2012 International Conference on Solid State Devices and Materials Science Probability Metric Space on MV-Algebras

Weibing Zuo
College of Mathematics and Information Science
North China University of Water Resources and Electric Power, Zhengzhou, P.R.China

Abstract

By means of the probability measure theory of MV-algebras we introduce the concepts of probability truth degrees of the elements of MV-algebra and probability similarity degrees between elements, and then define therefrom three probability metric spaces on MV-algebra, and get some good results.

© 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Garry Lee Open access under CC BY-NC-ND license.
Keywords-MV-algebra; probability truth degree; probability similarity degree; probability metric space;

1. Introduction

MV-algebra [1] were introduced by Chang.C.C in 1958 as the algebraic counterpart of propositional Łukasiewicz logic. An MV-algebra is a many-valued generalization of a Boolean algebra, MV-algebras can be viewed as algebraic generalizations of certain collections of fuzzy sets, so-called Łukasiewicz tribes, as well. Currently, MV-algebra has many applications and many algebras is closely linked with the MV-algebra. States on MV-algebras were investigated by Mundici in [2] as [0,1$]$-valued additive functionals on formulas in Łukasiewicz propositional logic with the intention to capture the notion of average truth degree of a formula. In [3] a probability theory on MV-algebras is systematically developed. In $[4,5]$ the conditional probability on MValgebra and σ MV-algebra is systematically developed also. In recent years, a focus of attention is study of grated of mathematical logic in the background of uncertainty reasoning. Based on the measure theory Wang [6] introduced the truth degree of elements in MV-algebras, for established the probability on MV-algebra provided an effective method. In the present paper, by means of the probability measure theory we introduce the concepts of probability truth degrees of the elements in MV-algebra and probability similarity degrees between elements, and then define therefrom three probability metric spaces on MV-algebra, and get some good results.

The paper is structured as follows. Basic notions and results on MV-algebra are repeated in section 2, the concepts of probability truth degree of elements and probability similarity degrees between elements
on MV-algebras are introduced in section 3, three probability metric spaces on MV-algebra are introduced and some good results are get.

2. Basic notions of MV-algebra

Definition 2.1 (Chang C.C [1]) An MV-algebra is an algebra $(M, \oplus, \neg, 0)$, where M is a non-empty set, \oplus is binary operation having 0 as the neutral element, \neg is a unary operation, satisfying the following properties:
(i) $(\mathrm{M}, \oplus, 0)$ is a commutative semi-group,
(ii) $\mathrm{a} \oplus \neg 0=\neg 0$,
(iii) $\neg(\neg$ a) $=$ a,
(iv) $\neg(\neg \mathrm{a} \oplus \mathrm{b}) \oplus \mathrm{b}=\neg(\neg \mathrm{b} \oplus \mathrm{a}) \oplus \mathrm{a}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{M}$.

Let $(\mathrm{M}, \oplus, \neg, 0)$ be an MV-algebra, the constant 1 is defined as follows: $1=\square 0$, a partial order \leq can be introduced on M by defining $\mathrm{a} \leq \mathrm{b}$ if and only if $\neg \mathrm{a} \oplus \mathrm{b}=1$, then (M, \leq) is a allocation lattice. Binary operations \vee, \wedge are defined as follows: $\mathrm{a} \vee \mathrm{b}=\neg(\neg \mathrm{a} \oplus \mathrm{b}) \oplus \mathrm{b}, \mathrm{a} \wedge \mathrm{b}=\neg(\neg \mathrm{a} \vee \neg \mathrm{b})$.

Proposition 2.1 (Chang C.C [1]) Let (M, $\oplus, \neg, 0$) be an MV-algebra, binary operations \odot, \rightarrow are defined as follows:

$$
\begin{equation*}
x \odot y=\neg(\neg x \oplus \neg y), \quad x \rightarrow y=\neg x \oplus y \tag{1}
\end{equation*}
$$

then
(i) $x \odot y \leq z$ iff $x \leq y \rightarrow z$,
(ii) $1 \rightarrow \mathrm{x}=\mathrm{x}, \mathrm{x} \rightarrow 0=\neg \mathrm{x}, \mathrm{x} \odot 0=0$,
(iii) $\mathrm{x} \rightarrow \mathrm{y}=1$ iff $\mathrm{x} \leq \mathrm{y}$,
(iv) $x \rightarrow y=\neg y \rightarrow \neg x$,
(v) $\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})=\mathrm{y} \rightarrow(\mathrm{x} \rightarrow \mathrm{z})$,
(vi) $x \odot(y \vee z)=(x \odot y) \vee(x \odot z)$,
(vii) $x \odot(y \wedge z)=(x \odot y) \wedge(x \odot z)$,
(viii) $(x \rightarrow y) \odot(y \rightarrow z) \leq x \rightarrow z$.

Example 2.1 Any Boolean algebra B is a MV-algebra, where $0=\varnothing ; 1=\mathrm{X}, \oplus$ is the union \cup.
Example 2.2 The real unit interval [0,1] equipped with the Łukasiewicz operation $a \oplus b=\min (a+b, 1)$ and the standard complement $\neg \mathrm{a}=1-\mathrm{a}$, where $\mathrm{a}, \mathrm{b} \in[0,1]$, is a σ-complete MV-algebra called the standard MV-algebra.

Definition 2.2(Wang and Zhou [6]) Let M be MV-algebra, [0, 1]MV standard MV-algebra, the homomorphism $v: M \rightarrow[0,1]$ is called a assignment of M, i.e., $v(x \oplus y)=v(x) \oplus v(y)=(v(x)+v(y)) \wedge 1$, $v(\neg x)=1-v(x)$. the set of all assignments of M is denote Ω
$\forall v \in \Omega, v$ satisfying all operations of M, i.e.,
$v(x \odot y)=v(x) \odot v(y)=(v(x)+v(y)-1) \vee 0$,
$v(x \rightarrow y)=v(x) \rightarrow v(y)=(1-v(x)+v(y)) \wedge 1$,
$v(x \vee y)=\max \{v(x), v(y)\}$,
$v(x \wedge y)=\min \{v(x), v(y)\}$.
Proposition 2.2 (Wang and Zhou [6]) Let M be MV-algebra, defining $\bar{x}: \Omega \rightarrow[0,1]$ is following

$$
\begin{equation*}
\bar{x}(v)=v(x) \tag{2}
\end{equation*}
$$

Let $\bar{M}=\{\bar{x} \mid x \in M\}$, and defining

$$
\bar{x} \oplus \bar{y}=\overline{x \oplus y}, \neg(\bar{x})=\overline{\neg x}
$$

Then $(\bar{M}, \oplus, \neg \overline{0})$ is an MV-algebra.

3. Probability truth degree of elements on MV-algebra

Let M be MV-algebra, Ω be the set of all assignments of M . Suppose A be σ-algebra on Ω, μ be probability measure on Ω, then $(\Omega, \mathrm{A}, \mu)$ is a probability space ${ }^{[7]} . \forall \mathrm{x} \in \mathrm{M}$, let $\bar{x}(v)=v(x), v \in \Omega$, then \bar{x} is μ-integrable function ${ }^{[7]}$.
Definition 3.1 (Wang and Zhou [6]) Defining $T: \mathrm{M} \rightarrow[0,1]$ is following:

$$
\begin{equation*}
T(x)=\int_{\Omega} \bar{x}(v) d \mu, x \in M \tag{3}
\end{equation*}
$$

$T(x)$ is called μ-truth degree of element x , in short, truth degree of x .
Proposition 3.1 (Wang and Zhou [6]) (i) $0 \leq T(x) \leq 1, \mathrm{x} \in \mathrm{M}$,
(ii) $T(0)=0, T(1)=1$,
(iii) $T(\neg \mathrm{x})=1-T(\mathrm{x})$,
(iv) If $\mathrm{x} \leq \mathrm{y}$, then $T(\mathrm{x}) \leq T(\mathrm{y}), \mathrm{x}, \mathrm{y} \in \mathrm{M}$.

Proposition 3.2 (Wang and Zhou [6]) (i) $T(\mathrm{x} \vee \mathrm{y})=T(\mathrm{x})+T(\mathrm{y})-T(\mathrm{x} \wedge \mathrm{y})$,
(ii) $T(\mathrm{x} \oplus \mathrm{y})=T(\mathrm{x})+T(\mathrm{y})-T(\mathrm{x} \odot \mathrm{y})$,
(iii) If $\mathrm{E}=\{v \in \Omega \mid \bar{x}(v) \leq \bar{y}(v)\}$ is μ-measurable, then $T(\mathrm{x})+T(\mathrm{x} \rightarrow \mathrm{y})=T(\mathrm{y})+T(\mathrm{y} \rightarrow \mathrm{x})$.

Proposition 3.3 (Wang and Zhou [6]) Let $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha, \beta \in[0,1]$, then
(i) if $T(\mathrm{x}) \geq \alpha, T(\mathrm{x} \rightarrow \mathrm{y}) \geq \beta$, then $T(\mathrm{y}) \geq \alpha+\beta-1$,
(ii) if $T(\mathrm{x} \rightarrow \mathrm{y}) \geq \alpha, T(\mathrm{y} \rightarrow \mathrm{z}) \geq \beta$, then $T(\mathrm{x} \rightarrow \mathrm{z}) \geq \alpha+\beta-1$.

Corollary 3.1 Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$, then
(i) $T(\mathrm{x} \rightarrow \mathrm{y}) \leq T(\mathrm{x}) \rightarrow T(\mathrm{y})$,
(ii) $T(\mathrm{x} \rightarrow \mathrm{y}) \odot T(\mathrm{y} \rightarrow \mathrm{z}) \leq T(\mathrm{x} \rightarrow \mathrm{z})$,
(iii) $T(\mathrm{x} \rightarrow \mathrm{y}) \leq T(\mathrm{y} \rightarrow \mathrm{z}) \rightarrow T(\mathrm{x} \rightarrow \mathrm{z})$.

Definition 3.2 Let $x, y \in M$, defining $\eta: M \times M \rightarrow[0,1]$ is following:
(i) $\eta_{1}(\mathrm{x}, \mathrm{y})=T((\mathrm{x} \rightarrow \mathrm{y}) \wedge(\mathrm{y} \rightarrow \mathrm{x}))$ is called the first μ-similarity degree,
(ii) $\eta_{2}(\mathrm{x}, \mathrm{y})=T(\mathrm{x} \rightarrow \mathrm{y}) \wedge T(\mathrm{y} \rightarrow \mathrm{x})$ is called the second μ-similarity degree,
(iii) $\eta_{3}(\mathrm{x}, \mathrm{y})=(T(\mathrm{x}) \rightarrow T(\mathrm{y})) \wedge(T(\mathrm{y}) \rightarrow T(\mathrm{x}))$ is called the third μ-similarity degree,
$\eta_{1}, \eta_{2}, \eta_{3}$ uniformly expressed as η, so called similarity degree.
If $\eta_{i}(x, y)=1,(i=1,2,3)$ then x and y is called i-similarity, denote $x \sim y y$.
Lemma 3.1 Let a, b, c, d $\in[0 ; 1]$ Mv, then
$(\mathrm{a} \wedge \mathrm{c}) \odot(\mathrm{b} \wedge \mathrm{d}) \leq(\mathrm{a} \odot \mathrm{b}) \wedge(\mathrm{c} \odot \mathrm{d})$.
Theorem 3.1 Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$, then
(i) $\eta(x, x)=1$,
(ii) $\eta(x, y)=\eta(y, x)$,
(iii) $\eta(\neg x, \neg y)=\eta(x, y)$,
(iv) $\eta(x, z) \geq \eta(x, y)+\eta(y, z)-1$.

Proof (i) and (ii) is clearly established.
(iii) $\forall \mathrm{x}, \mathrm{y} \in \mathrm{M}$, by proposition 1 (iv) we obtain $\overline{x \rightarrow y}=\overline{\neg y \rightarrow \neg x}$, so

$$
\left.\begin{array}{rl}
\eta_{1}(\neg x, \neg y) & =\tau((\neg x \rightarrow \neg y) \wedge(\neg y \rightarrow \neg x)) \\
& =\int_{\Omega} \overline{(\neg x \rightarrow \neg y) \wedge(\neg y \rightarrow \neg x)} d \mu \\
& =\int_{\Omega}(\overline{y \rightarrow x} \wedge \overline{x \rightarrow y}) d \mu \\
& =\tau((y \rightarrow x) \wedge(x \rightarrow y))=\eta_{1}(x, y) . \\
\eta_{2}(\neg x, \neg y) & =\tau(\neg x \rightarrow \neg y) \wedge \tau(\neg y \rightarrow \neg x) \\
& =\int_{\Omega} \overline{\neg \rightarrow \rightarrow \neg y} d \mu \wedge \int_{\Omega} \neg y \rightarrow \neg x
\end{array}\right] \mu, \int_{\Omega} \overline{y \rightarrow x} d \mu \wedge \int_{\Omega} \overline{x \rightarrow y} d \mu,
$$

(iv) For η_{1} see [6] proposition 7(iv).

For η_{2}, from corollary 3.1(ii) we can obtain $T(\mathrm{x} \rightarrow \mathrm{z}) \geq T(\mathrm{x} \rightarrow \mathrm{y}) \odot T(\mathrm{y} \rightarrow \mathrm{z})$ and $T(\mathrm{z} \rightarrow \mathrm{x}) \geq T(\mathrm{z} \rightarrow \mathrm{y})$ $\odot T(\mathrm{y} \rightarrow \mathrm{x})=T(\mathrm{y} \rightarrow \mathrm{x}) \odot T(\mathrm{z} \rightarrow \mathrm{y})$. From lemma 3.1,

$$
\begin{aligned}
& \tau(x \rightarrow z) \wedge \tau(z \rightarrow x) \\
\geq & (\tau(x \rightarrow y) \odot \tau(y \rightarrow z)) \wedge(\tau(y \rightarrow x) \odot \tau(z \rightarrow y)) \\
\geq & (\tau(x \rightarrow y) \wedge \tau(y \rightarrow x)) \odot(\tau(y \rightarrow z) \wedge \tau(z \rightarrow y))
\end{aligned}
$$

So $\eta_{2}(x, z) \geq \eta_{2}(x, y)+\eta_{2}(y, z)-1$.
For $\mathrm{\eta}_{3}$, from proposition 2.1 (viii) we obtain $T(\mathrm{x}) \rightarrow T(\mathrm{z}) \geq(T(\mathrm{x}) \rightarrow T(\mathrm{y})) \odot(T(\mathrm{y}) \rightarrow T(\mathrm{z}))$ and $T(\mathrm{z})$ $\rightarrow T(\mathrm{x}) \geq(T(\mathrm{z}) \rightarrow T(\mathrm{y})) \odot(T(\mathrm{y}) \rightarrow T(\mathrm{x}))$, similar to η_{2}, we can proved.

Theorem 3.2 Let $\mathrm{x}, \mathrm{y} \in \mathrm{M}$, then
(i) $\eta_{1}(x, y)=\int_{\Omega}(1-|\bar{x}(v)-\bar{y}(v)|) d \mu$,
$\eta_{3}(x, y)=1-|T(x)-T(y)|$,
(ii) $\eta_{1}(\mathrm{x}, \mathrm{y}) \leq \eta_{2}(\mathrm{x}, \mathrm{y}) \leq \eta_{3}(\mathrm{x}, \mathrm{y})$.

Proof (i) Because $1-\mathrm{a}+\mathrm{b}$ and $1-\mathrm{b}+\mathrm{a}$ not both greater than 1 for $\mathrm{a}, \mathrm{b} \in[0,1]$ мv, thus

$$
\begin{aligned}
\eta_{1}(x, y) & =\int_{\Omega}(1-\bar{x}(v)+\bar{y}(v)) \wedge(1-\bar{y}(v)+\bar{x}(v)) d \mu \\
& =\int_{\Omega}(1-|\bar{x}(v)-\bar{y}(v)|) d \mu \\
\eta_{3}(x, y) & =(1-\tau(x)+\tau(y)) \wedge(1-\tau(y)+\tau(x)) \\
& =1-|\tau(x)-\tau(y)|
\end{aligned}
$$

(ii) Because $\int_{\Omega}(\bar{x}(v) \rightarrow \bar{y}(v)) \wedge(\bar{y}(v) \rightarrow \bar{x}(v)) d \mu \leq$ $\int_{\Omega}(\bar{x}(v) \rightarrow \bar{y}(v)) d \mu$ and $\int_{\Omega}(\bar{x}(v) \rightarrow \bar{y}(v)) \wedge(\bar{y}(v) \rightarrow$ $\bar{x}(v)) d \mu \leq \int_{\Omega}(\bar{y}(v) \rightarrow \bar{x}(v)) d \mu$, thus $\int_{\Omega}(\bar{x}(v) \rightarrow \bar{y}(v)) \wedge$ $(\bar{y}(v) \rightarrow \bar{x}(v)) d \mu \leq \int_{\Omega}(\bar{x}(v) \rightarrow \bar{y}(v)) d \mu \wedge \int_{\Omega}(\bar{y}(v) \rightarrow$ $\bar{x}(v)) d \mu$, i.e., $\eta_{1}(x, y) \leq \eta_{2}(x, y)$.

From corollary 3.1(i), we see that $\tau(x \rightarrow y) \leq \tau(x) \rightarrow$ $\tau(y)$ and $\tau(y \rightarrow x) \leq \tau(y) \rightarrow \tau(x)$, so $\eta_{2}(x, y)=\tau(x \rightarrow$ $y) \wedge \tau(y \rightarrow x) \leq(\tau(x) \rightarrow \tau(y)) \wedge(\tau(y) \rightarrow \tau(x))=$ $\eta_{3}(x, y)$.

4. Probability metrics of MV-algebra

Definition 4.1 Let $\mathrm{x}, \mathrm{y} \in \mathrm{M}$, defining

$$
\begin{gather*}
\rho(x, y)=1-\eta(x, y) \tag{4}\\
\rho_{i}(x, y)=1-\eta_{i}(x, y), i=1,2,3 . \tag{5}
\end{gather*}
$$

Theorem $4.1 \rho_{\mathrm{i}}: \mathrm{M} \times \mathrm{M} \rightarrow[0,1]$ is metric of MV -algebra $\mathrm{M}(\mathrm{i}=1,2,3)$.
Proof Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$, from theorem 3.1 we see that $\rho(x, x)=1-\eta(x, x)=0$, and $\rho(x, y)=1-\eta(x, y)=1-\eta(y, x)=\rho(y, x)$.
$\rho(x, z)=1-\eta(x, z) \leq 1-(\eta(x, y)+\eta(y, z)-1)=(1-\eta(x, y))+1-\eta(y, z)=\rho(x, y)+\rho(y, z)$
Definition $4.2\left(\mathrm{M}, \rho_{\mathrm{i}}\right)$ is called probability metric space of MV-algebra $(\mathrm{i}=1,2,3)$.
Theorem 4.2 Let $\mathrm{x}, \mathrm{y} \in \mathrm{M}$, then

$$
\begin{aligned}
\rho_{1}(x, y) & =\int_{\Omega}|\bar{x}(v)-\bar{y}(v)| d \mu \\
\rho_{3}(x, y) & =|\tau(x)-\tau(y)|=\left|\int_{\Omega}(\bar{x}(v)-\bar{y}(v)) d \mu\right|
\end{aligned}
$$

Theorem 4.3 Let $\mathrm{x}, \mathrm{y} \in \mathrm{M}$, then
(i) $\rho_{1}(x, y) \geq \rho_{2}(x, y) \geq \rho_{3}(x, y)$,
(2) $\rho_{2}(x, y)=\frac{1}{2}\left(\rho_{1}(x, y)+\rho_{3}(x, y)\right)$.

Proof (i) From theorem 3.2(ii), we can proved.
(ii)

$$
\begin{aligned}
\rho_{2}(x, y)= & 1-\eta_{2}(x, y) \\
= & 1-\tau(x \rightarrow y) \wedge(\tau(y \rightarrow x)) \\
= & (1-\tau(x \rightarrow y)) \vee(1-\tau(y \rightarrow x)) \\
= & \left(1-\int_{\Omega}|1-\bar{x}+\bar{x} \wedge \bar{y}| d \mu\right) \vee \\
& \left(1-\int_{\Omega}|1-\bar{y}+\bar{y} \wedge \bar{x}| d \mu\right) \\
= & \int_{\Omega}|\bar{x}-\bar{x} \wedge \bar{y}| d \mu \vee \int_{\Omega}|\bar{y}-\bar{y} \wedge \bar{x}| d \mu
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2}\left(\int_{\Omega}|\bar{x}-\bar{x} \wedge \bar{y}| d \mu+\int_{\Omega}|\bar{y}-\bar{y} \wedge \bar{x}| d \mu\right. \\
& \left.+\left|\int_{\Omega}\right| \bar{x}-\bar{x} \wedge \bar{y}\left|d \mu-\int_{\Omega}\right| \bar{y}-\bar{y} \wedge \bar{x}|d \mu|\right) \\
= & \frac{1}{2}\left(\int_{\Omega}(\bar{x}+\bar{y}) d \mu-2 \int_{\Omega}(\bar{x} \wedge \bar{y}) d \mu\right. \\
& \left.+\left|\int_{\Omega}(\bar{x}-\bar{y}) d \mu\right|\right) \\
= & \frac{1}{2}\left(\int_{\Omega}(\bar{x}+\bar{y}) d \mu-2 \int_{\Omega}(\bar{x}+\bar{y}-|\bar{x}-\bar{y}|) d \mu\right. \\
& \left.+\left|\int_{\Omega}(\bar{x}-\bar{y}) d \mu\right|\right) \\
= & \frac{1}{2}\left(\int_{\Omega}|\bar{x}-\bar{y}| d \mu+\left|\int_{\Omega}(\bar{x}-\bar{y}) d \mu\right|\right) \\
= & \frac{1}{2}\left(\rho_{1}(x, y)+\rho_{3}(x, y)\right)
\end{aligned}
$$

Theorem 4.4 (Wang and Zhou [6]) On probability metric space of MV-algebra (M, $\rho 1$), operations \neg, $\oplus, \odot, \vee, \wedge$ and \rightarrow are continuous.

Lemma 3.2 Let $x, y, u, w \in M, \alpha, \beta \in[0,1]$, if $\eta_{2}(x, u) \geq \alpha, \eta_{2}(y, w) \geq \beta$, then $\eta_{2}(x \rightarrow y, u \rightarrow w) \geq \alpha+\beta-1$.
Proof Let $[0,1]$ Mv be standard MV-algebra, a , $\mathrm{b}, \mathrm{c} \in[0,1]$, then $\mathrm{a} \rightarrow \mathrm{b} \leq(\mathrm{b} \rightarrow \mathrm{c}) \rightarrow(\mathrm{a} \rightarrow \mathrm{c})$ and $\mathrm{b} \rightarrow \mathrm{a}$ $\leq(\mathrm{a} \rightarrow \mathrm{c}) \rightarrow(\mathrm{b} \rightarrow \mathrm{c})$. Thus $\forall \mathrm{v} \in \Omega$, we see that

$$
\bar{x} \rightarrow \bar{u} \leq((\bar{x} \rightarrow \bar{y}) \rightarrow(\bar{u} \rightarrow \bar{y}))
$$

And

$$
\bar{u} \rightarrow \bar{x} \leq((\bar{u} \rightarrow \bar{y}) \rightarrow(\bar{x} \rightarrow \bar{y}))
$$

From proposition 3.1,

$$
\begin{aligned}
& \tau(x \rightarrow u) \leq \tau((x \rightarrow y) \rightarrow(u \rightarrow y)), \\
& \qquad \tau(u \rightarrow x) \leq \tau((u \rightarrow y) \rightarrow(x \rightarrow y)), \\
& \text { so } \tau(x \rightarrow u) \wedge \tau(u \rightarrow x) \leq \tau((x \rightarrow y) \rightarrow(u \rightarrow \\
& y)) \wedge \tau((u \rightarrow y) \rightarrow(x \rightarrow y)), \text { i.e., } \eta_{2}(x \rightarrow y, u \rightarrow y) \geq \\
& \eta_{2}(x, y) \geq \alpha .
\end{aligned}
$$

Similarly, $\eta_{2}(u \rightarrow y, u \rightarrow w) \geq \eta_{2}(y, w) \geq \beta$, thus

$$
\begin{aligned}
& \eta_{2}(x \rightarrow y, u \rightarrow w) \\
\geq & \eta_{2}(x \rightarrow y, u \rightarrow y)+\eta_{2}(u \rightarrow y, u \rightarrow w)-1 \\
\geq & \eta_{2}(x, u)+\eta_{2}(y, w)-1 \\
\geq & \alpha+\beta-1
\end{aligned}
$$

Theorem 4.5 Suppose (M, ρ 2) be probability metric space of MV-algebra, then operations $\neg, \oplus, \odot, \vee$, \wedge and \rightarrow on (M, ρ_{2}) are continuous.

Proof First, from theorem 3.1 we see that $\rho_{2}(\neg x, \neg y)=1-\eta_{2}(\neg x, \neg y)=1-\eta_{2}(x, y)=\rho_{2}(x, y)$, therefore \neg is continuous.

Second, let $\rho_{2}(\mathrm{x}, \mathrm{u}) \leq \varepsilon, \rho_{2}(\mathrm{y}, \mathrm{w}) \leq \varepsilon$, then $\eta_{2}(\mathrm{x}, \mathrm{u}) \geq 1-\varepsilon, \eta_{2}(\mathrm{y}, \mathrm{w}) \geq 1-\varepsilon$, so from lemma 3.2 we have $\eta_{2}(x \rightarrow y, u \rightarrow w) \geq(1-\epsilon)+(1-\epsilon)-1=1-2 \epsilon$.
i.e., $\rho 2(\mathrm{x} \rightarrow \mathrm{y}, \mathrm{u} \rightarrow \mathrm{w}) \leq 2 \varepsilon$, so implication operation \rightarrow is continuous.

Because $x \oplus y=\neg x \rightarrow y, x \odot y=\neg(x \rightarrow \neg y), x \vee y=(x \rightarrow y) \rightarrow y, x \wedge y=\neg(\neg x \vee \neg y)$, therefore \oplus, \odot, \vee, \wedge are all continuous.

Theorem 4.6 (Wang and Zhou [6]) If (M, ρ_{1}) be complete metric space, then M is a countably complete lattice.

Theorem 4.7 If $\left(\mathrm{M}, \rho_{2}\right)$ be complete metric space, then M is also a countably complete lattice.
Proof Suppose (M, ρ_{2}) be complete metric space, $\Delta=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots\right\} \subset \mathrm{M}$. Let $y_{n}=V_{i=1}^{n} x_{i}$, then $\mathrm{y}_{1}, \mathrm{y}_{2}, \cdots$ is an increasing sequence. From proposition 3.1 we see that
$T\left(\mathrm{y}_{1}\right), \mathrm{T}\left(\mathrm{y}_{2}\right), \cdots$ is an increasing sequence in $[0,1]$, so is a Cauchy sequence. And

$$
\bar{y}_{n} \rightarrow \bar{y}_{m}=1, \bar{y}_{m} \rightarrow \bar{y}_{n}=1-\bar{y}_{m}+\bar{y}_{n}, n \leq m .
$$

Therefore, if $\mathrm{n} \leq \mathrm{m}$ then

$$
\begin{aligned}
\rho_{2}\left(y_{m}, y_{n}\right) & =1-\eta_{2}\left(y_{m}, y_{n}\right) \\
& =1-\tau\left(y_{m} \rightarrow y_{n}\right) \wedge \tau\left(y_{n} \rightarrow y_{m}\right) \\
& =1-\tau\left(y_{m} \rightarrow y_{n}\right) \\
& =1-\int_{\Omega}\left(1-\bar{y}_{m}+\bar{y}_{n}\right) d \mu \\
& =\int_{\Omega} \bar{y}_{m} d \mu-\int_{\Omega} \bar{y}_{n} d \mu=\tau\left(y_{m}\right)-\tau\left(y_{n}\right) .
\end{aligned}
$$

From $T\left(\mathrm{y}_{1}\right), \mathrm{T}\left(\mathrm{y}_{2}\right), \cdots$ is a Cauchy sequence, we see that $\mathrm{y}_{1}, \mathrm{y}_{2}, \cdots$ is a Cauchy sequence in complete metric space (M, ρ_{2}), so it converges to y , where y is a point of M .
We fix an n, then $y_{n}=y_{n} \wedge y_{n+k}$, from the continuity of operation see that

$$
y_{n}=\lim _{k \rightarrow \infty}\left(y_{n} \wedge y_{n+k}\right)=y_{n} \wedge\left(\lim _{k \rightarrow \infty} y_{n+k}\right)=y_{n} \wedge y
$$

So $\mathrm{y}_{\mathrm{n}} \leq \mathrm{y}$, i.e., y is a upper bound of $\sum=\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \cdots\right\}$. Taking any a upper bound of \sum, then $\mathrm{y}_{\mathrm{n}}=\mathrm{y}_{\mathrm{n}} \wedge \mathrm{z}$, so

$$
y=\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty}\left(y_{n} \wedge z\right)=\left(\lim _{n \rightarrow \infty} y_{n}\right) \wedge z=y \wedge z
$$

Thus $\mathrm{y} \leq \mathrm{z}$, i.e., $\mathrm{y}=\sup \sum \in \mathrm{M}$. It is clearly $\sup \Delta=\sup \sum \in \mathrm{M}$.
Similarly, we can prove inf $\Delta \in \mathrm{M}$. Therefore M is countable complete.
Theorem 4.8 Suppose (M, ρ_{3}) be probability metric space of MV-algebra, then operations \neg is continuous, but operation $\oplus, \odot, \vee, \wedge$ and \rightarrow are not continuous all.

5. Conclusion

In this paper, we introduced three probability metric space on MV-algebras, studied the propositions of probability metric spaces on MV-algebras, get some good results. We can see that the method of one paper can be extended to other algebras, so the method of one paper is meaningful.

References

[1] Chang C.C., Algebraic analysis of many valued logics, Trans. Amer. Math. Soc, USA, 1958, 88, pp.467-490.
[2] D.Mundici, Averaging the truth-value in Lukasiewicz logic,Studia Logica, USA, 1995, 55(1), pp.113-127.
[3] B.Riecan, On the probability theory on MV algebras, Soft Computing, USA, 2000, 4, pp.49-57.
[4] Tomas Kroupa, Conditional probability on MV-algebras, Fuzzy Sets and Systems, USA, 2005, 149, pp.369-381.
[5] A.Dvurecenskij and S.Pulmannova, Conditional probability on σ-MV-algebras, Fuzzy Sets and Systems, USA, 2005, 155,pp.102-118.
[6] Guojun Wang and Hongjun Zhou, Metrization on MV-algebras and Its Application in Lukasiewicz Propositional Logic, Acta Mathematica Sinica, Chinese Series, China, 2009, 52(3), pp.501-514, (in Chinese).
[7] Halmos P.R., Measure Theory, New York: Springer-Verlag, USA, 1974.
[8] Weibing Zuo, Approximate reasoning in Godel 4-valued nonlinear ordered set logic system, 2010 International Conference on Biomedical Engineering and Computer Science, ICBECS 2010, IEEE Press, China, pp.521-524.
[9] Weibing Zuo and Yan Lou, Randomized Truth Degree of Propositions in Classical Logic System, 2010 International Conference on Information Engineering and Computer Science, ICIECS 2010, IEEE Press, China, pp.2114-2117.

