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Abstract

A model of a space X is simply a continuous dcpo D and a homeomorphism ¢ : X —
max D, where max D is given its inherited Scott topology. We show that a space
has a coherent model iff it has a Scott domain model and investigate the topological
structure of spaces which have G5 models.

1 Introduction

Why would someone ever ask “Which spaces have domain theoretic models?”
Let us begin with an example.

Example 1.1 Let f : X — X be a contraction on a compact metric space
X. Define p: UX — [0,00)* by pk = diam k, where UX is the w-continuous
Scott domain of compact subsets of X ordered under reverse inclusion, and
[0,00)* is the set of nonnegative reals in their dual order. Observe that p is
Scott continuous and that puk = 0 iff £ € max UX. The contraction f extends
to a Scott continuous mapping f : UX — UX, whose least fixed point is
r=|]f™(L), where L= X. However,

pr =] uf™(L) =0,

so r € max UX. That is, r = {z}, for some x € X, which is the unique fixed
point of the contraction we began with.

The very same argument is applied to the formal ball model in [2] to
give a domain theoretic proof of the Banach contraction mapping theorem for
any complete metric space. As a matter of fact, careful examination of the
argument above reveals that it may be carried out on any domain theoretic
model of a metric space X, provided that the model allows the extension
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of contraction mappings, and that it admits a function like p. Of course,
this is but one example of a recurring theme in domain theory today. There
are many other instances, where not only has an argument or construction
been carried out domain theoretically, but in addition, the domain theoretic
characterization has led to the extension or sharpening of various ideas and
results (e.g. Edalat’s weakly hyperbolic IFS’s, integration, etc). The ability
to do this usually depends only on the fact that a space admits a domain
theoretic model. The rest is just domain theory.

So what do we know about the spaces which admit domain theoretic mod-
els? Lawson [11] has proven that a space is Polish iff it has an w-continuous
model where the relative Scott and Lawson topologies agree at the top. This
is by far the most progress which has been made on the question. One of the
aspects of his work that is so interesting is the idea that in such a domain, max
D is always a countable intersection of Scott open sets, i.e., such domains are
G5 models. We will spend time considering these. Of particular relevance to
our example above is that a function like i exists on a domain iff the maximal
elements are a G5. We will also consider the topological structure of spaces
with G5 models. One surprising result is that such spaces are always first
countable and Baire.

In the algebraic setting, there is the work of Flagg and Kopperman [6].
Here we learn that a space is complete, separable ultrametric iff it can be
modelled with an w-algebraic Scott domain iff it can be modelled with an
w-algebraic dcpo where the Scott and Lawson topologies agree at the top.
The most striking feature of this work is that the w-algebraic dcpo’s comprise
a class of domains in which Scott domains, coherent domains, and domains
where the Scott and Lawson topologies agree on max D (coherence at the top),
all model the same class of spaces. We wonder of course whether or not this
result holds in general. We suspect that it does, which is one reason we use the
phrase “coherent at the top.” We will not answer this question entirely, but
we will show that coherent domains, Scott domains (and hence FS-domains)
all model the same class of spaces.

2 Models Coherent at The Top

A domain is a continuous dcpo D. The maximal elements of a domain are
denoted max D. This is also called the top of a domain. A domain is coherent
if its Lawson topology is compact. A Scott domain is a continuous dcpo D
(with L) in which suprema of consistent pairs exist. Note that our definition
differs from the traditional one in that we do not assume Scott domains
algebraic. For basic definitions, consult [1].

Definition 2.1 A model of a topological space X is a continuous dcpo D
and a homeomorphism ¢ : X — max D, where max D carries its inherited
Scott topology from D. A model is a G5 model if in addition max D is the
intersection of countably many Scott open sets.
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Definition 2.2 A continuous dcpo D is coherent at the top exactly when
the inherited Scott and Lawson topologies on max D coincide.

Remark 2.3 A separable metric space X is Polish if its topology may be in-
duced by at least one complete metric. X is a complete, separable, ultrametric
space if there is an ultrametric yielding the topology which is at the same time
complete. A Tychonoff space X is Cech-complete if it is a G in its Stone-Cech
compactification X. (The latter is only needed in the proof of Theorem 4.4.)

In the w-continuous case, the spaces represented by domains coherent at
the top were classified by J.D. Lawson.

Theorem 2.4 (Lawson [11]) A space X is Polish iff 3 w-continuous depo
D which is coherent at the top such that X ~ max D.

An important fact which arises in his proof is that max D isa G5 in D w.r.t
the Scott topology. Much rests on this fact when considering the probabilistic
powerdomain of D (see [3]) or more traditionally the topological structure of
max D. We will see a few examples of the latter in Section 4.

Proposition 2.5 (Lawson [11]) For any w-continuous dcpo D which is co-
herent at the top, max D is the intersection of countably many Scott open sets.
That is, all such domains D are G5 models of max D.

As mentioned earlier, it has already been proven that Scott domains and
domains coherent at the top (hence coherent domains) model the same class
of spaces provided the models used are w-algebraic.

Theorem 2.6 (Flagg and Kopperman [6]) For a topological space X, the
following are equivalent:

(i) X is a complete separable ultrametric space.
(i7) X has an w-algebraic model which is a Scott domain.
(i7i) X has an w-algebraic model which is coherent at the top.

Lawson’s theorem tells us that any space at the top of an w-algebraic
Scott domain must be Polish. Ideally, the addition of algebraicity to the
model should mean that the spaces at the top are now exactly Polish spaces
which are also zero-dimensional. In 1982, in fact, Scott [12] remarked that the
top of an w-algebraic Scott domain was zero-dimensional and that it could be
“conveniently embedded into the real line.” We now give what we feel is a

more intuitive characterization of the spaces at the tops of w-algebraic Scott
domains.

Theorem 2.7 For a topological space X, the following are equivalent:

(i) X is Polish and zero-dimensional.
(i7) X is a complete separable ultrametric space.

(iii) X is a G5 subset of the real line which does not contain an interval.
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Proof. (i) = (ii): First embed X in the Cantor set (see 1.3.16 of [4]). The
closure of the image yields a zero-dimensional, metrizable compactification of
X, which we will call 0(X). Since o(X) is a zero-dimensional, separable metric
space, section 2 of [7] guarantees that there is an ultrametric d which induces
the topology of o(X). This ultrametric is complete as a result of the com-
pactness of o(X). Now, because X is complete with respect to some metric,
and it also resides as a dense subset of the compact Hausdorff space o(X), X
is a G5 in 0(X). The Alexandroff result holds for complete ultrametric spaces
as pointed out in [6], that is, not only is there some metric relative to which
X is complete, but because X is a G5 in a complete ultrametric space, we can
choose an ultrametric relative to which X is complete. Then this proves that
X is a complete, separable, ultrametric space.

(ii) = (iii) Any zero-dimensional, separable metric space can be embedded in
the Cantor set, and hence in the real line. Zero-dimensionality implies that
the space contains no (nontrivial) interval, and since X is complete, it is a G
in its closure: a compact subset of the Cantor set. Then X is a G5 in R — an
instance of the absolute G5 property that all complete metrics possess.

(iii) = (i) A subset of the real line is zero-dimensional iff it does not contain
a (nontrivial) interval. A Gj subset of R is Polish. O

It is difficult to imagine spaces with coherent models which are at the same
time nowhere locally compact. Unfortunately, they do exist. The most pop-
ular example seems to be the domain of partial functions on the naturals, a
classic w-algebraic Scott domain, which provides a model of the irrationals.
In 1928, however, Urysohn and Alexandroff provided the following character-
ization of them.

Theorem 2.8 (Urysohn-Alexandroff [5]) The only Polish space which is
zero-dimensional and has no nonempty compact open sets is R\ Q.

Consequently, there is only 1 nowhere locally compact space which can be
modelled with an w-algebraic Scott domain.

Corollary 2.9 If D is an w-algebraic decpo which is coherent at the top, then
either max D ~ R\ Q or there is a point where max D is locally compact.

3 Coherent Domains and Scott Domains

In the last section, we saw that w-algebraic Scott domains and w-algebraic
coherent domains model the very same spaces: G subsets of the real line
which do not contain an interval. In this section, we prove that Scott domains
and coherent domains always model the same class of spaces.

Proposition 3.1 Every Scott domain is coherent.

The next example shows that coherent domains which are not Scott do-
mains are very easy to find.



Example 3.2 Let Disc [1] denote the collection of closed discs of the plane
and the plane itself ordered under reverse inclusion. Disc is easily seen to be
an w-continuous dcpo which provides a model of the plane. Disc is coherent
because it is an FS-domain. However, the intersection of discs is not always a
disc, so it is not a Scott domain.

Theorem 3.3 (Hofmann-Mislove [9]) For any continuous depo D,
kp ={0# KC D: K = 1K Scott compact },

ordered under reverse inclusion, is itself a continuous domain whose approxi-
mation relation is given by

A<Biff(IUcop)BC UC A

It was shown in [1] that kp is isomorphic to the Smyth Powerdomain
of D. As it turns out, then, the Smyth powerdomain provides us with an

example of a domain theoretic construction which preserves the object being
modelled.

Theorem 3.4 For any continuous depo D, kp is a model of max D.

Proof. First, K € max rp if and only if K = {m}, for a unique m € max D.
This establishes that

¢: max D — max kp
¢(m) = {m}

is a bijection. Now a straightforward argument using the approximation rela-
tions proves that the map is both continuous and open. O

Proposition 3.5 The spaces which can be modelled with Scott domains are
precisely the spaces which can be modelled with coherent domains.

Proof. A domain D is coherent iff kp is a Scott domain. By the result above,
kp 1s a model of max D. O

In a recent paper [10], Jung and Siinderhauf remark that it is presently
unknown as to which spaces can be modelled with F'S-domains. By the work
above, we can give a partial solution to this problem.

Corollary 3.6 A topological space X can be modelled by an FS-domain iff it
can be modelled by a coherent domain iff it can be modelled by a Scott domain.

Proof. FS-domains are coherent and every Scott domain is an FS-domain.O

Finally, observe that we cannot take an arbitrary model and use xp to
construct one which is coherent at the top.

Proposition 3.7 If kp is coherent at the top, D is also coherent at the top.
Proof. The homeomorphism ¢ : max D — max kp satisfies
¢~ ( TU(x) N max kp ) = T2 N max D,
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where U(x) = 1z € kp . O

4 (G5 models

As remarked earlier, Lawson has shown that G5 models exist in abundance. It
is well-known that G4 subsets are useful in proving theorems of a topological
nature. However, when working in the realm of domain theoretic models, they
play a much larger role.

Theorem 4.1 For a subset X of a continuous dcpo D, the following are equiv-
alent:

(i) X is a G5 in D.
(1) 3 Scott continuous map p: D — [0,00)* with uz =0 iff € X.

Proof. (i) = (ii) First write X = (] U,, as the intersection of a descending
family of countably many Scott open sets. Define n: D — N U {oco} by

sup{n:x € U,,n>1}ifx el
0 ifre D\ U,

n(r) =

Observe that n(zr) = oo iff x € X. Now define p as
p:D —[0,00)"
1
HE= ont@)

This is the desired mapping. O

In our opening example, the function p is used to measure the progress of a
computation: it provides an a priori estimate of the error in computing a fixed
point . The fact that such measuring devices and G4 subsets are equivalent
tells us that a Gy subset of a continuous dcpo is actually a computational
notion.

Lemma 4.2 For a subset X of a continuous dcpo D, the following are equiv-
alent:

(i) X is an upper set which is Ty in its relative Scott topology.
(i7) X C max D.

Proof. (=) The intersection of all open sets in X containing x € X is an
upper set. Since X is T}, this intersection is exactly {z}. O

Proposition 4.3 For a continuous depo D and a point x € D, the following
are equivalent:

(i) D is first countable at z.

(1) z is the limit of a sequence of approximations.
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Proof. (i) = (ii) Choose a sequence (a,) of approximations of z, one in each
member U, of the countable basis {U,} at x. Use the directedness of |z to
construct an increasing sequence (z,) with z,, < x and a,, C z,. Since | | z,
€ Uy, for all n € N, and {U,} is a base at x, we must have | | x, = x. O

Example 4.4 Let X be a compact Hausdorff space which is not first count-
able at some point €). Then the space X x R is a locally compact Hausdorff
space which is not first countable at the points {Q2} x R. It is a dense Gy in
B(X x R).

The point of the example above is that a G5 subset of even a compact
Hausdorff space can lack first countability at many points. Because of this, the
next theorem is very surprising: it is a topological characteristic of continuous
domains which does not necessarily hold for locally compact Hausdorff spaces,
and so it is one which cannot be derived from a more general result on locally
compact sober spaces.

Theorem 4.5 A continuous dcpo D is first countable at every point of a Gy
subset X provided X is Ty in its relative Scott topology.

Proof. We know that there exists a Scott continuous map g : D — [0, 00)*
with ker 4 = X. Using the directedness of |}z, we can construct an increasing
sequence (x,) with x, < = and pzx, < % Applying the continuity of i reveals
that u(| | #,) = 0, which means that | |z, = x by maximality. O

Theorem 4.6 If D is a Gs model of a space X, then X is a first countable,
T, Baire space.

Proof. The continuous dcpo D is a locally compact sober space w.r.t. the
Scott topology, and so it is a Baire space [8]. X = max D is a dense Gy in a
Baire space. Then X too must be Baire. First countability of X is inherited
from D. a

Corollary 4.7 There is no G5 model of the rationals.
Proof. The rationals are not a Baire space. O

Corollary 4.8 (The Baire Category Theorem) FEuvery complete metric space
s Baire.

Proof. Use the formal ball model of Edalat and Heckmann [2], which provides
a G5 model for any complete metric space. The result now follows immediately
from Theorem 4.3. O

Another interesting property of spaces with G5 models is that local com-
pactness may be detected domain theoretically.

Corollary 4.9 If X is a Hausdorff space with a G5 model, then X is a k-space.
Consequently, X is locally compact iff UX is a continuous dcpo.
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Proof. UX is the dcpo of compact subsets of X, ordered under reverse in-
clusion. If X is a Hausdorff k-space, then the continuity of UX implies local
compactness of X. This is due to J.D. Lawson [9]. First countable Hausdorff
spaces are k-spaces, i.e., spaces determined by their compact sets. O

Finally, if we consider coherent G5 models, we can say even more.

Theorem 4.10 If D is a coherent Gy model of a space X, then X is a first
countable, Cech-complete space. In particular,

X is metrizable iff X is completely metrizable.

Proof. Since D is coherent at the top, we may think of X as having the
Lawson topology. Since D is compact Hausdorff in the Lawson topology, X is
Tychonoff. The Lawson closure of X in D is a compactification of X. Since X
isaGysin D, itis a Gy inits closure. Then X is a G in all its compactifications.
This proves that X is Cech-complete. Lastly, a metric space is Cech-complete
iff it is completely metrizable. O

Remark 4.11 There is a corollary to this result which may be of interest
here. Suppose that X is a metric space with a coherent model which admits a
proof of the Banach contraction mapping theorem, the way we did in example
1.1, or as in [2]. Then X is necessarily complete. That is, we cannot use a
coherent model to generalize the Banach contraction mapping theorem.

5 Further Research

There are several important questions which need to be answered. Some of
my favorites are as follows:

(i) Does Theorem 4.4 generalize, i.e., if X is a metric space with a G5 model,
then is X necessarily completely metrizable? To answer this negatively,
we must find a G5 model of a Baire metric space which is not completely
metrizable.

(ii) Is max D a G5 in D for every w-continuous decpo D? To answer this
negatively, we need to find a model of a space which is not a Baire space.
As we have seen, an w-continuous dcpo D with max D ~ QQ will do the
trick (if it exists).

(iii) Ts it true that a space X has a coherent at the top model iff it is Cech-
complete? Also, is a space completely metrizable iff it has a coherent at
the top G5 model? (These seem to be natural generalizations of Lawson’s
theorem.)

(iv) Can every Polish space be modelled with an w-continuous, coherent,
dcpo? Note that, if so, it immediately now follows that any Polish space
can also be modelled with an w-continuous Scott domain.
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