsequence $t_{0}, t_{k}, t_{2 k}, \ldots$ is asymptotically $1 / 2$. Here we prove that for any k there is an $n \leqslant k+4$ such that $t_{k n}=1$. Moreover, we show that n can be chosen to have Hamming weight $\leqslant 3$. This is best in a twofold sense. First, there are infinitely many k such that $t_{k n}=1$ implies that n has Hamming weight $\geqslant 3$. Second, we characterize all k where the minimal n equals $k, k+1, k+2, k+3$, or $k+4$. Finally, we present some results and conjectures for the generalized problem, where s_{2} is replaced by s_{b} for an arbitrary base $b \geqslant 2$.

(C) 2011 Elsevier Inc. Open access under CCBY-NC-ND license.

1. Introduction and preliminaries

Let $s_{b}(n)$ denote the sum of the digits of n when expressed in base b, and let

$$
t_{n}=s_{2}(n) \quad \bmod 2, \quad n \geqslant 0
$$

[^0]be the Thue-Morse sequence \mathbf{t}. In an e-mail message dated June 7 2010, Jorge Buescu of the Universidade de Lisboa observed that the Thue-Morse sequence can be regarded as a 2 -coloring of the integers, and therefore, by van der Waerden's theorem, must contain arbitrarily long monochromatic arithmetic progressions. ${ }^{3}$ (By a monochromatic arithmetic progression we mean a series of indices $i, i+j, i+2 j, \ldots, i+(n-1) j$ such that $t_{i}=t_{i+j}=\cdots=t_{i+(n-1) j}$.) He then asked, is it true that \mathbf{t} has no infinite monochromatic arithmetic progressions?

The answer is yes: \mathbf{t} has no infinite monochromatic arithmetic progressions. This is a consequence of the following result of Gelfond [5], which says that the values of $s_{b}(n)$ are equally distributed in residue classes, even if the residue class of n is fixed. (A weaker result, applicable in the case of the Thue-Morse sequence, had previously been given by Fine [4].)

Theorem 1. Let b, r, m be positive integers with $\operatorname{gcd}(b-1, r)=1$, and let a, c be any integers. Then the number of integers $n \leqslant x$ congruent to $a \bmod k$ such that $s_{b}(n) \equiv c(\bmod r)$ is equal to $\frac{x}{k r}+O\left(x^{\lambda}\right)$ for some $\lambda<1$ that does not depend on x, k, a, or c.

Gelfond's theorem, however, concerns the average distribution of the values of $s_{b}(n)$ in residue classes. It suggests the following question: how large can the smallest n be that is congruent to $a \bmod k$ and satisfies $s_{b}(n) \equiv c(\bmod r)$?

In this paper we answer the question for the case $a=0, k$ arbitrary, $c=1, b=r=2$. In other words, we find a bound on the number of terms in a fixed arithmetic progression of the Thue-Morse sequence we have to look at in order to see a " 1 ". We include some weaker results for arbitrary b and give some conjectures.

Remark 1. Jean-Paul Allouche notes that Buescu's original question can also be answered by appealing to a lemma in his paper [1, p. 284]. His lemma states that if a, b, c are integers with $b-c>a$, then $t_{a n+b}-t_{a n+c}$ cannot be constant for large n. If $t_{A n+B}$ were constant for some integers A, B then it would have the same value when replacing n by $n+2$. Thus $t_{A n+2 A+B}-t_{A n+B}$ would be constant and equal to 0 , but $2 A+B-B=2 A>A$ and we are done.

Remark 2. Dartyge, Luca and Stănică [3] recently investigated another problem on the pointwise behavior of s_{b} on integer multiples, namely, to bound the smallest nontrivial n that is congruent to 0 mod k and satisfies $s_{b}(n)=s_{b}(k)$. For other distributional properties of s_{b} on integer multiples we refer the interested reader to the bibliographic list in [3].

To begin with, for $k \geqslant 1$ we write

$$
\mathcal{N}_{k}=\left\{n: t_{k n}=1\right\}, \quad f(k)=\min \left\{n: n \in \mathcal{N}_{k}\right\} .
$$

The first few values of $(f(k))_{k \geqslant 1}$ are given by

$$
\begin{equation*}
1,1,7,1,5,7,1,1,9,5,1,7,1,1,19,1,17,9,1,5 \ldots \tag{1}
\end{equation*}
$$

The function f is of interest because of some old work of Newman [7]. Leo Moser observed that the first 7 multiples of 3 all have an even number of digits in their base- 2 expansion. In our notation, this means $f(3)=7$. Newman showed that among the first multiples of 3 , there is always a small preponderance of those with even parity. More precisely, he showed that for all $x \geqslant 2$,

$$
\begin{equation*}
\frac{1}{20} \cdot(3 x)^{\alpha}<\left|\left(\mathbb{N}_{0} \backslash \mathcal{N}_{3}\right) \cap[0, x-1]\right|-\left|\mathcal{N}_{3} \cap[0, x-1]\right|<5 \cdot(3 x)^{\alpha}, \tag{2}
\end{equation*}
$$

[^1]where $\alpha=\log _{4} 3$. Coquet [2] gave a precise expression for the middle term in (2) that involves a continuous periodic fractal function with a completely explicit Fourier expansion.

From Gelfond's theorem we get that $f(k)<\infty$ for all k. Indeed, a simple observation shows that $f(k)=O(k)$. To see this, we need the following result (see [6] for the base b generalization). For the convenience of the reader we here include a full proof for $b=2$.

Proposition 1. Let $t, p \geqslant 1$. For all k with $1 \leqslant k<2^{t}$ we have

$$
s_{2}\left(p 2^{t}-k\right)=s_{2}(p-1)+t-s_{2}(k-1) .
$$

Proof. Write $k-1=\sum_{i=0}^{t-1} \kappa_{i} 2^{i}$ with $\kappa_{i} \in\{0,1\}$. Then

$$
\begin{aligned}
s_{2}\left(p 2^{t}-k\right) & =s_{2}\left((p-1) 2^{t}+2^{t}-k\right)=s_{2}(p-1)+s_{2}\left(\left(2^{t}-1\right)-(k-1)\right) \\
& =s_{2}(p-1)+s_{2}\left(\sum_{i=0}^{t-1}\left(1-\kappa_{i}\right) 2^{i}\right)=s_{2}(p-1)+\sum_{i=0}^{t-1}\left(1-\kappa_{i}\right) \\
& =s_{2}(p-1)+t-\sum_{i=0}^{t-1} \kappa_{i}=s_{2}(p-1)+t-s_{2}(k-1) .
\end{aligned}
$$

Now, consider $n=2^{2 r+1}-1 \geqslant k$. Then

$$
s_{2}(k n)=s_{2}\left(k 2^{2 r+1}-k\right)=s_{2}(k-1)+2 r+1-s_{2}(k-1) \equiv 1 \quad(\bmod 2),
$$

so that $f(k)<4 k$.
Our main result shows that $k=3$ is the first of an infinite class of integers that maximize $f(k)-k$.
Theorem 2. For all $k \geqslant 1$ we have

$$
\begin{equation*}
f(k) \leqslant k+4 \tag{3}
\end{equation*}
$$

Moreover, we have
(i) $f(k)=k+4$ if and only if $k=2^{2 r}-1$ for some $r \geqslant 1$.
(ii) There are no k with $f(k)=k+3$ or $f(k)=k+2$.
(iii) $f(k)=k+1$ if and only if $k=6$.
(iv) $f(k)=k$ if and only if $k=1$ or $k=2^{r}+1$ for some $r \geqslant 2$.

The proof of Theorem 2 is constructive. It allows to show that for all $k \geqslant 1$ we can always find a small n with $t_{k n}=1$ having Hamming weight at most 3 .

Corollary 1. For all k there is an $n \in \mathcal{N}_{k}$ with $n \leqslant k+4$ and $s_{2}(n) \leqslant 3$.
This is optimal in the sense that there are infinitely many k such that all $n \in \mathcal{N}_{k}$ satisfy $s_{2}(n) \geqslant 3$. In the following proposition we give such an infinite family.

Proposition 2. Let $r \geqslant 4$ and set $k=3 \cdot 2^{r}+3$. If $s_{2}(k n) \equiv 1(\bmod 2)$ then $s_{2}(n) \geqslant 3$.

Proof. Suppose that $n=2^{j}, j \geqslant 0$. Then $s_{2}\left(k \cdot 2^{j}\right)=s_{2}(k)=s_{2}\left(2^{r+1}+2^{r}+2+1\right)=4 \equiv 0(\bmod 2)$. Let $n=\left(2^{j}+1\right) \cdot 2^{j^{\prime}}$ for $j \geqslant 1$ and $j^{\prime} \geqslant 0$. Then we have

$$
\begin{equation*}
s_{2}(k n)=s_{2}\left(3 \cdot 2^{r+j}+3 \cdot 2^{r}+3 \cdot 2^{j}+3\right) \tag{4}
\end{equation*}
$$

If $j=1$ then $s_{2}(k n)=s_{2}\left(9 \cdot 2^{r}+9\right)=4$. Suppose $j>1$ and without loss of generality assume that $r \geqslant j$. If $r>j+1$ then the summands in (4) are noninterfering. This yields $s_{2}(k n)=8$. If $r=j+1$ then $s_{2}(k n)=s_{2}\left(3 \cdot 2^{2 j+1}+9 \cdot 2^{j}+3\right)$ equals 6 or 4 depending on whether $j>2$ or $j=2$. The same is true in the case where $r=j$ and $s_{2}(k n)=s_{2}\left(3 \cdot 2^{2 j}+3 \cdot 2^{j+1}+3\right)$.

The paper is structured as follows. We introduce some useful notation in Section 2 which allows us to perform addition in the binary expansion of integers in a well-arranged way. In Section 3 we shortly outline the idea of the proof of our main result. In Section 4 we state some auxiliary results which are based on a detailed investigation of various cases. Section 5 is devoted to the proof of Theorem 2 . We conclude with some results in the general case, where the condition $s_{2}(k n) \equiv 1(\bmod 2)$ is changed to $s_{b}(k n) \equiv c(\bmod r)($ Section 6$)$.

2. Notation

In this section we introduce some notation. If

$$
k=\varepsilon_{\ell-1}(k) 2^{\ell-1}+\varepsilon_{\ell-2}(k) 2^{\ell-2}+\cdots+\varepsilon_{0}(k)
$$

is the canonical base-2 representation of k, satisfying $\varepsilon_{j} \in\{0,1\}$ for all $0 \leqslant j<\ell$ and $\varepsilon_{\ell-1}(k) \neq 0$, then we let $(k)_{2}$ denote the binary word

$$
\varepsilon_{\ell-1}(k) \varepsilon_{\ell-2}(k) \cdots \varepsilon_{0}(k)
$$

Additionally, for each $k \in \mathbb{N}$ we let $\ell(k)$ denote the length of $(k)_{2}$; for $k \geqslant 1$ this is $\ell(k)=\left\lfloor\log _{2} k\right\rfloor+1$. If w_{1} and w_{2} are two binary words, then $w_{1} w_{2}$ denotes the binary word obtained by concatenation. The symbol $a^{n}, n \geqslant 1, a \in\{0,1\}$ is an abbreviation for the word

$$
\overbrace{a a \cdots a}^{n}
$$

and a^{0} is equal to the empty word. For $a \in\{0,1\}$, we use the notation $\bar{a}=1-a$. We define the function s for all binary words $w=\varepsilon_{j-1} \cdots \varepsilon_{0}$ by

$$
s(w)=\#\left\{i, 0 \leqslant i<j: \varepsilon_{i}=1\right\}
$$

and in particular, we have $s\left((k)_{2}\right)=s_{2}(k) \equiv t_{k}(\bmod 2)$. If $1 \leqslant j \leqslant \ell(k)$, we set

$$
L_{j}(k)=\varepsilon_{j-1} \cdots \varepsilon_{0}
$$

the j least significant bits of k in base 2 , and

$$
U_{j}(k)=\varepsilon_{\ell(k)-1} \cdots \varepsilon_{\ell(k)-j}
$$

the j most significant bits of k. For example, if $k=119759$, then we have

$$
(k)_{2}=11101001111001111, \quad \ell(k)=17
$$

and

$$
\overbrace{111010011 \underbrace{U_{12}(k)}_{L_{8}(k)}}^{U_{10}} 01111 .
$$

Written in short form, this means that $(k)_{2}=1^{3} 010^{2} 1^{4} 0^{2} 1^{4}$,

$$
U_{12}(k)=1^{3} 010^{2} 1^{4} 0 \quad \text { and } \quad L_{8}(k)=1^{2} 0^{2} 1^{4}
$$

In what follows, we use the convention that if we are talking about $L_{j}(k)$ or $U_{j}(k)$, we assume that $\ell(k) \geqslant j$. Note that for all $k \in \mathbb{N}$ and $j<\ell(k)$ we have

$$
s\left(L_{\ell(k)-j}(k)\right) \equiv s\left(U_{j}(k)\right)+t_{k} \quad(\bmod 2) .
$$

Furthermore, this function also satisfies

$$
s\left(w_{1} w_{2}\right)=s\left(w_{1}\right)+s\left(w_{2}\right)
$$

for two binary words w_{1} and w_{2}.

3. Idea of proof

It is relatively easy to show that $f(k)=k+4$ if $k=2^{2 r}-1$ for some $r \geqslant 1$ and $f(k)=k$ if $k=2^{n}+1$ for some $n \geqslant 2$ (see the proofs of Theorem 2 and Lemma 1). Moreover, since $f(k)=f(2 k)$ for all $k \geqslant 1$, in order to prove Theorem 2, it suffices to show that $f(k)<k$ for all odd integers k other than those stated above. Thus, we assume in Section 4 that k is an odd integer.

We use two different ideas in order to succeed, depending on the base-2 representation of k. We show for a large set of integers k that there exists an integer $n<k$ with Hamming weight 2 such that $t_{k n}=1$. To be more precise, we find for such integers k a positive integer $a<\ell(k)$ such that $t_{k n}=1$ with $n=2^{a}+1 \leqslant 2^{\ell(k)-1}+1<k$. For the remaining odd integers k we show that there exist positive odd integers $m<k$ with Hamming weight 2 and $n<k$ with Hamming weight 3 such that

$$
t_{k n} \equiv 1+t_{k}+t_{k m} \quad(\bmod 2) .
$$

This implies that $f(k)<k$ since at least one of the three numbers $t_{k}, t_{k m}$ and $t_{k n}$ has to be equal to 1 .

4. Auxiliary results

We have to distinguish several cases according to the beginning and the ending part of the binary expansion of k.

Lemma 1. Let $k \in \mathbb{N}$ be such that there exists an odd integer $u \geqslant 1$ with $L_{u+1}(k)=01^{u}$. Then we have $f(k) \leqslant k$. Furthermore, $f(k)=k$ if and only if $k=2^{r}+1$ for some $r \geqslant 2$.

Proof. Let $\ell=\ell(k)$ and set $n=2^{\ell-1}+1$. In what follows we show that $t_{k n}=1$. We have

$$
(k n)_{2}=U_{\ell-(u+1)}(k) 10^{u} L_{\ell-1}(k) .
$$

The following figure explains this fact:

$$
\begin{gathered}
\cdots 01^{u-1} 1 \\
1 \cdots \\
\hline \cdots 10^{u-1} 0 \cdots
\end{gathered}
$$

The first line $\left(\cdots 01^{u-1} 1\right)$ corresponds to the expansion of $k 2^{\ell-1}$ and the second line $(1 \cdots)$ to the expansion of k. By "..." we refer to digits that are not important for our argument. Since

$$
s\left(U_{\ell-(u+1)}(k)\right) \equiv s\left(L_{u+1}(k)\right)+t_{k} \equiv u+t_{k} \quad(\bmod 2),
$$

and

$$
s\left(L_{\ell-1}(k)\right) \equiv s\left(U_{1}(k)\right)+t_{k} \equiv 1+t_{k} \quad(\bmod 2),
$$

we obtain

$$
t_{k n} \equiv s\left((k n)_{2}\right) \equiv u+t_{k}+1+1+t_{k} \equiv u \equiv 1 \quad(\bmod 2),
$$

which shows that $t_{k n}=1$. The definition of $\ell=\ell(k)$ implies that $2^{\ell-1}+1 \leqslant k$. If $k=2^{\ell-1}+1$, we have $t_{k m}=0$ for all $1 \leqslant m<k$. Indeed, if $1 \leqslant m<2^{\ell-1}$, then the 2-additivity of the binary sum-of-digits function s_{2} implies

$$
s_{2}(k m)=s_{2}\left(2^{\ell-1} m+m\right)=s_{2}(m)+s_{2}(m) .
$$

Thus we have $t_{k m} \equiv s_{2}(k m) \equiv 0(\bmod 2)$ for all $1 \leqslant m<2^{\ell-1}$. If $m=2^{\ell-1}$, then we clearly have $t_{k m}=0$. This finally proves that $f(k)=k$ if $k=2^{\ell-1}+1$ and $f(k)<k$ if k satisfies the assumptions of Lemma 1 but $k \neq 2^{\ell-1}+1$.

Lemma 2. Let $k \in \mathbb{N}$. If there exists an even integer $u \geqslant 2$ with $L_{u+2}(k)=101^{u}$, then we have $f(k)<k$.
Proof. Set $\ell=\ell(k)$. First, we show that if there exists a positive integer $r \neq u$ such that $U_{r+1}(k)=1^{r} 0$, then $f(k)<k$. If $r<u$, we set $n=2^{\ell-(r+1)}+1<k$. Then we have

$$
(k n)_{2}=U_{\ell-(u+1)}(k) 10^{u-(r+1)} 1^{r-1} 01 L_{\ell-r-1}(k),
$$

as illustrated below:

$$
\begin{array}{r}
\cdots 01^{u-(r+1)} 1^{r-1} 11 \\
1^{r-1} 10 \cdots \\
\hline \cdots 10^{u-(r+1)} 1^{r-1} 01 \cdots
\end{array}
$$

Since $s\left(U_{\ell-(u+1)}(k)\right) \equiv s\left(L_{u+1}(k)\right)+t_{k} \equiv u+t_{k}(\bmod 2)$ and $s\left(L_{\ell-r-1}(k)\right) \equiv s\left(U_{r+1}\right)+t_{k} \equiv r+t_{k}$, we get

$$
\begin{equation*}
t_{k n} \equiv u+t_{k}+1+(r-1)+1+r+t_{k} \equiv u+1 \quad(\bmod 2) . \tag{5}
\end{equation*}
$$

This shows that $f(k)<k$ if $r<u$ since u is even. If $r>u$, we set $n=2^{\ell-u}+2^{\ell-u-1}+1$. Since $\ell-u<\ell-1$ we have $n<k$. We get

$$
(k n)_{2}=U_{\ell+2-(u+2)}(3 k) 101^{u-2} 0^{2} L_{\ell-(u+1)}(k),
$$

as illustrated below:

$$
\begin{aligned}
& \cdots 1011^{u-2} 1 \\
& \quad \cdots 101^{u-2} 11 \\
& \quad 11^{u-2} 11 \cdots \\
& \hline \cdots 101^{u-2} 00 \cdots
\end{aligned}
$$

Noting that $3 k$ has $\ell+2$ digits, i.e., $\ell(3 k)=\ell+2$, we obtain

$$
\begin{aligned}
t_{k n} & \equiv s\left(L_{u+2}(3 k)\right)+t_{3 k}+1+(u-2)+s\left(U_{u+1}(k)\right)+t_{k} \\
& \equiv s\left(L_{u+2}(3 k)\right)+t_{3 k}+u-1+u+1+t_{k} \\
& \equiv s\left(L_{u+2}(3 k)\right)+t_{3 k}+t_{k} \quad(\bmod 2) .
\end{aligned}
$$

Since

$$
L_{u+2}(3 k)=0^{2} 1^{u-2} 01,
$$

we have $t_{k n} \equiv 1+t_{k}+t_{3 k}(\bmod 2)$. As we have seen in Section 3, this implies $f(k)<k$.
For the rest of the proof we assume that $U_{u+1}(k)=1^{u} 0$ for some integer $u \geqslant 2$. If $(k)_{2}=1^{u} 01^{u}$, then it is easy to see that $f(k)=3$. Thus we can assume that there exists a positive integer v such that $L_{v+u+2}(k)=01^{v} 01^{u}$. If v is odd, then we set $n=2^{\ell-(u+1)}+1<k$. We get

$$
(k n)_{2}=U_{\ell-(v+u+2)}(k) 10^{v+1} 1^{u-2} 01 L_{\ell-(u+1)}(k),
$$

as illustrated below:

$$
\begin{array}{r}
\cdots 01^{v} 01^{u-2} 11 \\
11^{u-2} 10 \cdots \\
\hline \cdots 10^{v} 01^{u-2} 01 \cdots
\end{array}
$$

This implies

$$
\begin{aligned}
t_{k n} & \equiv s\left(L_{v+u+2}(k)\right)+t_{k}+1+(u-2)+1+s\left(U_{u+1}(k)\right)+t_{k} \\
& \equiv u+v+u \equiv 1 \quad(\bmod 2) .
\end{aligned}
$$

If v is even, we have two cases to consider: $u \geqslant 4$ and $u=2$.
If $u \geqslant 4$, we set $n=2^{\ell-u}+2^{\ell-u-1}+1<k$. Then we have

$$
(k n)_{2}=U_{\ell+2-(v+u+2)}(3 k) 01^{v} 01^{u-3} 01^{2} L_{\ell-(u+1)}(k),
$$

as illustrated below:

$$
\begin{aligned}
& \cdots 011^{v-1} 011^{u-3} 11 \\
& \quad \cdots 01^{v-1} 101^{u-3} 111 \\
& 11^{u-3} 110 \cdots \\
& \hline \cdots 01^{v-1} 101^{u-3} 011 \cdots
\end{aligned}
$$

Note that

$$
\begin{equation*}
L_{v+u+2}(3 k)=01^{v-1} 0^{2} 1^{u-2} 01 . \tag{6}
\end{equation*}
$$

Thus we get

$$
\begin{aligned}
t_{k n} & \equiv s\left(L_{v+u+2}(3 k)\right)+t_{3 k}+v+(u-3)+2+s\left(U_{u+1}(k)\right)+t_{k} \\
& \equiv(v-1)+(u-2)+1+t_{3 k}+v+(u-3)+2+u+t_{k} \\
& \equiv 1+t_{3 k}+t_{k} \quad(\bmod 2),
\end{aligned}
$$

and we obtain $f(k)<k$.
Now we consider the case $u=2$. In order to complete the proof of the lemma, it remains to show that $f(k)<k$ for integers k with $U_{3}(k)=1^{2} 0$ and $L_{v+4}(k)=01^{v} 01^{2}$ for an even positive integer v. If $U_{4}(k)=1^{2} 01$, then we set $n=2^{\ell-4}+1$. Here we get

$$
(k n)_{2}=U_{\ell-(v+4)}(k) 10^{v-1} 10^{3} L_{\ell-4}(k),
$$

as illustrated below:

$$
\begin{gathered}
\cdots 01^{v-1} 1011 \\
1101 \cdots \\
\hline \cdots 10^{v-1} 1000 \cdots
\end{gathered}
$$

and we obtain

$$
\begin{aligned}
t_{k n} & \equiv s\left(L_{v+4}(k)\right)+t_{k}+1+1+s\left(U_{4}(k)\right)+t_{k} \\
& \equiv(v+2)+3 \equiv 1 \quad(\bmod 2)
\end{aligned}
$$

If $U_{5}(k)=1^{2} 0^{3}$, we set $n=2^{\ell-4}+2^{\ell-5}+1$. It follows that

$$
(k n)_{2}=U_{\ell+2-(v+4)}(3 k) 10^{v-1} 10^{2} 1 L_{\ell-5}(k),
$$

as illustrated below:

$$
\begin{array}{r}
\cdots 011^{v-2} 1011 \\
\quad \cdots 01^{v-2} 11011 \\
11000 \cdots \\
\hline \cdots 10^{v-2} 01001 \cdots
\end{array}
$$

and we obtain

$$
\begin{aligned}
t_{k n} & \equiv s\left(L_{v+4}(3 k)\right)+t_{3 k}+1+1+1+s\left(U_{5}(k)\right)+t_{k} \\
& \equiv v+t_{3 k}+1+2+t_{k} \equiv 1+t_{3 k}+t_{k} \quad(\bmod 2)
\end{aligned}
$$

Here we used Eq. (6) and we get $f(k)<k$.
If $U_{5}(k)=1^{2} 0^{2} 1$, we set $n=2^{\ell-3}+2^{\ell-1}+1$. It is easy to see that $\ell(5 k)=\ell+2$ or $\ell(5 k)=\ell+3$. We have

$$
(k n)_{2}=U_{\ell(5 k)-(v+4)}(5 k) 10^{v+3} L_{\ell-5}(k),
$$

as illustrated below:

$$
\begin{aligned}
& \cdots 0111^{v-2} 011 \\
& \cdots 01^{v-2} 11011 \\
& 11001 \cdots \\
& \hline \cdots 10^{v-2} 00000 \cdots
\end{aligned}
$$

Since

$$
L_{v+4}(5 k)=01^{v-2} 0^{2} 1^{3}
$$

we obtain

$$
\begin{aligned}
t_{k n} & \equiv s\left(L_{v+4}(5 k)\right)+t_{5 k}+1+s\left(U_{5}(k)\right)+t_{k} \\
& \equiv(v+1)+t_{5 k}+1+3+t_{k} \equiv 1+t_{5 k}+t_{k} \quad(\bmod 2) .
\end{aligned}
$$

Again, the considerations of Section 3 show that $f(k)<k$.
Lemma 3. Let $k \in \mathbb{N}$. If there exist an even integer $u \geqslant 2$ and a positive integer $r \neq u$ such that $L_{u+2}(k)=0^{2} 1^{u}$ and $U_{r+1}(k)=1^{r} 0$, then we have $f(k)<k$.

Proof. Let $\ell=\ell(k)$. If $r<u$, we set $n=2^{\ell-r-1}+1<k$. In exactly the same manner as at the beginning of the proof of Lemma 2 (see Eq. (5)), we see that $t_{k n}=1$ and thus, $f(k)<k$.

If $r>u$, we set $n=2^{\ell-u-1}+1<k$. Then we get

$$
(k n)_{2}=U_{\ell-(u+2)}(k) 101^{u-1} 0 L_{\ell-(u+1)}(k),
$$

as illustrated below:

$$
\begin{aligned}
& \cdots 001^{u-1} 1 \\
& 11^{u-1} 1 \cdots \\
& \hline \cdots 101^{u-1} 0 \cdots
\end{aligned}
$$

Similarly as before, we have $s\left(U_{\ell-(u+2)}(k)\right) \equiv s\left(L_{u+2}(k)\right)+t_{k} \equiv u+t_{k}(\bmod 2)$ and $s\left(L_{\ell-(u+1)}(k)\right) \equiv$ $s\left(U_{u+1}\right)+t_{k} \equiv u+1+t_{k}$ (note that $u+1 \leqslant r$). We obtain

$$
t_{k n} \equiv u+t_{k}+1+(u-1)+(u+1)+t_{k} \equiv u+1 \equiv 1 \quad(\bmod 2) .
$$

This shows the desired result.

Lemma 4. Let $k \in \mathbb{N}$. If there exist an even integer $u \geqslant 2$ and a positive integer $s<u-1$ such that $L_{u+2}(k)=$ $0^{2} 1^{u}$ and $U_{u+s+1}(k)=1^{u} 0^{s} 1$, then we have $f(k)<k$.

Proof. Let $\ell=\ell(k)$ and set $n=2^{\ell-1}+2^{u-1}+1$. Since k is odd and starts with at least two 1 's, we see that $n<k$. We have

$$
(n k)_{2}=U_{\ell-(u+2)}(k) 10^{u+s+1} L_{\ell(k m)-(s+u+1)}(m k),
$$

where $m=2^{u-1}+1<k$ and $\ell(k m)=\ell+u$, as illustrated below:

$$
\begin{array}{r}
\cdots 001^{u-1} 1 \\
1^{u-1} 10^{s} 1 \cdots \\
11^{s} 1 \cdots \\
\hline \cdots 100^{u-1} 00^{s} \cdots
\end{array}
$$

We have

$$
U_{s+u+1}(\mathrm{~km})=10^{u-1} 10^{s} .
$$

In particular, we obtain

$$
s\left(L_{\ell(k m)-(s+u+1)}(m k)\right) \equiv s\left(U_{s+u+1}(k m)\right)+t_{k m} \equiv t_{k m} \quad(\bmod 2),
$$

and we get

$$
t_{n k} \equiv s\left(L_{u+2}(k)\right)+t_{k}+1+t_{k m} \equiv u+1+t_{k}+t_{k m} \equiv 1+t_{k}+t_{k m} \quad(\bmod 2) .
$$

As before, we get $f(k)<k$, which proves Lemma 4 .
Lemma 5. Let $k \in \mathbb{N}$. If there exist an even integer $u \geqslant 2$ and a positive integer $t \geqslant 2$ such that $L_{u+t+2}(k)=$ $010^{t} 1^{u}$ and $U_{2 u-1}(k)=1^{u} 0^{u-1}$, then we have $f(k)<k$.

Proof. Let $\ell=\ell(k)$ and let us first assume that $2 \leqslant t \leqslant u-1$. We set $n=2^{\ell-(u+t)}+1<k$. Then we get

$$
(k n)_{2}=U_{\ell-(u+t+2)}(k) 10^{t+1} 1^{u-(t+1)} 01^{t} L_{\ell-(u+t)}(k),
$$

as illustrated below:

$$
\begin{gathered}
\cdots 010^{t} 1^{u-(t+1)} 11^{t} \\
\frac{1^{t} 1^{u-(t+1)} 10^{t} \cdots}{\cdots 100^{t} 1^{u-(t+1)} 01^{t} \cdots} .
\end{gathered}
$$

Since $u<u+t \leqslant 2 u-1$, we have

$$
s\left(L_{\ell-(u+t)}(k)\right) \equiv s\left(U_{u+t}(k)\right)+t_{k} \equiv u+t_{k} \quad(\bmod 2) .
$$

This implies

$$
t_{k n} \equiv s\left(L_{u+t+2}(k)\right)+t_{k}+1+(u-(t+1))+t+u+t_{k} \equiv u+1 \equiv 1 \quad(\bmod 2) .
$$

If $t=u$ and $U_{2 u}(k)=1^{u} 0^{u-1} 1$, we again set $n=2^{\ell-(u+t)}+1<k$. This time we can write

$$
(k n)_{2}=U_{\ell-(u+t+2)}(k) 10^{t+u+1} L_{\ell-(u+t)}(k),
$$

as illustrated below:

$$
\begin{gathered}
\cdots 010^{t} 1^{u-1} 1 \\
1^{t} 0^{u-1} 1 \cdots \\
\hline \cdots 100^{t} 0^{u-1} 0 \cdots
\end{gathered}
$$

and we get

$$
t_{k n} \equiv s\left(L_{u+t+2}(k)\right)+t_{k}+1+s\left(U_{u+t}(k)\right)+t_{k} \equiv(u+1)+1+(u+1) \equiv 1 \quad(\bmod 2)
$$

Alternatively, if $t=u$ and $U_{2 u+1}(k)=1^{u} 0^{u} a$ for some $a \in\{0,1\}$, then we set $n=2^{\ell-(t+u+1)}+1<k$. Since we have (recall that $\bar{a}=1-a$)

$$
(k n)_{2}=U_{\ell-(u+t+2)}(k) 101^{t-1} a \bar{a}^{u} L_{\ell-(u+t+1)}(k),
$$

as illustrated below,

$$
\begin{gathered}
\cdots 010^{t-1} 01^{u-1} 1 \\
11^{t-1} 00^{u-1} a \cdots \\
\hline \cdots 101^{t-1} a \bar{a}^{u-1} \bar{a} \cdots
\end{gathered}
$$

and we finally obtain

$$
\begin{aligned}
t_{k n} & \equiv s\left(L_{u+t+2}(k)\right)+t_{k}+1+(t-1)+a+a u+s\left(U_{u+t+1}(k)\right)+t_{k} \\
& \equiv(u+1)+1+(t-1)+a(u+1)+(u+a) \\
& \equiv 1(\bmod 2) .
\end{aligned}
$$

This shows the desired result.
Lemma 6. Let $k \in \mathbb{N}$. If there exist an even integer $u \geqslant 2$ and positive integers $t \geqslant 2$ such that $L_{u+t+2}(k)=$ $110^{t} 1^{u}$ and $U_{2 u-1}(k)=1^{u} 0^{u-1}$, then we have $f(k)<k$.

Proof. Let $\ell=\ell(k)$. First, we consider the case $2 \leqslant t \leqslant u-1$. Set $n=2^{\ell-(t+u-1)}+2^{\ell-(t+u)}+1<k$. Then we have

$$
(k n)_{2}=U_{\ell+2-(t+u+2)}(3 k) 10^{t-1} 101^{u-(t+1)} 01^{t-2} 01 L_{\ell-(u+t)}(k),
$$

as illustrated below:

$$
\begin{aligned}
& \cdots 1100^{t-2} 011^{u-(t+1)} 11^{t-2} 1 \\
& \quad \cdots 110^{t-2} 001^{u-(t+1)} 11^{t-2} 11 \\
& \quad 1^{t-2} 111^{u-(t+1)} 10^{t-2} 00 \cdots \\
& \hline \cdots 100^{t-2} 101^{u-(t+1)} 01^{t-2} 01 \cdots
\end{aligned}
$$

Noting that $\ell(3 k)=\ell+2$, we obtain

$$
\begin{aligned}
t_{k n} & \equiv s\left(L_{u+t+2}(3 k)\right)+t_{3 k}+(u-(t+1))+(t-2)+s\left(U_{u+t}(k)\right)+t_{k}+3 \\
& \equiv s\left(L_{u+t+2}(3 k)\right)+t_{3 k}+u+u+t_{k} \\
& \equiv s\left(L_{u+t+2}(3 k)\right)+t_{3 k}+t_{k} \quad(\bmod 2) .
\end{aligned}
$$

Since

$$
\begin{equation*}
L_{u+t+2}(3 k)=010^{t-2} 101^{u-2} 01, \tag{7}
\end{equation*}
$$

we have $t_{k n} \equiv 1+t_{3 k}+t_{k}(\bmod 2)$ and consequently $f(k)<k$.

If $t=u$, then we have to consider three different cases. If $U_{2 u}(k)=1^{u} 0^{u-1} 1$ we again set $n=$ $2^{\ell-(t+u-1)}+2^{\ell-(t+u)}+1<k$. This time we get

$$
(k n)_{2}=U_{\ell+2-(t+u+2)}(3 k) 10^{t} 1^{u} 0 L_{\ell-(2 u)}(k),
$$

as illustrated below,

$$
\begin{aligned}
& \cdots 1100^{t-1} 11^{u-1} \\
& \quad \cdots 110^{t-1} 01^{u-1} 1 \\
& \quad 1^{t-1} 10^{u-1} 1 \cdots \\
& \hline \cdots 100^{t-1} 11^{u-1} 0 \cdots
\end{aligned}
$$

which yields

$$
\begin{aligned}
t_{k n} & \equiv s\left(L_{u+t+2}(3 k)\right)+t_{3 k}+1+u+s\left(U_{2 u}(k)\right)+t_{k} \\
& \equiv s\left(L_{u+t+2}(3 k)\right)+t_{3 k}+1+u+(u+1)+t_{k} \\
& \equiv s\left(L_{u+t+2}(3 k)\right)+t_{3 k}+t_{k} \quad(\bmod 2)
\end{aligned}
$$

As above (see Eq. (7)), we get that $f(k)<k$. If $t=u$ and $U_{2 u+1}(k)=1^{u} 0^{u} 1$, then we set $n=2^{\ell-(t+u)}+$ $2^{\ell-(t+u)-1}+1<k$. We have

$$
(k n)_{2}=U_{\ell+2-(t+u+2)}(3 k) 1^{2} 0^{t} 1^{u-1} 0 L_{\ell-(2 u+1)}(k)
$$

as illustrated below:

$$
\begin{aligned}
& \cdots 1100^{t-1} 11^{u-1} \\
& \quad \cdots 110^{t-1} 01^{u-1} 1 \\
& \quad 11^{t-1} 00^{u-1} 1 \cdots \\
& \hline \cdots 110^{t-1} 01^{u-1} 0 \cdots
\end{aligned}
$$

Note that the dots in the first and second line of the figure have to be erased if $k=51$. (The binary representation of 51 is given by $(51)_{2}=110011$.) We get

$$
\begin{aligned}
t_{k n} & \equiv s\left(L_{u+t+2}(3 k)\right)+t_{3 k}+2+(u-1)+s\left(U_{2 u+1}(k)\right)+t_{k} \\
& \equiv s\left(L_{u+t+2}(3 k)\right)+t_{3 k}+2+(u-1)+(u+1)+t_{k} \\
& \equiv s\left(L_{u+t+2}(3 k)\right)+t_{3 k}+t_{k} \quad(\bmod 2)
\end{aligned}
$$

Using Eq. (7), we obtain $f(k)<k$. If $t=u$ but $U_{2 u+1}(k)=1^{u} 0^{u+1}$, then we choose $n=2^{\ell-1}+2^{u}+1$. Since k is odd and starts with at least two 1 's, we again obtain that $n<k$. This leads us to

$$
(k n)_{2}=U_{\ell-(u+2)}(k) 101^{u-1} 01^{u-1} L_{\ell+u-(2 u)}(k m),
$$

where $m=2^{u}+1<k$, as illustrated below:

$$
\begin{aligned}
& \cdots 001^{u-1} 1 \\
& 11^{u-1} 00^{u-1} 0 \cdots \\
& 11^{u-1} 0 \cdots \\
& \hline \cdots 101^{u-1} 01^{u-1} \cdots
\end{aligned}
$$

Note that $\ell(\mathrm{km})=\ell+u$ and

$$
U_{2 u}(k m)=1^{2 u}
$$

We obtain

$$
\begin{aligned}
t_{k n} & \equiv s\left(L_{u+2}(k)\right)+t_{k}+1+(u-1)+(u-1)+s\left(U_{2 u}(k m)\right)+t_{k m} \\
& \equiv u+t_{k}+1+2 u+t_{k m} \\
& \equiv 1+t_{k}+t_{k m} \quad(\bmod 2),
\end{aligned}
$$

which shows $f(k)<k$ in this case, too.
In order to prove the lemma, it remains to consider the case $t>u$. We set $n=2^{\ell-1}+2^{\ell-u-1}+$ $1<k$ and we get

$$
(k n)_{2}=U_{\ell+u-(2 u+1)}(k m) 10^{u-1} 1^{u-1} 01 L_{\ell-(u+1)}(k),
$$

as illustrated below,

$$
\begin{aligned}
& \cdots 01^{u-1} 1 \\
& \cdots 00^{u-1} 01^{u-2} 11 \\
& \quad 11^{u-2} 10 \cdots \\
& \hline \cdots 10^{u-1} 11^{u-2} 01 \cdots
\end{aligned}
$$

where $m=2^{u}+1<k$. Since

$$
L_{2 u+1}(k m)=01^{2 u}
$$

we obtain

$$
\begin{aligned}
t_{k n} & \equiv s\left(L_{2 u+1}(k m)\right)+t_{k m}+1+(u-1)+1+s\left(U_{u+1}(k)\right)+t_{k} \\
& \equiv 2 u+t_{k m}+u-1+u+t_{k} \\
& \equiv 1+t_{k}+t_{k m} \quad(\bmod 2)
\end{aligned}
$$

The same argument as before finally shows the desired result.

5. Proof of Theorem 2

Proof of Theorem 2. As already noted in Section 3, we have $f(k)=f(2 k)$ for all $k \geqslant 1$. Consequently, it suffices to show that $f(k) \leqslant k+4$ for odd integers k.

If $k=2^{2 r+1}-1, r \geqslant 0$, then $(k)_{2}=1^{2 r+1}$ and we trivially have $f(k)=1$. If $k=2^{2 r}-1, r \geqslant 1$, then we will show that $f(k)=k+4$. In order to do this, we note that the binary sum-of-digits function s_{2} satisfies the relation

$$
s_{2}\left(a 2^{k}-b\right)=s_{2}(a-1)+k-s_{2}(b-1)
$$

for all positive integers a, b, k with $1 \leqslant b<2^{k}$. Thus we have for all $1 \leqslant m \leqslant k$,

$$
t_{k m} \equiv s_{2}\left(2^{2 r} m-m\right)=s_{2}(m-1)+2 r-s_{2}(m-1) \equiv 0 \quad(\bmod 2) .
$$

If $m=2^{2 r}$ or $m=2^{2 r}+2$, then we clearly have $t_{k m}=0$ since $t_{k m / 2}=0$. If $m=2^{2 m}+1$, then $k m=$ $2^{4 r}-1$ and consequently $t_{k m}=0$. If $m=2^{2 r}+3$, then

$$
t_{k m} \equiv s_{2}\left(2^{4 r}+2^{2 r+1}-3\right) \equiv 1+(2 r+1)-s_{2}(2) \equiv 1 \quad(\bmod 2),
$$

which finally proves $f(k)=k+4$ for $k=2^{2 r}-1, r \geqslant 1$. If k is a positive integer different from ones already considered, then there exist positive integers r, s, t and u such that

$$
U_{r+s+1}(k)=1^{r} 0^{s} 1 \quad \text { and } \quad L_{t+u+1}=10^{t} 1^{u} .
$$

If u is odd, then Lemma 1 implies that $f(k) \leqslant k$ where equality occurs if and only if $k=2^{r}+1$ for some $r \geqslant 2$. If u is even but $t=1$ or $r \neq u$, then Lemma 2 and Lemma 3 imply $f(k)<k$. Let us assume that u is even, $t \geqslant 2$ and $r=u$. Then there exists $a \in\{0,1\}$, such that

$$
L_{t+u+2}=a 10^{t} 1^{u}
$$

If $s<u-1$, then Lemma 4 implies $f(k)<k$. Contrarily, if $s \geqslant u-1$, then Lemma 5 (if $a=0$) or Lemma 6 (if $a=1$) yields $f(k)<k$. Hence we have for all positive integers k,

$$
f(k) \leqslant k+4,
$$

where equality occurs if and only if $k=2^{2 r}-1, r \geqslant 1$. Note that an even positive integer $2 m$ cannot satisfy $f(2 m)=2 m+4$, since we then would get $f(m)=f(2 m)=2 m+4 \leqslant m+4$ and consequently $m \leqslant 0$. Moreover, we see that for odd integers k there exist no solutions to the equation

$$
f(k)=k+\alpha
$$

for $\alpha=0,1,2,3$, except in the case $\alpha=0$ where we have $f(k)=k$ if and only if $k=2^{r}+1$ for some $r \geqslant 2$ or $k=1$. If $k=2 m$ is even, then $f(2 m)=2 m+\alpha$ implies $f(m)=2 m+\alpha \leqslant m+4$. Hence this can only happen if $m \leqslant 4-\alpha$. We see that there exist no solutions to $f(k)=k+\alpha$ for $\alpha=2$ and $\alpha=3$, there are no even solutions for $\alpha=0$ and the only solution to $f(k)=k+1$ is $k=6$ (compare with Eq. (1)). This finally proves Theorem 2.

Remark 3. By a similar case analysis it might be possible to prove that

$$
\min \left\{n: t_{k n}=0\right\} \leqslant k+2
$$

However, it does not seem possible to obtain this bound in a direct way from the bound (2).

6. Some weak general results

Given the generality of Gelfond's theorem, it is natural to try to bound the minimal n such that $n \equiv a(\bmod k)$ and $s_{b}(n) \equiv c(\bmod r)$. Here we only get a weaker upper bound.

Proposition 3. Let b, r, k be positive integers with $\operatorname{gcd}(b-1, r)=1$, and let c be any integer. Then there exists a non-negative integer $n<b^{r} k$ such that $s_{b}(k n) \equiv c(\bmod r)$.

Proof. We claim that if $1 \leqslant k \leqslant b^{t}$, then $s_{b}\left(k\left(b^{t}-1\right)\right)=(b-1) t$. To see this, note that for $p, t \geqslant 1$ and all k with $1 \leqslant k<b^{t}$ we have

$$
s_{b}\left(p b^{t}-k\right)=s_{b}(p-1)+(b-1) t-s_{b}(k-1) .
$$

This is a direct generalization of Proposition 1, and a complete proof can be found in [6]. Let s be the smallest integer such that $k \leqslant b^{s}$. Then $b^{s-1}<k$. Choose $t \in\{s, s+1, \ldots, s+r-1\}$ such that $(b-1) t \equiv c(\bmod r)$. This is possible since $\operatorname{gcd}(b-1, r)=1$. Then $s_{b}\left(k\left(b^{t}-1\right)\right)=(b-1) t \equiv c(\bmod r)$, as desired. Furthermore, $b^{t} \leqslant b^{s+r-1} \leqslant b^{r} b^{s-1}<b^{r} k$. Thus we can take $n=b^{t}-1$.

Corollary 2. Let b, r, k be positive integers with $\operatorname{gcd}(b-1, r)=1$, and let a, c be any integers. Then there exists an integer $n<b^{r+1} k^{3}$ such that $n \equiv a(\bmod k)$ and $s_{b}(n) \equiv c(\bmod r)$.

Proof. Without loss of generality we can assume $0 \leqslant a<k$. As in the proof of Proposition 3 let s be the smallest integer such that $b^{s} \geqslant k$, so $b^{s-1}<k$. From Proposition 3 we know that there exists an integer t such that $s_{b}\left(k\left(b^{t}-1\right)\right) \equiv(c-a)(\bmod r)$, and $b^{t}<b^{r} k$. Then clearly $s_{b}\left(k b^{s}\left(b^{t}-1\right)+a\right) \equiv$ $c(\bmod r)$, so we can take $n=k b^{s}\left(b^{t}-1\right)+a$. Then $n<b^{r+1} k^{3}$.

In the setting of Proposition 3 we conjecture that a similar phenomenon takes place as we have seen in the case of the classical Thue-Morse sequence.

Conjecture 3. Let b, r be positive integers with $\operatorname{gcd}(b-1, r)=1$, and let c be any integer. There exists a constant C, depending only on b and r such that for all $k \geqslant 1$ there exists $n \leqslant k+C$ with $s_{b}(k n) \equiv c(\bmod r)$. Furthermore, we can take $C \leqslant b^{r+c}$.

We guess that this conjecture is hard to prove. In the case of the Thue-Morse sequence we used a detailed case study to succeed. In principle, in each of our lemmas we make use of a new idea to get a parity change. We do not see how this extends to the general setting where b, r and c all vary freely.

Acknowledgments

We are very grateful to Jorge Buescu for asking the initial question that led us to the results in this paper. We also thank Jean-Paul Allouche for allowing us to reproduce his remarks here.

References

[1] J.-P. Allouche, Somme des chiffres et transcendence, Bull. Soc. Math. France 110 (1982) 279-285. Electronically available at http://archive.numdam.org.
[2] J. Coquet, A summation formula related to the binary digits, Invent. Math. 73 (1983) 107-115.
[3] C. Dartyge, F. Luca, P. Stănică, On digit sums of multiples of an integer, J. Number Theory 129 (2009) 2820-2830.
[4] N.J. Fine, The distribution of the sum of digits (mod p), Bull. Amer. Math. Soc. 71 (1965) 651-652. Electronically available at http://www.ams.org/publications/journals/journalsframework/bull.
[5] A.O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968) $259-265$. Electronically available at http://matwbn.icm.edu.pl.
[6] K.G. Hare, S. Laishram, T. Stoll, Stolarsky's conjecture and the sum of digits of polynomial values, Proc. Amer. Math. Soc. 139 (2011) 39-49.
[7] D.J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969) 719-721.

[^0]: * Corresponding author.

 E-mail addresses: johannes.morgenbesser@tuwien.ac.at (J.F. Morgenbesser), shallit@cs.uwaterloo.ca (J. Shallit), stoll@iml.univ-mrs.fr (T. Stoll).
 ${ }^{1}$ The author was supported by the Austrian Science Foundation FWF, grant S9604, that is part of the National Research Network "Analytic Combinatorics and Probabilistic Number Theory".
 2 This research was supported by the Agence Nationale de la Recherche, project "ANR-10-BLAN 0103".

[^1]: ${ }^{3}$ We do not need the power of van der Waerden's theorem to prove this. For example, as we will see later, if $k=2^{r}-1$ for some $r \geqslant 1$, then $s_{2}(k n)=r$ for $1 \leqslant n \leqslant k$.

