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Abstract

By means of the probability measure theory of MV-algebras we introduce the concepts of probability truth degrees of
the elements of MV-algebra and probability similarity degrees between elements, and then define therefrom three
probability metric spaces on MV-algebra, and get some good results.
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1. Introduction

MV-algebra [1] were introduced by Chang.C.C in 1958 as the algebraic counterpart of propositional
Lukasiewicz logic. An MV-algebra is a many-valued generalization of a Boolean algebra, MV-algebras
can be viewed as algebraic generalizations of certain collections of fuzzy sets, so-called Lukasiewicz
tribes, as well. Currently, MV-algebra has many applications and many algebras is closely linked with the
MV-algebra. States on MV-algebras were investigated by Mundici in [2] as [0,1]-valued additive
functionals on formulas in Lukasiewicz propositional logic with the intention to capture the notion of
average truth degree of a formula. In [3] a probability theory on MV-algebras is systematically developed.
In [4,5] the conditional probability on MValgebra and ¢ MV-algebra is systematically developed also. In
recent years, a focus of attention is study of grated of mathematical logic in the background of uncertainty
reasoning. Based on the measure theory Wang [6] introduced the truth degree of elements in MV-algebras,
for established the probability on MV-algebra provided an effective method. In the present paper, by
means of the probability measure theory we introduce the concepts of probability truth degrees of the
elements in MV-algebra and probability similarity degrees between elements, and then define therefrom
three probability metric spaces on MV-algebra, and get some good results.

The paper is structured as follows. Basic notions and results on MV-algebra are repeated in section 2,
the concepts of probability truth degree of elements and probability similarity degrees between elements
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on MV-algebras are introduced in section 3, three probability metric spaces on MV-algebra are introduced
and some good results are get.

2. Basic notions of MV-algebra

Definition 2.1 (Chang C.C [1]) An MV-algebra is an algebra (M, ®, —, 0), where M is a non-empty set,
@ is binary operation having 0 as the neutral element, — is a unary operation, satisfying the following
properties:

(1) (M, &, 0) is a commutative semi-group,

(i1) a®—0 = -0,

(i) = (—a) = a,

(1V)—|(—\a@b)®b:—|(—|b®a)®a, Va,b e M.

Let (M, @, —, 0) be an MV-algebra, the constant 1 is defined as follows: 1 =0, a partial order < can
be introduced on M by defining a < b if and only if —a @ b =1, then (M, <) is a allocation lattice. Binary
operations Vv, A are defined as follows: avb = — (—a®b) @ b, a"b = — (—av—b).

Proposition 2.1 (Chang C.C [1]) Let (M, @, —, 0) be an MV-algebra, binary operations O, —> are
defined as follows:

x@y:—|(—|x®—|y), X>y=—ux®y, (1)
then

) xOQy<Lziffx<y—>z,

(i)l >x=xx>0==x,x O 0=0,

(i) x >y=1iffx<y,

(V) X > y=—y = =X,

WMx=>(—>2=y—>EKx->2),

V) xQ(yvz=x0y) v xOa2),

(Vi) xO (y r2) = (x O y)Ax O 2),

Vi) x>y Oy >z <x >z

Example 2.1 Any Boolean algebra B is a MV-algebra, where 0 =J; 1 = X, @ is the union L.

Example 2.2 The real unit interval [0,1] equipped with the Lukasiewicz operation a © b = min(a + b, 1)
and the standard complement —a = 1- a, where a, b € [0, 1], is a o-complete MV-algebra called the
standard MV-algebra.

Definition 2.2(Wang and Zhou [6]) Let M be MV-algebra, [0, 1]mv standard MV-algebra, the
homomorphism v: M — [0, 1] is called a assignment of M, i.e., v(x®y) =v(x)®v(y)= (V(X)+v(y))Al,
v(—x)=1-v(x). the set of all assignments of M is denote Q

VveQ, v satisfying all operations of M, i.e.,

V(x Oy) =0(x) O v(y) = (v(x) +v(y) - 1) VO,

V(x—=Y) = v(x)=>(y) = (1-0(x) T v(y) ) Al

v(xvy)=max{v(x) , v(y)},

V(xAY) = min{v(x) , v(y)}. _

Proposition 2.2 (Wang and Zhou [6]) Let M be MV-algebra, defining x :Q — [0, 1] is following

x(v) = v(x), 2)
Let M = {;‘ xXe M} , and defining

;@;zx@)y,—'(x)z—‘x,
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Then (M, @, —|,6) is an MV-algebra.
3. Probability truth degree of elements on MV-algebra

Let M be MV-algebra, Q be the set of all assignments of M. Suppose 4 be c-algebra on Q, p be
probability measure on Q, then (Q, A, p) is a probability space'”. VxeM, let x(v) = v(x) ,veQ), then

; is p-integrable function!”),
Definition 3.1 (Wang and Zhou [6]) Defining 7: M — [0, 1] is following:

T(x)= L;(v)d,u,xeM, 3)
T (x) is called p-truth degree of element X, in short, truth degree of x.

Proposition 3.1 (Wang and Zhou [6]) (i) 0<T(x) < 1,x € M,

W ro=0,71)=1,

(1) T (—x) = 1-T (x),

(iv) If x <y, then T (x) <T (y), X, y € M.

Proposition 3.2 (Wang and Zhou [6]) (i) T (xvy) = T(xX)+ 1(y)- T (X A Y),

() T(x®y)=T (@) +T(y)-TxOY),

(iii) If E :{v cQ |;(v) < ;(v)} is u-measurable, then 7 (x) + T'(x = y) =T (y) + T (y = x).

Proposition 3.3 (Wang and Zhou [6]) Letx, y € M, o, €[0, 1], then
WifTx)z2a, T(x—>y)=B, thenT(y)2a+p-1,

) ifT(x > y)za, T (y = z) 2B, then 7 (x — z) 2o+ 3 - 1.

Corollary 3.1 Let x, y, z € M, then

ODTE-=>y)<TX)—>T(y),

(i) T(x > y) O T (y>2z) £ T (x—>2),

(1) T(x > )L T (y—z) > T (x—>2z).

Definition 3.2 Let x, y € M, defining 1 : MxM — [0, 1] is following:

1) Mi(x, y) = T((x = y) A(y = x)) is called the first p-similarity degree,
(1) n2(x, y) = T(x > y) AT(y — x) is called the second p-similarity degree,
(1) n3(x, y) = (T(x) »> T (y)) A( T (y)— T (x)) is called the third p-similarity degree,
N1, N2, N3 uniformly expressed as n, so called similarity degree.
Ifni(x,y)=1,(i=1,2, 3) then x and y is called i-similarity, denote x ~iy.
Lemma 3.1 Let a, b, ¢, d € [0; 1]mv, then
(@anc)ObAad)<(@Ob)A(cO).

Theorem 3.1 Let X, y, z € M, then

O nx, x)=1,

(i) n(x, y) =n(y, x),

(i) n(=x, =y) = n(x, y),

(iv) n(x, 22 n(x, y) tn(y, 2) - 1.

Proof (i) and (ii) is clearly established.

(iii) Vx, yeM, by proposition 1(iv) we obtain x — y =—y — —x, SO
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T’l(_lwg —|y) = T( = — —|y) (—|y — —|;L))

Z

(T=ZTAT—=7g)dp

\:*\

ﬂ
T((y = 2) A (= y) =mlz,y).
-z, y) = 7w = oy AT(oy = o)

/ =T — gdp A / =y — xd
Q JO

= /y—m:d,u/\/:c—)ydu
Ja Jo

= T(y = x)A7T(x — y) =n(x.y).
na(—z,my) = (7(-2) = 7(=y)) A(7(~y) — 7(—2))
= (1(y) = 7(@)) AN (r(z) = 7(y)

= 13 (371 y) .
(iv) For n1 see [6] proposition 7(iv).
For 12, from corollary 3.1(ii) we can obtain 7(x = z) > T(x > y) O T(y — z) and T(z —> x)> T(z > y)
O Ty = x)=T(y = x)®© T(z —> y). From lemma 3.1,

T(x = 2)AT(2 > x)
> (rlx—=yorly—=2)A(tly—=2)01(z = 1)
> (Mz=yntly—2)) 0y —=2) ATz = y))

So ma(x, 2)2 Ma(x, y) tna(y, 2) - 1.

For 13, from proposition 2.1(viii) we obtain 7' (x) — T (z) > (T(x) = T(y)) O (T (y) = T (z)) and T (z)
— T'(x)2(T(z) > T(y)) O (T (y) = T (x)), similar to 12, we can proved.

Theorem 3.2 Let X, y € M, then

D)= [ (1= () =y ()| Ja s,
(%, 2)=1=|T (x)=T (»),

(it) Mi(x, y)< ma(X, y)< ns3(X, y).
Proof (i) Because 1-a+b and 1-b+a not both greater than 1 for a, b € [0, 1]mv, thus

m(zy) = [ (1= 2(0) +5(0)) A (1= 5(0) +5(0))dn

- /g;(l 1E() — g) ).

m(xy) = (I=7@)+7) A1 -7(y) +7(2))
= 1=|r(@) =7yl
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(ii) Because [,(T(v) — §(v)) A (g(v) — T(v))dp <
Jo(@(w) — g(v))dp and [ (2(v) — F(v)) A (F(v) —
Z(v))du < [o(F(v) — Z(v))du, thus [, (Z(v) — Fv)) A
@(0) = Fdn < fo@(v) > ) A folHw) —
z(v))du, i.e., m(x,y) < n(x,y).

From corollary 3.1(i), we see that 7(x — y) < 7(x) —
7(y) and 7(y — z) < 7(y) = 7(x), so p(z,y) = 7(x —
’y)(/\ T()y — z) < (7(z) = 7(W) A (7(y) = 7(2)) =
na(x, y).

4. Probability metrics of MV-algebra

Definition 4.1 Let x, y € M, defining
p(x,y)=1-n(xy), 4)
pi(x,y)=1=mi(x,y),i=12,3. 5)
Theorem 4.1 pi: MxM — [0, 1] is metric of MV-algebra M(i=1,2,3).
Proof Let x, y, z € M, from theorem 3.1 we see that p(x,x) :1—77(x,x) =0 , and
p(x,y)21—’7(xsy):1—’7()’7)‘):/3(%?6)-
p(x,z)=1-n(x,z)< 1—(77(x,y)+77(y,z)—1): (1—77(x,y))+1—77(y,z): p(x,y)+p(r.2)
Definition 4.2 (M, pi) is called probability metric space of MV-algebra (i=1,2,3).
Theorem 4.2 Let x, y € M, then

Pl = ] B} — Bw) i,
2

ps(any) = (@) — ()| = fn(i'(’v)—ﬂ(’v))dﬂ-

Theorem 4.3 Let x, y € M, then
(1) pi(x, )2 p3(x, ¥)Z ps(X, y),

(2) pZ(Xs Y): E (pl(xa Y)"' PS(Xs Y))
Proof (i) From theorem 3.2(ii), we can proved.

(i)
p2(z,y) = 1—mnx,y)
l—7(z =) AN (T(y — x))
= 1—-7(x—->y)V({l-—1y—=x))

= (1-— 1—ZF4+TAgldu) Vv
i
9!

(1—/|1—g—3—§/\5[:|d;.5)
Jo

- /Ii‘—ﬁf/\ﬂldﬂ\//I.ﬂ—.t?/\:ffldﬂ
S JE2
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1 . o . o
= —=([ |2 —Z A Fldu+ |7 — g N T|dpe
2 9] G

+|f Iw—af/\yla’#—f 7 = g A2|dul)
2 2

s .
— 7(/ (:T.‘Jr-ﬂ)d,u.—Q/ (& A g)du

2 (9] «Q

+If(i‘—y)du|)

2
1

- ,—</ (:t+y)du—2/(:r+y—Iif—yl)du
2 Ja Q@

+| [ (T —§)dpl)
PAY

1 _ o
= 5(/ |7 — g|dp + | f (Z — g)dul)
Q Q

— é(p] (e, y) + pa(a,y))

Theorem 4.4 (Wang and Zhou [6]) On probability metric space of MV-algebra (M, p1), operations —,
®, O, V,Aand— are continuous.

Lemma 3.2 Letx,y,u,w € M, a, B€[0, 1], if n2(x, u)=a, n2(y, w)=p, then n2(x—y, u - w)=o+ pB-1.

Proof Let [0, 1]mv be standard MV-algebra, a, b, c € [0, 1],thena—>b<(b—>c)—> (a—>c)andb—> a
<(a—c)— (b —>c). Thus VveQ, we see that

Tou< (=19 — (u— 7)),
And
u—z < ((u—y) = (r—>y))),

From proposition 3.1,

Tz=u) <7((z=y) = (L=1y)),
Tlu—=z) <t((u—=y) = (2 =y),

o7 = u) AT = 2) <72 =y = (u—
AT = y) = (=), ie, ple = yu—y) >
nalz,y) 2 o

Similarly, m2(u — y,u — w) > na(y, w) > 3, thus

na(r = Yy, u — w)
> mzoygu—=y)+mpit-oypu—-sw)—1
> ma(z,u) +n2(y,w) — 1
> a+ -1

Theorem 4.5 Suppose (M, p2) be probability metric space of MV-algebra, then operations —, ®, @, Vv,
A and — on (M, p2) are continuous.
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Proof First, from theorem 3.1 we see that p2(—x, —y) =1 - n2(—x, —y) = 1- n2(x, y) = p2(X, y), therefore
— is continuous.
Second, let p2(x, u) <g, p2(y, w) <g, then n2(x, u) > 1-g, n2(y, w) > 1-¢, so from lemma 3.2 we have
mlz=oyu—-w) > (l—€+(1-¢—-1=1=2¢

i.e., p2(x >y, u > w) < 2g, so implication operation — is continuous.
p y p Y

Because x @y =—X >y, XQy = (X &>—y), X VY = (X = y) = ¥, XAY = =(—xVv—y), therefore ®,
®, V, A are all continuous.

Theorem 4.6 (Wang and Zhou [6]) If (M, p1) be complete metric space, then M is a countably complete
lattice.

Theorem 4.7 If (M, p2) be complete metric space, then M is also a countably complete lattice.

Proof Suppose (M, p2) be complete metric space, A={x;,x,,"**}cM. Let yn =V xi, theny,, y,, **is
an increasing sequence. From proposition 3.1 we see that

T (y1), T (y2),**-is an increasing sequence in [0,1], so is a Cauchy sequence. And

YUn —=> Ym = 1y Y = Y = 1 — Yy + Y, 12 < M.
Therefore, if n < m then
P2Ym Yn) = 1= 102(Ym:Yn)
= 1=7Ym = ¥n) AT(Yn = Ym)
= 1-7%m — yn)

= 1- / (l — UYm + g‘n)dﬂ'
4

= /:t}mdﬂ—fﬂnchr = T(Ym) — T(Yn)-
@) Q

From T (y.)), T (y.),*** is a Cauchy sequence, we see that y,, y,, ***is a Cauchy sequence in complete
metric space (M, p2), so it converges to y, where y is a point of M.
We fix an n, then yn = yn A yn+k, from the continuity of operation see that

Yn = lim (7 A y-n—i-k) = UYn N ( lim yn+k) = UYn N Y.
k—o0 k—oo

So yn<y, i.e., y is a upper bound of > = { y,, y,, ***}. Taking any a upper bound of X, then yn=yn A z,
S0

y= lim y, = lim (y, Az)=(lim y,) Az=yA 2.
n—roco n—oo n—oo
Thus y <z, i.e., y =sup2. € M. It is clearly supA =sup> M.
Similarly, we can prove inf A € M. Therefore M is countable complete.

Theorem 4.8 Suppose (M, p3) be probability metric space of MV-algebra, then operations — is
continuous, but operation ®, @, Vv, A and — are not continuous all.

5. Conclusion
In this paper, we introduced three probability metric space on MV-algebras, studied the propositions of

probability metric spaces on MV-algebras, get some good results. We can see that the method of one
paper can be extended to other algebras, so the method of one paper is meaningful.
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