

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Physics

Physics Procedia 25 (2012) 2138 - 2145

2012 International Conference on Solid State Devices and Materials Science

Probability Metric Space on MV-Algebras

Weibing Zuo

College of Mathematics and Information Science North China University of Water Resources and Electric Power, Zhengzhou, P.R.China

Abstract

By means of the probability measure theory of MV-algebras we introduce the concepts of probability truth degrees of the elements of MV-algebra and probability similarity degrees between elements, and then define therefrom three probability metric spaces on MV-algebra, and get some good results.

© 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Garry Lee Open access under CC BY-NC-ND license. Keywords-MV-algebra; probability truth degree; probability similarity degree; probability metric space;

1. Introduction

MV-algebra [1] were introduced by Chang.C.C in 1958 as the algebraic counterpart of propositional Łukasiewicz logic. An MV-algebra is a many-valued generalization of a Boolean algebra, MV-algebras can be viewed as algebraic generalizations of certain collections of fuzzy sets, so-called Łukasiewicz tribes, as well. Currently, MV-algebra has many applications and many algebras is closely linked with the MV-algebra. States on MV-algebras were investigated by Mundici in [2] as [0,1]-valued additive functionals on formulas in Łukasiewicz propositional logic with the intention to capture the notion of average truth degree of a formula. In [3] a probability theory on MV-algebra is systematically developed. In [4,5] the conditional probability on MValgebra and σ MV-algebra is systematically developed also. In recent years, a focus of attention is study of grated of mathematical logic in the background of uncertainty reasoning. Based on the measure theory Wang [6] introduced the truth degree of elements in MV-algebras, for established the probability on MV-algebra provided an effective method. In the present paper, by means of the probability measure theory we introduce the concepts of probability truth degrees of the elements in MV-algebra and probability similarity degrees between elements, and then define therefrom three probability metric spaces on MV-algebra, and get some good results.

The paper is structured as follows. Basic notions and results on MV-algebra are repeated in section 2, the concepts of probability truth degree of elements and probability similarity degrees between elements

on MV-algebras are introduced in section 3, three probability metric spaces on MV-algebra are introduced and some good results are get.

2. Basic notions of MV-algebra

Definition 2.1 (Chang C.C [1]) An MV-algebra is an algebra (M, \oplus , \neg , 0), where M is a non-empty set, \oplus is binary operation having 0 as the neutral element, \neg is a unary operation, satisfying the following properties:

(i) $(M, \oplus, 0)$ is a commutative semi-group,

(ii) $a \oplus \neg 0 = \neg 0$,

(iii) \neg (\neg a) = a,

 $(iv) \neg (\neg a \oplus b) \oplus b = \neg (\neg b \oplus a) \oplus a, \forall a, b \in M.$

Let $(M, \oplus, \neg, 0)$ be an MV-algebra, the constant 1 is defined as follows: $1 = \neg 0$, a partial order \leq can be introduced on M by defining $a \leq b$ if and only if $\neg a \oplus b = 1$, then (M, \leq) is a allocation lattice. Binary operations \lor , \land are defined as follows: $a\lor b = \neg (\neg a\oplus b) \oplus b$, $a^{\land}b = \neg (\neg a\lor \neg b)$.

Proposition 2.1 (Chang C.C [1]) Let $(M, \oplus, \neg, 0)$ be an MV-algebra, binary operations \bigcirc , \rightarrow are defined as follows:

$$x \odot y = \neg (\neg x \oplus \neg y), \quad x \to y = \neg x \oplus y, \tag{1}$$

then

(i) $x \odot y \le z$ iff $x \le y \to z$, (ii) $1 \to x = x, x \to 0 = \neg x, x \odot 0 = 0$, (iii) $x \to y = 1$ iff $x \le y$, (iv) $x \to y = \neg y \to \neg x$, (v) $x \to (y \to z) = y \to (x \to z)$, (vi) $x \odot (y \lor z) = (x \odot y) \lor (x \odot z)$, (vii) $x \odot (y \land z) = (x \odot y) \land (x \odot z)$, (viii) $(x \to y) \odot (y \to z) \le x \to z$.

Example 2.1 Any Boolean algebra B is a MV-algebra, where $0 = \emptyset$; 1 = X, \oplus is the union \cup .

Example 2.2 The real unit interval [0,1] equipped with the Łukasiewicz operation $a \oplus b = \min(a + b, 1)$ and the standard complement $\neg a = 1$ - a, where a, $b \in [0, 1]$, is a σ -complete MV-algebra called the standard MV-algebra.

Definition 2.2(Wang and Zhou [6]) Let M be MV-algebra, $[0, 1]_{MV}$ standard MV-algebra, the homomorphism $\upsilon: M \to [0, 1]$ is called a assignment of M, i.e., $\upsilon(x \oplus y) = \upsilon(x) \oplus \upsilon(y) = (\upsilon(x) + \upsilon(y)) \wedge 1$, $\upsilon(\neg x) = 1 - \upsilon(x)$. the set of all assignments of M is denote Ω

 $\forall \upsilon \in \Omega, \upsilon$ satisfying all operations of M, i.e.,

- $\upsilon(x \odot y) = \upsilon(x) \odot \upsilon(y) = (\upsilon(x) + \upsilon(y) 1) \lor 0,$
- $\upsilon(x \rightarrow y) = \upsilon(x) \rightarrow \upsilon(y) = (1 \upsilon(x) + \upsilon(y)) \land 1,$

 $\upsilon(x \lor y) = \max \{\upsilon(x), \upsilon(y)\},\$

 $\upsilon(\mathbf{x} \wedge \mathbf{y}) = \min\{\upsilon(\mathbf{x}), \upsilon(\mathbf{y})\}.$

Proposition 2.2 (Wang and Zhou [6]) Let M be MV-algebra, defining $\overline{x}: \Omega \to [0, 1]$ is following

$$\overline{x}(v) = v(x), \tag{2}$$

Let $\overline{M} = \left\{ \overline{x} \mid x \in M \right\}$, and defining

$$\overline{x} \oplus \overline{y} = \overline{x \oplus y}, \neg(\overline{x}) = \overline{\neg x},$$

Then $(\overline{M}, \oplus, \neg, \overline{0})$ is an MV-algebra.

3. Probability truth degree of elements on MV-algebra

Let M be MV-algebra, Ω be the set of all assignments of M. Suppose A be σ -algebra on Ω , μ be probability measure on Ω , then (Ω, A, μ) is a probability space^[7]. $\forall x \in M$, let $\overline{x}(v) = v(x), v \in \Omega$, then

x is μ -integrable function^[7].

Definition 3.1 (Wang and Zhou [6]) Defining T: $M \rightarrow [0, 1]$ is following: $T(x) = \int \overline{r}(x) dx = M$

$$T(x) = \int_{\Omega} \overline{x}(v) d\mu, x \in M,$$
(3)

T(x) is called μ -truth degree of element x, in short, truth degree of x.

Proposition 3.1 (Wang and Zhou [6]) (i) $0 \le T(x) \le 1, x \in M$, (ii) T(0) = 0, T(1) = 1,(iii) $T(\neg x) = 1 - T(x)$, (iv) If $x \le y$, then $T(x) \le T(y)$, $x, y \in M$. Proposition 3.2 (Wang and Zhou [6]) (i) $T(x \lor y) = T(x) + T(y) - T(x \land y)$, (ii) $T(\mathbf{x} \oplus \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y}) - T(\mathbf{x} \odot \mathbf{y}),$ (iii) If $E = \left\{ v \in \Omega \mid \overline{x}(v) \le \overline{y}(v) \right\}$ is μ -measurable, then $T(x) + T(x \to y) = T(y) + T(y \to x)$. Proposition 3.3 (Wang and Zhou [6]) Let $x, y \in M, \alpha, \beta \in [0, 1]$, then (i) if $T(x) \ge \alpha$, $T(x \rightarrow y) \ge \beta$, then $T(y) \ge \alpha + \beta - 1$, (ii) if $T(x \to y) \ge \alpha$, $T(y \to z) \ge \beta$, then $T(x \to z) \ge \alpha + \beta - 1$. Corollary 3.1 Let x, y, $z \in M$, then (i) $T(\mathbf{x} \to \mathbf{y}) \leq T(\mathbf{x}) \to T(\mathbf{y})$, (ii) $T(\mathbf{x} \rightarrow \mathbf{y}) \odot T(\mathbf{y} \rightarrow \mathbf{z}) \le T(\mathbf{x} \rightarrow \mathbf{z})$, (iii) $T(\mathbf{x} \rightarrow \mathbf{y}) \leq T(\mathbf{y} \rightarrow \mathbf{z}) \rightarrow T(\mathbf{x} \rightarrow \mathbf{z}).$ Definition 3.2 Let x, y \in M, defining η : M×M \rightarrow [0, 1] is following: (i) $\eta_1(x, y) = T((x \rightarrow y) \land (y \rightarrow x))$ is called the first μ -similarity degree, (ii) $\eta_2(x, y) = T(x \rightarrow y) \wedge T(y \rightarrow x)$ is called the second μ -similarity degree, (iii) $\eta_3(x, y) = (T(x) \rightarrow T(y)) \land (T(y) \rightarrow T(x))$ is called the third μ -similarity degree, η_1, η_2, η_3 uniformly expressed as η , so called similarity degree. If $\eta_i(x, y) = 1$, (i = 1, 2, 3) then x and y is called i-similarity, denote $x \sim_i y$. Lemma 3.1 Let a, b, c, $d \in [0; 1]$ MV, then $(a \land c) \bigcirc (b \land d) \le (a \bigcirc b) \land (c \bigcirc d).$ Theorem 3.1 Let x, y, $z \in M$, then (i) $\eta(x, x) = 1$, (ii) $\eta(x, y) = \eta(y, x)$, (iii) $\eta(\neg x, \neg y) = \eta(x, y)$, (iv) $\eta(x, z) \ge \eta(x, y) + \eta(y, z) - 1$. Proof (i) and (ii) is clearly established. (iii) $\forall x, y \in M$, by proposition 1(iv) we obtain $\overline{x \to y} = \overline{\neg y \to \neg x}$, so

$$\begin{split} \eta_1(\neg x, \neg y) &= \tau((\neg x \to \neg y) \land (\neg y \to \neg x)) \\ &= \int_{\Omega} \overline{(\neg x \to \neg y) \land (\neg y \to \neg x)} d\mu \\ &= \int_{\Omega} (\overline{y \to x} \land \overline{x \to y}) d\mu \\ &= \tau((y \to x) \land (x \to y)) = \eta_1(x, y). \\ \eta_2(\neg x, \neg y) &= \tau(\neg x \to \neg y) \land \tau(\neg y \to \neg x) \\ &= \int_{\Omega} \overline{\neg x \to \neg y} d\mu \land \int_{\Omega} \overline{\neg y \to \neg x} d\mu \\ &= \int_{\Omega} \overline{y \to x} d\mu \land \int_{\Omega} \overline{x \to y} d\mu \\ &= \tau(y \to x) \land \tau(x \to y) = \eta_2(x, y). \\ \eta_3(\neg x, \neg y) &= (\tau(\neg x) \to \tau(\neg y)) \land (\tau(\neg y) \to \tau(\neg x)) \\ &= (\tau(y) \to \tau(x)) \land (\tau(x) \to \tau(y)) \\ &= \eta_3(x, y). \end{split}$$

(iv) For η_1 see [6] proposition 7(iv).

For η_2 , from corollary 3.1(ii) we can obtain $T(x \to z) \ge T(x \to y) \odot T(y \to z)$ and $T(z \to x) \ge T(z \to y)$ $\bigcirc T(y \to x) = T(y \to x) \odot T(z \to y)$. From lemma 3.1, $\tau(x \to x) \ge \tau(x \to y)$

$$\begin{aligned} &\tau(x \to z) \land \tau(z \to x) \\ \geq & (\tau(x \to y) \odot \tau(y \to z)) \land (\tau(y \to x) \odot \tau(z \to y)) \\ \geq & (\tau(x \to y) \land \tau(y \to x)) \odot (\tau(y \to z) \land \tau(z \to y)) \end{aligned}$$

So $\eta_2(x, z) \ge \eta_2(x, y) + \eta_2(y, z) - 1$.

For η_3 , from proposition 2.1(viii) we obtain $T(x) \to T(z) \ge (T(x) \to T(y)) \odot (T(y) \to T(z))$ and $T(z) \to T(x) \ge (T(z) \to T(y)) \odot (T(y) \to T(x))$, similar to η_2 , we can proved.

Theorem 3.2 Let x,
$$y \in M$$
, then
(i) $\eta_1(x, y) = \int_{\Omega} \left(1 - \left| \overline{x}(v) - \overline{y}(v) \right| \right) d\mu$,
 $\eta_3(x, y) = 1 - \left| T(x) - T(y) \right|$,
(ii) $\eta_1(x, y) \le \eta_2(x, y) \le \eta_3(x, y)$.

Proof (i) Because 1-a+b and 1-b+a not both greater than 1 for a, $b \in [0, 1]_{MV}$, thus

$$\eta_{1}(x,y) = \int_{\Omega} (1 - \bar{x}(v) + \bar{y}(v)) \wedge (1 - \bar{y}(v) + \bar{x}(v)) d\mu$$

=
$$\int_{\Omega} (1 - |\bar{x}(v) - \bar{y}(v)|) d\mu.$$

$$\eta_{3}(x,y) = (1 - \tau(x) + \tau(y)) \wedge (1 - \tau(y) + \tau(x))$$

=
$$1 - |\tau(x) - \tau(y)|.$$

(ii) Because
$$\int_{\Omega} (\bar{x}(v) \to \bar{y}(v)) \wedge (\bar{y}(v) \to \bar{x}(v)) d\mu \leq \int_{\Omega} (\bar{x}(v) \to \bar{y}(v)) d\mu$$
 and $\int_{\Omega} (\bar{x}(v) \to \bar{y}(v)) \wedge (\bar{y}(v) \to \bar{x}(v)) d\mu \leq \int_{\Omega} (\bar{y}(v) \to \bar{x}(v)) d\mu$, thus $\int_{\Omega} (\bar{x}(v) \to \bar{y}(v)) \wedge (\bar{y}(v) \to \bar{x}(v)) d\mu \leq \int_{\Omega} (\bar{x}(v) \to \bar{y}(v)) d\mu \wedge \int_{\Omega} (\bar{y}(v) \to \bar{x}(v)) d\mu$, i.e., $\eta_1(x, y) \leq \eta_2(x, y)$.
From corollary 3.1(i), we see that $\tau(x \to y) \leq \tau(x) \to \tau(y)$ and $\tau(y \to x) \leq \tau(y) \to \tau(x)$, so $\eta_2(x, y) = \tau(x \to y) \wedge \tau(y \to x) \leq (\tau(x) \to \tau(y)) \wedge (\tau(y) \to \tau(x)) = \eta_3(x, y)$.

4. Probability metrics of MV-algebra

Definition 4.1 Let $x, y \in M$, defining

$$\rho(x, y) = 1 - \eta(x, y), \tag{4}$$

$$\rho_i(x, y) = 1 - \eta_i(x, y), \quad i = 1, 2, 3.$$
(5)

Theorem 4.1 ρ_i : M×M \rightarrow [0, 1] is metric of MV-algebra M(i=1,2,3).

Proof Let x, y,
$$z \in M$$
, from theorem 3.1 we see that $\rho(x,x)=1-\eta(x,x)=0$, and $\rho(x,y)=1-\eta(x,y)=1-\eta(y,x)=\rho(y,x)$.
 $\rho(x,z)=1-\eta(x,z)\leq 1-(\eta(x,y)+\eta(y,z)-1)=(1-\eta(x,y))+1-\eta(y,z)=\rho(x,y)+\rho(y,z)$

Definition 4.2 (M, ρ_i) is called probability metric space of MV-algebra (i=1,2,3). Theorem 4.2 Let x, y \in M, then

$$\rho_1(x,y) = \int_{\Omega} |\bar{x}(v) - \bar{y}(v)| d\mu,$$

$$\rho_3(x,y) = |\tau(x) - \tau(y)| = \left| \int_{\Omega} (\bar{x}(v) - \bar{y}(v)) d\mu \right|.$$

Theorem 4.3 Let x, $y \in M$, then (i) $\rho_1(x, y) \ge \rho_2(x, y) \ge \rho_3(x, y)$, (2) $\rho_2(x, y) = \frac{1}{2} (\rho_1(x, y) + \rho_3(x, y))$. Proof (i) From theorem 3.2(ii), we can proved. (ii)

$$\begin{split} \rho_2(x,y) &= 1 - \eta_2(x,y) \\ &= 1 - \tau(x \to y) \wedge (\tau(y \to x)) \\ &= (1 - \tau(x \to y)) \vee (1 - \tau(y \to x)) \\ &= (1 - \int_{\Omega} |1 - \bar{x} + \bar{x} \wedge \bar{y}| d\mu) \vee \\ &\quad (1 - \int_{\Omega} |1 - \bar{y} + \bar{y} \wedge \bar{x}| d\mu) \\ &= \int_{\Omega} |\bar{x} - \bar{x} \wedge \bar{y}| d\mu \vee \int_{\Omega} |\bar{y} - \bar{y} \wedge \bar{x}| d\mu \end{split}$$

$$= \frac{1}{2} \left(\int_{\Omega} |\bar{x} - \bar{x} \wedge \bar{y}| d\mu + \int_{\Omega} |\bar{y} - \bar{y} \wedge \bar{x}| d\mu \right. \\ \left. + |\int_{\Omega} |\bar{x} - \bar{x} \wedge \bar{y}| d\mu - \int_{\Omega} |\bar{y} - \bar{y} \wedge \bar{x}| d\mu | \right) \\ = \frac{1}{2} \left(\int_{\Omega} (\bar{x} + \bar{y}) d\mu - 2 \int_{\Omega} (\bar{x} \wedge \bar{y}) d\mu \right. \\ \left. + |\int_{\Omega} (\bar{x} - \bar{y}) d\mu | \right) \\ = \frac{1}{2} \left(\int_{\Omega} (\bar{x} + \bar{y}) d\mu - 2 \int_{\Omega} (\bar{x} + \bar{y} - |\bar{x} - \bar{y}|) d\mu \right. \\ \left. + |\int_{\Omega} (\bar{x} - \bar{y}) d\mu | \right) \\ = \frac{1}{2} \left(\int_{\Omega} |\bar{x} - \bar{y}| d\mu + |\int_{\Omega} (\bar{x} - \bar{y}) d\mu | \right) \\ = \frac{1}{2} \left(\rho_1(x, y) + \rho_3(x, y) \right)$$

Theorem 4.4 (Wang and Zhou [6]) On probability metric space of MV-algebra (M, ρ_1), operations \neg , \oplus , \odot , \lor , \land and \rightarrow are continuous.

Lemma 3.2 Let x, y, u, w \in M, α , $\beta \in [0, 1]$, if $\eta_2(x, u) \ge \alpha$, $\eta_2(y, w) \ge \beta$, then $\eta_2(x \rightarrow y, u \rightarrow w) \ge \alpha + \beta - 1$. Proof Let [0, 1]MV be standard MV-algebra, a, b, $c \in [0, 1]$, then $a \rightarrow b \le (b \rightarrow c) \rightarrow (a \rightarrow c)$ and $b \rightarrow a \le (a \rightarrow c) \rightarrow (b \rightarrow c)$. Thus $\forall v \in \Omega$, we see that

$$\bar{x} \to \bar{u} \le ((\bar{x} \to \bar{y}) \to (\bar{u} \to \bar{y})),$$

And

$$\bar{u} \to \bar{x} \le ((\bar{u} \to \bar{y}) \to (\bar{x} \to \bar{y})),$$

From proposition 3.1,

$$\tau(x \to u) \le \tau((x \to y) \to (u \to y)),$$

$$\tau(u \to x) \le \tau((u \to y) \to (x \to y)),$$

so
$$\tau(x \to u) \land \tau(u \to x) \leq \tau((x \to y) \to (u \to y)) \land \tau((u \to y) \to (x \to y))$$
, i.e., $\eta_2(x \to y, u \to y) \geq \eta_2(x, y) \geq \alpha$.

Similarly, $\eta_2(u \to y, u \to w) \ge \eta_2(y, w) \ge \beta$, thus

$$\begin{aligned} &\eta_2(x \to y, u \to w) \\ \geq & \eta_2(x \to y, u \to y) + \eta_2(u \to y, u \to w) - 1 \\ \geq & \eta_2(x, u) + \eta_2(y, w) - 1 \\ \geq & \alpha + \beta - 1. \end{aligned}$$

Theorem 4.5 Suppose (M, ρ_2) be probability metric space of MV-algebra, then operations \neg , \oplus , \odot , \lor , \land and \rightarrow on (M, ρ_2) are continuous.

Proof First, from theorem 3.1 we see that $\rho_2(\neg x, \neg y) = 1 - \eta_2(\neg x, \neg y) = 1 - \eta_2(x, y) = \rho_2(x, y)$, therefore \neg is continuous.

Second, let $\rho_2(x, u) \leq \varepsilon$, $\rho_2(y, w) \leq \varepsilon$, then $\eta_2(x, u) \geq 1-\varepsilon$, $\eta_2(y, w) \geq 1-\varepsilon$, so from lemma 3.2 we have $\eta_2(x \to y, u \to w) \geq (1-\epsilon) + (1-\epsilon) - 1 = 1 - 2\epsilon$.

i.e., $\rho_2(x \rightarrow y, u \rightarrow w) \le 2\varepsilon$, so implication operation \rightarrow is continuous.

Because $x \oplus y = \neg x \rightarrow y$, $x \odot y = \neg(x \rightarrow \neg y)$, $x \lor y = (x \rightarrow y) \rightarrow y$, $x \land y = \neg(\neg x \lor \neg y)$, therefore \oplus , \odot , \lor , \land are all continuous.

Theorem 4.6 (Wang and Zhou [6]) If (M, ρ_1) be complete metric space, then M is a countably complete lattice.

Theorem 4.7 If (M, ρ_2) be complete metric space, then M is also a countably complete lattice.

Proof Suppose (M, ρ_2) be complete metric space, $\Delta = \{x_1, x_2, \dots\} \subset M$. Let $y_n = V_{i=1}^n x_i$, then y_1, y_2, \dots is an increasing sequence. From proposition 3.1 we see that

 $T(y_1)$, T (y_2) , \cdots is an increasing sequence in [0,1], so is a Cauchy sequence. And

$$\bar{y}_n \to \bar{y}_m = 1, \ \bar{y}_m \to \bar{y}_n = 1 - \bar{y}_m + \bar{y}_n, \ n \le m.$$

Therefore, if $n \le m$ then

$$\rho_2(y_m, y_n) = 1 - \eta_2(y_m, y_n)$$

= $1 - \tau(y_m \to y_n) \land \tau(y_n \to y_m)$
= $1 - \tau(y_m \to y_n)$
= $1 - \int_{\Omega} (1 - \bar{y}_m + \bar{y}_n) d\mu$
= $\int_{\Omega} \bar{y}_m d\mu - \int_{\Omega} \bar{y}_n d\mu = \tau(y_m) - \tau(y_n).$

From $T(y_1)$, $T(y_2)$,... is a Cauchy sequence, we see that y_1, y_2 , ... is a Cauchy sequence in complete metric space (M, ρ_2), so it converges to y, where y is a point of M.

We fix an n, then $y_n = y_n \wedge y_{n+k}$, from the continuity of operation see that

$$y_n = \lim_{k \to \infty} (y_n \wedge y_{n+k}) = y_n \wedge (\lim_{k \to \infty} y_{n+k}) = y_n \wedge y.$$

So $y_n \le y$, i.e., y is a upper bound of $\sum = \{ y_1, y_2, \dots \}$. Taking any a upper bound of \sum , then $y_n = y_n \land z$, so

$$y = \lim_{n \to \infty} y_n = \lim_{n \to \infty} (y_n \wedge z) = (\lim_{n \to \infty} y_n) \wedge z = y \wedge z.$$

Thus $y \le z$, i.e., $y = \sup \Sigma \in M$. It is clearly $\sup \Delta = \sup \Sigma \in M$.

Similarly, we can prove $\inf \Delta \in M$. Therefore M is countable complete.

Theorem 4.8 Suppose (M, ρ_3) be probability metric space of MV-algebra, then operations \neg is continuous, but operation \oplus , \odot , \lor , \land and \rightarrow are not continuous all.

5. Conclusion

In this paper, we introduced three probability metric space on MV-algebras, studied the propositions of probability metric spaces on MV-algebras, get some good results. We can see that the method of one paper can be extended to other algebras, so the method of one paper is meaningful.

References

[1] Chang C.C., Algebraic analysis of many valued logics, Trans. Amer. Math. Soc, USA, 1958, 88, pp.467-490.

[2] D.Mundici, Averaging the truth-value in Lukasiewicz logic, Studia Logica, USA, 1995, 55(1), pp.113-127.

[3] B.Riecan, On the probability theory on MV algebras, Soft Computing, USA , 2000, 4, pp.49-57.

[4] Tomas Kroupa, Conditional probability on MV-algebras, Fuzzy Sets and Systems, USA, 2005, 149, pp.369-381.

[5] A.Dvurecenskij and S.Pulmannova, Conditional probability on σ -MV-algebras, Fuzzy Sets and Systems, USA, 2005, 155, pp.102-118.

[6] Guojun Wang and Hongjun Zhou, Metrization on MV-algebras and Its Application in Lukasiewicz Propositional Logic, Acta Mathematica Sinica, Chinese Series, China, 2009, 52(3), pp.501-514, (in Chinese).

[7] Halmos P.R., Measure Theory, New York: Springer-Verlag, USA, 1974.

[8] Weibing Zuo, Approximate reasoning in Godel 4-valued nonlinear ordered set logic system, 2010 International Conference on Biomedical Engineering and Computer Science, ICBECS 2010, IEEE Press, China, pp.521-524.

[9] Weibing Zuo and Yan Lou, Randomized Truth Degree of Propositions in Classical Logic System, 2010 International Conference on Information Engineering and Computer Science, ICIECS 2010, IEEE Press, China, pp.2114-2117.