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a b s t r a c t

The present study was conducted to determine the effects of supplementing �-linolenic
acid (ALA) into BioXcell® extender on post-cooling, post-thawed bovine spermatozoa and
post thawed fatty acid composition. Twenty-four semen samples were collected from three
bulls using an electro-ejaculator. Fresh semen samples were evaluated for general motility
using computer assisted semen analyzer (CASA) whereas morphology and viability with
eosin–nigrosin stain. Semen samples extended into BioXcell® were divided into five groups
to which 0, 3, 5, 10 and 15 ng/ml of ALA were added, respectively. The treated samples were
incubated at 37 ◦C for 15 min for ALA uptake by sperm cells before being cooled for 2 h at 5 ◦C.
After evaluation, the cooled samples were packed into 0.25 ml straws and frozen in liquid
nitrogen for 24 h before thawing and evaluation for semen quality. Evaluation of cooled and
frozen-thawed semen showed that the percentages of all the sperm parameters improved
with 5 ng/ml ALA supplement. ALA was higher in all treated groups than control groups than
control group. In conclusion, 5 ng/ml ALA supplemented into BioXcell® extender improved
the cooled and frozen-thawed quality of bull spermatozoa.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Semen cryopreservation is a well-developed tech-
nique commonly used worldwide; it prolongs the life of
spermatozoa by decreasing metabolism and toxin produc-
tion (Bailey et al., 2003; Curry, 2000; Hammerstedt et al.,
1990). During cryopreservation, development of ice crys-
tals changed the plasma membrane structure and functions

∗ Corresponding author. Tel.:+060 386093909.
E-mail address: rosninanuris@upm.edu.my (Y. Rosnina).

such as redistribution of membrane bound phospholipids
and proteins, membrane permeability and ion exchange
(Lessard et al., 2000; Amann and Graham, 1993), resulting
in decreased in viability, fertility (Wongtawan et al., 2006)
and ultimately, death of sperm (Bailey et al., 2003; Royere
et al., 1996).

Cryopreservation damages sperm structures and is
detrimental to post-thawed sperm characteristics, includ-
ing motility and plasma membrane integrity (Lessard
et al., 2000; Yoshida, 2000; Royere et al., 1996). The
n-3 fatty acids (ALA) present in the plasma membrane
provide energy and regulate plasma membrane proteins

http://dx.doi.org/10.1016/j.anireprosci.2014.12.001
0378-4320/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/3.0/).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82482947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.anireprosci.2014.12.001
http://www.sciencedirect.com/science/journal/03784320
http://www.elsevier.com/locate/anireprosci
http://crossmark.crossref.org/dialog/?doi=10.1016/j.anireprosci.2014.12.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:rosninanuris@upm.edu.my
dx.doi.org/10.1016/j.anireprosci.2014.12.001
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


2 A. Kaka et al. / Animal Reproduction Science 153 (2015) 1–7

(Shevchenko and Simons, 2010), maintain and normalize
plasma membrane function, sustain sperm viability and
fertility during chilling and freezing, these fatty acids are
decreased during freezing and thawing (Medeiros et al.,
2002; Parks and Lynch, 1992; Watson, 2000).

Different additives like sugars, antioxidants and fatty
acids have been used to decrease sperm damage during
cryopreservation (Bucak et al., 2007; Memon et al., 2011,
2012; Nasiri et al., 2012). Omega-3 is important to regu-
late plasma membrane function, maintain sperm viability
and fertility during chilling and freezing (Medeiros et al.,
2002; Watson, 2000; Parks and Lynch, 1992). Gholami et al.
(2010) observed dietary docosahexaenoic acid (DHA) con-
siderably improved parameters of fresh semen of bulls.
Sheikholeslami Kandelousi et al. (2013) reported that
omega-3 in citrate extender decreased bull sperm motil-
ity and viability. In another study, Kiernan et al. (2013)
reported that palmitic acid (PA), ALA and oleic acid (OA)
added in citrate extenders improved bull sperm motility
and viability during chilling for 7 days.

The variations from the previous studies in the effects
of n-3 fatty acids on the quality of bull sperm may be due to
biochemical damages in the lipid structure as well as lipid
and protein bonds during cryopreservation (Hammerstedt
et al., 1990). Previous study by Kiernan et al. (2013) have
been focused on improving semen quality by adding fatty
acids including ALA in citrate extenders to reduce sperm
cell damage in cooled semen. Therefore, the present study
was performed to determine the effect of ALA supplemen-
tation in BioXcell® extender on the quality and fatty acid
composition of cooled and frozen-thawed semen.

2. Materials and methods

2.1. Experimental design

Semen samples were extended in BioXcell® (IMV
Technologies, L’Agile, France) extenders which were incor-
porated with different concentrations of ALA (Sigma
Chemical Co., St. Louis, MO, USA): 0 (control), 3, 5, 10 and
15 ng/ml. Since ALA is insoluble in water, 0.05% ethanol
was added as a solvent (Nasiri et al., 2012). Only semen
samples with general motility of at least 70% and normal
morphology and viability ≥80% were included in the exper-
iment (Nasiri et al., 2012; Towhidi et al., 2013; Ansari et al.,
2012). This was to ensure that the treatment effects (dif-
ferent levels of ALA) were not confounded by differences in
semen quality characteristics. The extended samples were
incubated in a water bath at 37 ◦C for 15 min for sperm
cells to uptake ALA (Ansari et al., 2012). Then, these semen
samples were cooled for 2 h at 5 ◦C; after evaluation of
the cooled samples for motility, morphology, membrane
integrity, acrosome integrity, viability 0.25 ml straws were
packed with sperm at concentration adjusted to 20 × 106

sperm/straw. The straws were equilibrated in a cold cab-
inet 5 ◦C for 30 min. Then the straws were arranged on a
rack and placed 4 cm above the surface of liquid nitrogen
vapor for 10 min contained in an expandable polystyrene
box. After 10 min, the straws were immersed in liquid
nitrogen for storage (Sarsaifi et al., 2013). After 24 h, the
straws were thawed by placing them on a stage warmer at

37 ◦C for 30 s (Yoshida, 2000). Post-thawed samples were
evaluated for total sperm motility by CASA, membrane
functional integrity by hypo-osmotic swelling test, viabil-
ity, morphology and acrosome integrity by eosin–nigrosin
staining procedure, fatty acid composition (gas chromatog-
raphy) and lipid peroxidation (thiobarbituric acid reactive
substances, TBARS).

2.2. Animals and their management

Three fertile Brangus–Simmental cross-bred bulls
were selected from the Universiti Putra Malaysia farm
(2◦9′18.36′′N, 101◦43′49.61′′E). These bulls were 3 to 4
years old and weighed between 620 and 650 kg. Their body
condition score (BCS) were 4, 5 and 6 (1—thin to 9—obese;
Eversole et al., 2009). Each bull was kept in a separate bull
pen, but under uniform management condition. The bulls
were fed with Brachiaria decumbens and palm kernel cakes
(6% crude protein and 2.6% crude fat) were given at a rate of
3 kg/bull/day while mineral licks and water were provided
ad libitum.

2.3. Semen collection and samples evaluation

Semen samples were collected twice a week, at an inter-
val of 3 to 4 days, for 4 weeks. The collection procedure
was done whilst the bulls were standing. The bulls were
not sedated at all. Twenty four ejaculates were collected
from the three bulls (eight samples per bull), with the aid
of a manually controlled electro-ejaculator, Electro Jac 5
(Ideal® Instruments Neogen Corporation, Lansing, Michi-
gan, USA) to which a 6.5 cm diameter rectal probe, with
three ventral oriented electrodes at 1 cm apart, was con-
nected. The lubricated rectal probe was gently inserted
up to about 30 cm into the rectum, with the electrodes
positioned ventrally. The number of electrical stimuli was
steadily increased until the bull ejaculated. Each stimulus
lasted 8–10 s and paused for 2.0 s before the next stimulus
was given (Sarsaifi et al., 2013). When the seminal dis-
charge turned cloudy, a graduated tube was placed over
the penis to collect the semen. Stimulation was continued
as long as seminal fluid was produced and collected. After
collection is completed, the graduated tube was covered
with an aluminum foil to prevent exposure of semen to
light. The semen samples were transported to the labora-
tory at 37 ◦C in a Coleman® cooler box for evaluation. The
volume of each semen sample was recorded from the grad-
uated tube whilst general motility and concentration were
evaluated using CASA IVOS 10 system (Hamilton Thorne
Bioscience, Beverly, MA, USA).

2.3.1. Sperm motility
Fresh semen samples were diluted with PBS at a ratio

of 1:100. Then, 20 �l of the diluted semen was placed on
a glass slide (Hamilton Thorne research 2X-CEL dual-sided
sperm analysis chamber; depth: 20 �m) and loaded onto
the CASA IVOS 10 system to analyze the general motility
(%) of sperm. One-second tracks were captured at 60 Hz
under ×4 dark-field illumination. For progressive cells, the
setting of the instrument was set as follows: temperature:
37 ◦C, video frequency: 60, magnification: 1.92, minimum



A. Kaka et al. / Animal Reproduction Science 153 (2015) 1–7 3

cells size: 2 pixel, minimum contrast: 40, cell intensity: 55,
VAP (path velocity): 75 �m/s and STR (straightness): 80%
(Sarsaifi et al., 2013). At least 200 sperm from 10 fields were
counted per reading. The software used for analysis was
HTM-IVOS software, version 12.2.

2.3.2. Morphology and sperm viability
Sperm morphology and viability were assessed by using

eosin–nigrosin stain (Evans and Maxwell, 1987). The smear
was prepared by mixing one drop (10 �l) of semen with
3 drops (30 �l) of the stain on a warm slide. The pre-
pared slide was examined under a light microscope at
400× magnification (Nikon Eclipse 50i, Japan) and at least
200 spermatozoa were counted in at least four differ-
ent microscopic fields. Sperms that did not take up the
eosin–nigrosin stain were considered alive, while those
that partially or fully took up the stain were considered
dead (Memon et al., 2012). Sperm morphology was deter-
mined using the same slide used for viability evaluation.
The percentage of normal sperm cells were calculated from
a total of 200 sperm cells examined.

2.3.3. Plasma membrane integrity
Hypo osmotic swelling (HOS) test developed by Revell

and Mrode (1994) was used to assess plasma membrane
integrity (PMI). One hundred microliters of semen was
added to 1 ml of hypo-osmotic solution (13.51 g fructose
and 7.35 g trisodium citrate dissolved in 1L distilled water;
osmolarity of 150 mOsm/kg.) and incubated for 60 min at
37 ◦C. Then, 15 �l of the solution was placed on a pre-
warmed slide covered with a cover slip and sperms were
evaluated under a light microscope at 400× magnification
(Nikon Eclipse 50i, Tokyo, Japan). Spermatozoa that swelled
in response to the test solution were considered normal
cells. Two hundred spermatozoa per slide were counted
from four different microscopic fields and expressed in per-
centage.

2.3.4. Acrosome integrity
Acrosome integrity was determined using semen smear

stained with eosin–nigrosin stain, and examined under
a phase contrast microscope at 1000× magnification oil
immersion (Yildiz et al., 2000). A total of 200 spermatozoa
were examined for either detached or intact acrosome.

2.3.5. Fatty acid composition and lipid peroxidation
(LPO) test

Fatty acids were extracted from frozen semen sam-
ples using a method developed by Folch et al. (1957) with
some modifications described by Argov-Argaman et al.
(2013). The frozen semen was adjusted to a concentration
of 3 × 108 sperm/ml (a total of 15 straws were thawed),
homogenized in chloroform: methanol (2:1 v/v), vortexed
for 1 min and then kept at room temperature for 1 h.
After 1 h, 4 ml of normal saline was added, vortexed and
centrifuged and the supernatant was discarded while the
lipid rich layer was separated and evaporated at 65 ◦C.
The extracted fatty acids were transmethylated to their
fatty acid methyl esters (FAME) using 0.66 N potassium
hydroxide (KOH) in methanol and 14% methanolic boron
trifluoride (BF3; Sigma Chemical Co. St. Louis, Missouri,

USA) according to the methods by the Association of Offi-
cial Analytical Chemists (AOAC, 1990). The FAME were
separated by Agilent 7890A gas chromatography (Agilent
Technologies, Palo Alto, CA, USA) using a 30 m × 0.25 mm
ID (0.20 �m film thickness) Supelco SP-2330 capillary col-
umn (Supelco, Inc., Bellefonte, PA, USA). One �l of FAME
was injected into the chromatograph by an auto sam-
pler, equipped with a flame ionization detector (FID). The
injector temperature was programmed at 250 ◦C and the
detector temperature at 300 ◦C. The column temperature
program was initially run at 100 ◦C for 2 min. Then heated
to 170 ◦C at 10 ◦C/min for 2 min and further heated to 220 ◦C
at 7.5 ◦C/min for 10 min to facilitate optimal separation.

The identification of peaks of the fatty acids was
made by comparison of equivalent chain lengths with
those of authentic fatty acid methyl esters (37 Compo-
nent FAME mix, Supelco, Bellefonte, PA). Peak areas were
determined automatically using the Agilent Gas Chro-
matography Chemstation software (Agilent Technologies,
Palo Alto, CA, USA).

Lipid peroxidation (LPO) in semen was assessed by the
malondialdehyde assay (MDA). Malondialdehyde is the
end product of lipid peroxidation and is the major sub-
strate in the thiobarbituric acid reactive substance (TBARs)
test (Pryor, 1991). Lipid peroxidation was measured using
TBARs according to Mercier et al. (1998). Five hundred
microliter of semen was mixed with TBARs solution and
then heated in a water bath at 95 ◦C for 60 min until the
mixture appeared pink. After cooling, 1 ml of distilled water
and 3 ml of n-butanol were added to the mixture and
then vortexed. The mixtures were centrifuged at 5000 rpm
for 10 min. Absorbance of supernatant was read against
an appropriate blank at 532 nm using a spectrophotome-
ter (Secomam, Domont, France). The MDA was calculated
from a standard curve of 1,1,3,3-tetraethoxypropane and
expressed as nmol MDA/3 × 108 sperm.

2.4. Statistical analysis

Data were checked for normality and all parameters
were found to fit the normal distribution and then ana-
lyzed using parametric statistical methods. Data on the
effect of different concentrations of ALA on post-cooling
and frozen-thawed sperm parameters, fatty acid and MDA
were analyzed using ANOVA of the general linear model
procedure of SAS 9.2 version. Comparisons between dif-
ferent concentration means were analyzed using Duncan
multiple range test following significant F test in ANOVA.

3. Results

From Table 1, the results showed no significant dif-
ference in sperm parameters among bulls, although two
bulls had lower semen volume but higher sperm concentra-
tion compared with the other bull. The effects of different
concentrations of ALA on post-cooling sperm parameters
are shown in Table 2. Results show that sperm motil-
ity increases with increase in ALA concentrations up to
5 ng/ml. However, at 10 and 15 ng/ml ALA, sperm motil-
ity decreased significantly. A similar trend of increment in
sperm motility with an increase in ALA concentrations was
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Table 1
Sperm parameters of fresh bull semen (Mean ± SEM).

Sperm parameters Bull 1 Bull 2 Bull 3

Volume (ml) 10.75 ± 0.8a 6.50 ± 0.8b 6.25 ± 1.0b

Concentration (×106 sperm/ml) 1626.25 ± 72.5a 1339 ± 77.2a 1426 ± 47.6a

Motility (%) 89.25 ± 3.5a 88.80 ± 2.9a 80.00 ± 7.0a

Morphology (%) 89.50 ± 1a 92.25 ± 1.6a 85.50 ± 3.3a

Acrosome integrity (%) 93.50 ± 0.9ab 92.00 ± 1.2a 96.00 ± 1.0a

Membrane integrity (%) 87.50 ± 3.4a 89.00 ± 0.8a 84.75 ± 3.0a

Viability (%) 87.50 ± 2.8a 86.00 ± 3.5a 87.00 ± 2.4a

a,b Mean values with different superscripts within rows are significantly different at p < 0.05.

Table 2
Effect of different ALA concentrations in BioXcell® extender on post-cooled sperm parameters in bulls (Mean ± SEM).

Sperm parameters (%) ALA concentrations (ng/ml)

0 3 5 10 15

Motility 63.87 ± 2.1b 72.37 ± 2.2a 74.75 ± 1.9a 65.18 ± 1.4b 64.50 ± 2.1b

Morphology 82.19 ± 0.9ab 78.06 ± 2.3bc 86.62 ± 1.2a 82.93 ± 2.2ab 74.75 ± 2.4c

Membrane Integrity 82.87 ± 1.0ab 86.37 ± 1.2bc 87.87 ± 0.6a 82.50 ± 1.7ab 79.68 ± 2.3c

Acrosome Integrity 89.06 ± 0.4a 89.18 ± 0.7a 89.18 ± 1.0a 89.81 ± 0.9a 87.62 ± 1.1a

Viability 83.25 ± 1.1bc 86.37 ± 1.30ab 87.62 ± 0.7a 83.37 ± 1.5bc 80.37 ± 1.9c

a,b,c Mean values with different superscripts within rows are significantly different at p < 0.05.

Table 3
Effect of different ALA concentration in Bioxcell® extender on frozen-thawed sperm parameters in bulls (Mean ± SEM).

Sperm parameters (%) ALA concentrations (ng/ml)

0 3 5 10 15

Motility 38 ± 0.7c 43 ± 0.9b 48 ± 1.0a 39 ± 0.3c 36 ± 0.8c

Morphology 64 ± 2.3cb 67 ± 2.1ab 72 ± 1.2a 65 ± 2.0cb 60 ± 1.6c

Membrane Integrity 69 ± 1.2b 71 ± 2.6ab 75 ± 1.6a 65 ± 2.2b 65 ± 2.2b

Acrosome Integrity 69 ± 1.2b 71 ± 1.6ab 75 ± 1.7a 71 ± 2.9ab 68 ± 1.9b

Viability 66 ± 0.9b 69 ± 2.1ab 74 ± 1.4a 66 ± 2.2b 65 ± 1.5b

a,b,c Mean values with different superscripts within rows are significantly different at p < 0.05.

also observed in the other parameters. However, acrosome
integrity appeared to be less affected similar readings with
no significant differences across all treatments (Table 3).

Table 2 shows the effects of different concentrations of
ALA on frozen-thawed semen parameters. Similar to what
was observed in chilled sperm, there was an increase in
the quality of semen parameters, when ALA was increased
from 0 to 5 ng/ml but decreased at 10 and 15 ng/ml. Unlike

chilling, acrosome integrity during freezing appeared to be
affected showing significant differences among treatments
(3, 5 and 15 ng/ml) although the highest acrosome integrity
percentage was obtained at 5 ng/ml ALA.

Sperm fatty acid (FA) composition obtained after treat-
ment with different levels of ALA is presented in Table 4.
When the amount of exogenous ALA increased from 0 to
15 ng/ml, the amount of sperm ALA recovered was also

Table 4
Comparison of fatty acid composition in different concentrations of ALA in frozen-thawed sperm (Mean ± SEM).

ALA concentration (ng/ml)

Fatty acid (%) 0 3 5 10 15

ALA (C18:3n-3) 0.43 ± 0.05d 0.81 ± 0.04c 1.05 ± 0.11cb 1.20 ± 0.11b 1.67 ± 0.13a

C20:5n-3 0.92 ± 0.17a 1.06 ± 0.11a 1.15 ± 0.16a 1.26 ± 0.29a 1.32 ± 0.07a

C22:5n-3 0.81 ± 0.25a 0.82 ± 0.25a 0.94 ± 0.25a 0.85 ± 0.25a 1.41 ± 0.25a

C22:6n-3 1.30 ± 0.10a 1.22 ± 0.17a 1.26 ± 0.08a 1.56 ± 0.43a 1.65 ± 0.32a

N3PUFA 3.48 ± 0.24c 3.91 ± 0.16bc 4.42 ± 0.54bc 4.88 ± 0.26b 6.06 ± 0.51a

N6PUFA 36.03 ± 2.28a 34.07 ± 0.25a 31.73 ± 1.98a 37.74 ± 2.88a 33.44 ± 3.72a

PUFA 39.52 ± 2.95a 37.98 ± 0.22a 36.16 ± 1.98a 42.62 ± 2.62a 39.51 ± 3.45a

MUFA 24.18 ± 1.67ab 27.31 ± 0.21a 24.53 ± 1.55ab 27.91 ± 1.38a 21.88 ± 0.37b

SFA 36.29 ± 1.37a 34.69 ± 2.57ab 39.30 ± 0.89a 29.46 ± 1.91b 38.61 ± 3.13a

a,b,c,d Mean values with different superscripts within rows are significantly different at p < 0.05.
SFA: saturated fatty acids sum of (C14:0 + C16:0 + C18:0).
MUFA: monounsaturated fatty acids sum of (C16:1 + C18:1n-9).
PUFA: polyunsaturated fatty acids sum of (C18: 2n-6 + C18:3n-6 + C18:3n-3 + C20:4n-6 + C20:5n-3 + C22:5n-3 + C22:6n-3).
n-6PUFA sum of (C18:2n-6 + C18:3n-6 + C20:4n-6).
n-3PUFA sum of (C18:3n-3 + C20:5n-3 + C22:5n-3 + C22:6n-3).
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Table 5
Motility characteristics of frozen thawed bull semen supplemented with ALA in BioXcell® extender.

Parameters ALA concentration (ng/ml)

0 3 5 10 15

VAP (�m/s) 39.25 ± 0.25c 59.65 ± 1.15a 61.1 ± 0.9a 44.35 ± 0.65b 45.35 ± 0.65b

VCL (�m/s) 51.45 ± 0.55d 80.75 ± 1.25b 91.35 ± 1.35a 67.15 ± 0.85c 69 ± 1c

VSL (�m/s) 37.55 ± 0.95c 55.8 ± 0.6a 52.85 ± 1.15a 38 ± 1c 44.5 ± 0.5b

ALH (�m) 7.8 ± 0b 6.6 ± 0c 9 ± 0a 4.95 ± 0.65d 4.15 ± 0.15d

BCF (HZ) 0.25 ± 0.05b 3.75 ± 0.25a 3.55 ± 0.05a 0.3 ± 0.1b 0.3 ± 0.1b

STR (%) 76 ± 1b 78.5 ± 0.5b 89 ± 0a 71 ± 1c 67 ± 1d

LIN 57 ± 0c 60 ± 0b 66.45 ± 0.45a 55.5 ± 0.5cd 53.5 ± 1.5d

Progressive motility (%) 33.6 ± 0.3d 37.95 ± 0.05b 45 ± 0a 34.5 ± 0.5c 32 ± 1cd

Values in each row that do not have common superscripts are significantly different (p < 0.05).
VAP: average path velocity.
VCL: curvilinear velocity.
VSL: straight-line velocity.
ALH: amplitude of lateral head movement.
BCF: beat cross frequency.
STR: straightness.
LIN: linearity.

Fig. 1. MDA production in frozen thawed bovine semen treated with ALA
in Bioxcell® extender.

increased. The concentrations of sperm ALA recovered at
0, 3, 5, 10, and 15 ng/ml ALA treatments were 0.43 ± 0.09,
0.81 ± 0.09, 1.05 ± 0.09, 1.20 ± 0.09, and 1.67 ± 0.09 ng/ml,
respectively. Similarly, concentration of total polyunsatu-
rated fatty acids (PUFAs) in sperm was also affected.

Table 5 shows the motility parameters observed using
CASA. All parameters showed higher values for ALA at
5 ng/ml. VAP, VSL and BCF were non-significant between
3 and 5 ng/ml but other parameters such as VCL, ALH, STR,
LIN and progressive motility were significantly higher in
5 ng/ml of ALA.

Lipid peroxidation assessed by the amount of MDA
produced is shown in Fig. 1. From the graph the MDA pro-
duction increased as ALA supplement increases.

4. Discussions

In the current study addition of ALA in semen extender
exhibited positive impact on sperm parameter such as
motility, membrane integrity, morphology, acrosome
integrity, viability. Furthermore, at 5 ng/ml ALA group
gave the highest values compared to other supplemented
groups. Supplementation with 5 ng/ml ALA improved
sperm cytological characteristics in chilled semen. These
findings are supported by a previous similar study by
Kiernan et al. (2013) who reported that addition of ALA
(10 and 100 �M), palmitic acid (100 �M) and oleic acids
(OA) (10 and 100 �M) in citrate based extenders with and
without egg yolk improved progressive motility, linear

motility and viability of bull sperm chilled for 7 days.
Moreover, 5 ng/ml ALA also improved sperm cytological
characteristics of frozen-thawed semen. Badr et al. (2004)
and Takahashi et al. (2012) reported that palmitic acid and
linoleic acid added in citrate extender increased motility
and viability in frozen-thawed bull sperm. However, the
findings in the present study do not echo those of Abavisani
et al. (2013) and Sheikholeslami Kandelousi et al. (2013)
who added n-3 fatty acids and soft gels containing n-3,
n-6, n-9 fatty acids, respectively, in citrate extenders with
polyethylene glycol as the solvent. These two studies
reported decreased in sperm motility, morphology and
viability in chilled and frozen-thawed bull semen. The
disparity between the present study and the two earlier
findings may be due to the types of solvent used. The
polyethylene glycol used in earlier studies (Sheikholeslami
Kandelousi et al., 2013; Abavisani et al., 2013) is detrimen-
tal to the sperm. In addition the effects of fatty acids on
sperm quality may vary due to the sources of fatty acids,
types of fatty acid and solvent used as well as the amount
of fatty acids (Castellano et al., 2010; Sheikholeslami
Kandelousi et al., 2013) incorporated into the
extenders.

Concentrations higher or lower than 5 ng/ml ALA sup-
plemented in the present study resulted in a lower semen
quality both after chilling and freezing. This indicates that
5 ng/ml as the recommended concentration of ALA for
optimum cryopreservation results. The increasing concen-
tration from 0 to 5 ng/ml showed a progressive trend in
sperm quality. This may be because these concentrations
have helped in improving plasma membrane fluidity and
integrity and thus reduce ice crystal formation during
cooling and freezing (Nasiri et al., 2012). The higher con-
centrations did not produce better sperm characteristics
may be because of the presence of more fatty acids that
make mammalian sperm susceptible to lipid peroxidation
(Aitken et al., 1993; Kothari et al., 2010).

The present study also shows an increase in ALA uptake
and recovery by sperm cells with an increase in ALA
supplementation. This is validated by an earlier study
(Maldjian et al., 2005) that reported the occurrence of fatty
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acid absorption by sperm membrane particularly at the
tail region.

Lipid peroxidation (LP) is the damage of fatty acid
mainly polyunsaturated fatty acids (PUFAs) which are ALA
and DHA (Aitken et al., 1993; Kothari et al., 2010). As PUFAs
are more vulnerable to highly reactive and short lived free
radicals called reactive oxygen species (ROS) attack owing
to the double bonds, the LPO was assessed by measuring
melondialdehyde (MDA), a molecule released after oxida-
tion of lipids and used as a biomarker of oxidative stress
(Sanocka and Kurpisz, 2004). MDA production increases
with high rate of LP process due to high production of ROS
that decreases sperm motility (Sanocka and Kurpisz, 2004)
and the fluidity of sperm membrane (Gharagozloo and
Aitken, 2011). The decrease in quality of chilled and frozen
semen in ALA concentrations >5 ng/ml may be attributed
to the observed higher recovery of ALA absorbed with sub-
sequent increased in LPO reaction and MDA production
that probably may cause an oxidative stress to the sperm
cells. It was observed that lipid peroxidation increased lin-
early with increase in ALA concentrations. In comparison
to other previous studies Kiernan et al. (2013) reported
that ALA delayed production of ROS in chilled semen. The
results showed that cooled and frozen sperm quality were
improved with 5 ng/ml. considering the results of sperm
quality parameters, fatty acid uptake and lipid peroxidation
of sperm cells, the optimum level of ALA to be supple-
mented in Bioxcell® extender so as to improve chilled and
frozen bull semen quality is 5 ng/ml.

5. Conclusion

The present study revealed that adding ALA into
Bioxcell® semen extender improved post-cooling and post
thawed quality of bovine semen. ALA uptake was observed
to be linear in relation to ALA concentration added. A
concentration of 5 ng/ml of ALA was found to be the opti-
mum level for best semen cryopreservation result using
Bioxcell® extender and with tolerable LPO reactions and
amount of MDA production.
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