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We construct a model that naturally generates μ and B of the same order without producing large
CP violating phases. This is easily accomplished once one permits these mass scales to be determined
independently of the ordinary gauge-mediated soft masses. The alignment of phases is shown to emerge
dynamically upon coupling to supergravity and is not unique to the model presented here.
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1. Introduction

Gauge mediation [1] is a well-motivated mechanism for com-
municating supersymmetry (SUSY) breaking. It is a simple and cal-
culable scenario that naturally solves the flavor-changing neutral
current problem. However, gauge mediation is not without prob-
lems. One of the main difficulties is in explaining the magnitudes
of the Higgs mass parameters, μ and Bμ,

V ⊃ |μ|2(H†
u Hu + H†

d Hd
) + (BμHu Hd + h.c.). (1)

To accomplish electroweak symmetry breaking without consid-
erable fine tuning, the SUSY preserving mass, μ, and the soft-
breaking parameter, B , should each be near the weak scale. How-
ever, the simplest attempts at generating these scales in gauge
mediation lead to |B/μ| ∼ 16π2 [2]. This is the case, for exam-
ple, in ordinary gauge mediation if one employs the same singlet
spurion to generate all of the MSSM mass scales.

In attempting to solve this problem, one is led to introduce ad-
ditional fields and couplings, but this can lead to a new problem.
In introducing new complex parameters, one often badly violates
CP.1 In particular, when the gaugino masses and Bμ are gener-
ated by independent mechanisms, one cannot in general use the
R-symmetry to eliminate the dangerous phases.

In this short Letter, we propose a simple model that solves the
above problems (see [3] for some alternate approaches). We al-
low the Higgses to couple to a singlet SUSY-breaking field that
naturally gives |μ| ∼ |B| at tree-level. The ordinary messengers of
gauge mediation are given mass by a different field, but we show
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that the relevant phases, which appear to be free in the rigid the-
ory, are in fact highly constrained by supergravity dynamics. In
fact, we will see that supergravity is not an essential ingredient;
our phases would also be fixed by corrections to the Kähler po-
tential, and in general appropriately chosen interactions can do the
job. However, since the cosmological constant is an essential ingre-
dient in any realistic theory, we focus of the former mechanism.

2. A gauge mediation model

The messenger sector considered here is quite simple. We take
a singlet superfield S and a pair of messengers Ψ and Ψ̃ which re-
spectively transform as a 5 and 5∗ of SU(5)GUT . The superpotential
is

W = λ

3
S3 + kSΨ Ψ̃ . (2)

We use S to choose λ real and negative for future convenience.
Now we assume that supersymmetry is broken in some other sec-
tor, inducing a tachyonic SUSY-breaking soft mass for the scalar
component of S (this is the case in [4], which we review in Ap-
pendix A). Once supersymmetry is broken, the scalar potential is
given by

V = −m2
S |S|2 + ∣∣λS2 + kΨ Ψ̃

∣∣2 + |kSΨ |2 + |kSΨ̃ |2. (3)

This gives 〈Ψ 〉 = 0 = 〈Ψ̃ 〉 and

〈S〉 = eiδS
mS√

2λ
, F S = −λ

〈
S†〉2, (4)

where δS is an undetermined phase. The one-loop gaugino masses
then follow from (4);

mi = − αi
λ|S|e−i3δS g(x), (5)
4π
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where x = |λ/k| and g(x) is defined in [5]. We see that the phase
of the gaugino masses is determined by the phase of S .

We could use the R-symmetry to rotate away this phase, but
we will instead use this freedom to choose the gravitino mass,
m3/2, real and positive. Upon coupling to supergravity this param-
eter appears in the superpotential, W ⊃ m3/2M2

P , where M P =
2.4 × 1018 GeV is the Planck scale. This term explicitly breaks
the R-symmetry and leads to the dynamical determination of the
phase of S .

To see this, consider the scalar potential for our model [6],

V = eK/M2
P

(
g S̄ S

∣∣∣∣W S + K S W

M2
P

∣∣∣∣
2

− 3
|W |2
M2

P

)
+ V soft, (6)

where

W = λ

3
S3 + kSΨ Ψ̄ + m3/2M2

P ,

K = |S|2 − h

Λ2
|S|4 + · · · ,

gi j̄ = ∂i∂ j̄ K , (7)

V soft contains our SUSY breaking mass, h is a real constant, and
Λ is the cutoff scale. Writing S = |S|eiδS the relevant terms in the
potential are

V ⊃ −m2
S |S|2 + |λ|2|S|4 + 4λm3/2

h

Λ2
|S|5 cos 3δS . (8)

Assuming that h is positive2 and recalling that λ is negative, we
see that minimizing the potential requires maximizing cos 3δS .
There are three equivalent solutions;

δS = 0,
2

3
π,

4

3
π. (9)

Looking back at (5) we see that the gaugino masses are real
for each of these vacua. This follows from the fact that our two
phases were reduced to one by the equations of motion, and the
R-symmetry rendered the remaining phase unphysical. Had we ne-
glected the gravitino, we still would have been able to rotate away
our phase, but we will see that this freedom vanishes upon con-
sidering the Higgs sector.

We should mention that our three degenerate vacua pose a do-
main wall problem [8]. We will address the breaking of this Z3
symmetry later.

3. Generating μ and Bμ

The Higgs mass terms can be generated by the same mech-
anism as above. We introduce another singlet superfield S ′ and
replace the messenger with the Higgs fields, H and H̃ .

W = λ′

3
S ′3 + k′ S ′H H̃ + m3/2M2

P ,

K = ∣∣S ′∣∣2 − h′

Λ2

∣∣S ′∣∣4
. (10)

Just as before, we assume that S ′ has a tachyonic SUSY-breaking
soft mass, V soft ⊃ −m2

S ′ , and we rotate S ′ such that λ′ is real. The
only difference is that the mass scale in this sector, mS ′ , must be
lower than that of the messenger sector to get a realistic spectrum.
This can be achieved with a single source of breaking provided that
S ′ couples to the SUSY-breaking sector more weakly than S does.3

2 If one takes h negative, δS is simply shifted by π . This has no effect on our
conclusions.

3 This can easily be accomplished with the model discussed in Appendix A.
Borrowing our results from above, we see that the F -term of S ′
is

F S ′ = −λ′〈S ′ †〉2. (11)

From the superpotential in (10), we then see that the μ and B
terms are

μ = k′〈S ′〉, B = k′ F S ′

μ
= −λ′∣∣S ′∣∣e−3iδS′ . (12)

Using a phase rotation of H H̄ , we can take μ to be real. The phase
of B is determined by the equations of motion, which give δS ′ =
0, 2

3 π , and 4
3 π . This means that we can simultaneously choose the

gravitino mass, the gaugino mass, and the Higgs mass parameters
to be real,

argm3/2 = arg mi = argμ = arg B = 0, (13)

so there is no significant CP violation from sources outside of the
Standard Model.

4. The (non-)issue of sector mixing

So far, we have neglected any interaction between the S and S ′
sectors. This is justified in the superpotential because such terms
cannot be generated perturbatively. Moreover, it is not hard to in-
vent dynamical models in which a single sector flows in the IR to
two disjoint sectors (for a recent example, see [7]). Mixing in the
Kähler potential, however, cannot be forbidden. In general, we have

K = |S|2 + ∣∣S ′∣∣2 − h|S|4 + h′|S ′|4 + h′′|S|2|S ′|2
Λ2

+ · · · . (14)

The leading order contributions to the scalar potential from Kähler
mixing are

V mix =
(

W S + K S W

M2
P

)
g S S̄ ′

(
W S ′ + K S ′ W

M2
P

)†

+ h.c.

= h′′

Λ2

(
m2

3/2|S|2∣∣S ′∣∣2 + m3/2
(
λ′|S|2 S ′3 + λ

∣∣S ′∣∣2
S3)

+ λλ′(S S ′ †)3 + h.c.
)
. (15)

We see from examining the above terms that this mixing will not
affect the constraints derived above. Only the last term above is
interesting because the first is real and the others only reinforce
the previous constraints. The term proportional to Re(S ′ 3 S†3) ∼
cos(3(δS − δS ′ )) forces the relative phase4 of S and S ′ to be (up
to a π ambiguity as before)

δS − δS ′ = 0,
2

3
π,

4

3
π. (16)

This is, of course, automatically satisfied, so our solutions remain
valid and degenerate. In fact, we see here that we could set m3/2 to
zero and arrive at the same result. The Kähler mixing term imposes
arg(mi B∗) = 0, preserving CP.

5. Breaking the discrete symmetry

The leftover Z3 × Z3 symmetry discussed above is undesirable.
There is a domain wall problem [8] since the potential can be
minimized by three different phases for both δS and δS ′ . To solve

4 The sum of these phases never appears in the scalar potential. This is because
it is the Nambu–Goldstone mode associated with the R-symmetry breaking.
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this problem we introduce two Planck-suppressed explicit breaking
terms;

Wbreaking = κ

M P
S4 + κ ′

M P
S ′4. (17)

Since these terms have a large suppression factor, we do not rein-
troduce a CP problem, and our previous analysis is nearly unaf-
fected. The important difference is that the degeneracy of vacua is
lifted.

Mixing of the primed and unprimed sectors is irrelevant at
leading order so it suffices to consider the following additional
terms in the potential.


V = 2|κ |
M P

(
m3/2|S|4 cos(δκ + 4δS) + 4λ|S|5 cos(δk + δS)

)
, (18)

where δκ is the phase of κ . To see that the vacuum degeneracy is
broken, we add 
V to (8) and find the new minima. Up to O(ε2)

the three solutions are now

δS = −ε1 sin δκ , V = V 0(1 + ε2 cos δκ),

δS = 2π

3
− ε1 cos(δκ + π/6), V = V 0

(
1 − ε2 sin(δκ + π/6)

)
,

δS = 4π

3
+ ε1 cos(δκ − π/6), V = V 0

(
1 + ε2 sin(δκ − π/6)

)
,

(19)

where

V 0 = 4hλm3/2
|S|5
Λ2

, ε1 = 2κΛ2(m3/2 + λ|S|)
9hλm3/2|S|M P

,

ε2 = κΛ2(m3/2 + 4λ|S|)
2hλm3/2|S|M P .

(20)

Clearly the discrete symmetry is broken.5 Because both the gaug-
ino masses and B are real for δS , δ

′
S = 0, 2

3 π, 4
3 π , the CP violation

induced by δk will be Planck suppressed.

6. Conclusions

In this work we have presented a mechanism that addresses the
μ/Bμ-problem of gauge mediation without introducing a CP prob-
lem. The only source of CP violation that is introduced is Planck
suppressed. Moreover radiative generation of CP violation is utterly
negligible despite the rather high energy scales involved.

It would be interesting to understand what other sorts of hid-
den sectors and messenger sectors can be employed in this mech-
anism. It may be possible to construct a model, for example, with-
out a residual discrete symmetry.

It would also be interesting to explore the phenomenology of
such models, which should be quite distinctive. Though the model
resembles the NMSSM [9] there are several important differences.
First of all, one assumes in the NMSSM that the gravitino mass
does not give significant CP violation; if it is O(1) GeV or larger,
this can be difficult to justify. Assuming a basic gauge-mediated su-
persymmetry breaking, the gaugino masses can be taken real along
with all coupling constants in the Higgs sector of the NMSSM.6

Clearly our mechanism is completely different in that the phases
of the gaugino masses and B are dynamically eliminated. Indeed,

5 The regions where two of the vacua become degenerate may still have a domain
wall problem. However, dangerously degenerate vacua will only occur for very nar-
row regions of the phase δk .

6 We are grateful to Masahiro Ibe for pointing this out.
the relevant phase is nothing but a Nambu–Goldstone boson—a dy-
namical variable much like that of the Peccei–Quinn mechanism.
Therefore, a generic prediction of our mechanism is the presence
of an R-axion.

Furthermore, the NMSSM requires additional structure such as
an extra pair of quarks, Q and Q̃ , and a superpotential W = S ′ Q Q̃
to induce a sufficiently large μ term [10]. Since the mass of the
extra quarks is O(1) TeV, this model can be distinguished from
the present model at the LHC.

Having made messengers out of the Higgses, we must address
the usual problems with coupling supersymmetry too directly to
the Standard Model. For example, the Yukawa interactions give a
negative one-loop mass to the stops. However, because we have
taken F S ′ 	 F S this term will be a subleading contribution to the
stop mass. Other one-loop contributions to the scalar masses are
less important because they are suppressed by small Yukawa cou-
plings.

A more detailed discussion of the phenomenology of Higgs
messenger models is left for future work [11].
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Appendix A. Dynamical origins of the model

In this appendix we describe a particular UV extension of our
model based on [12] in which the mass scales that we introduced
are generated by strong dynamics. This extension is neither unique
nor original. We mostly follow [13] and [4]. The reader should con-
sult these references for a more extensive discussion.

Consider an SU(2) gauge theory with four doublet chiral su-
perfields Q i . The meson formed from the gauge-invariant bilinear
of these fields, V ij = εαβ Q α

i Q β

j , transforms as the 6 of the flavor

SU(4) 
 SO(6). In the quantum theory one finds that Pf (V ) = Λ4,
which reduces the global symmetry [14]. For the choice, V =
Λ2 diag(σ 2, σ 2), an Sp(4) 
 SO(5) remains. This is the breaking
pattern that we will consider.

To simplify the analysis, we map our meson to a vector of
SO(6), M A with A = 0, . . . ,5. The vev considered above then sim-
ply maps to M A getting a vev, which obviously leaves an SO(5)

global symmetry. Adding six gauge singlets, we can add a mani-
festly SO(6) invariant superpotential, W = ΛZ A M A (the dynami-
cal scale appears here because the corresponding UV operator is
marginal). Solving the quantum constraint, M A M A = Λ2, for M0
gives

Weff = Λ
(

Z0

√
Λ2 − Ma Ma + Za Ma

)
(21)

≈ Λ2 Z0 − 1

2
Z0Ma Ma + ΛZa Ma, a = 1, . . . ,5. (22)

This is the classic O’Raifeartaigh model with a single, dynamically
generated mass scale. In the vacuum, supersymmetry is broken by
−F †

Z0
= Λ2. This splits the masses of the Ma .

Now we introduce a messenger sector with the superpotential,

W = κE S E Ẽ + λ

3
S3 + kSΨ Ψ̃ . (23)

This is natural in the sense that there is no renormalizable term
that can be added without breaking some symmetry. We can cou-
ple this sector to the SUSY-breaking sector by gauging a U (1) 

SO(2) subgroup of the unbroken SO(5) and taking E and Ẽ to be
charged along with, say, M1 and M2. If this is done, supersymme-
try breaking will be communicated to E and Ẽ at two loops as in
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ordinary gauge mediation. This will lead to non-zero scalar masses
for E and Ẽ ,

m2
E = m2

Ẽ

 αm

4π

Λ2

16π2,
(24)

which we’ve expressed in terms of the fine structure constant, αm ,
of the mediating U (1). E and Ẽ now act as messengers for S , giv-
ing it mass, but here the mass is generated at one-loop and is
tachyonic, V soft ⊃ −m2

S |S|2, where

m2
S = 4

|κE |2
16π2

m2
E ln

Λ

mE
. (25)

Including this contribution to the effective potential, one finds a
global minima at

〈S〉 = eiδS
mS√

2λ
, F S = −λ

〈
S†〉2, (26)

and all other vevs zero. Finally, because m2
S is loop suppressed rel-

ative to m2
E , we can integrate out E and Ẽ to give

W = λ

3
S3 + kSΨ Ψ̃ (27)

where

〈S〉 = 〈S〉 + θ2 F S . (28)

This is precisely the setup discussed in the main text. Proceeding
in the same way with S ′ and E ′ , we can generate our second sec-
tor.
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