
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 15, 232--240 (1977)

Algebraic Properties of Derivation Words

GY6RGY R~v~sz

Computer and Automation Institute of Hungarian Academy of Sciences,
1502 Budapest, XI, Kende u. 13-17, Hungary

Received July 19, 1976; revised November 1, 1976

Derivation words introduced by Hart represent the canonical (leftmost) derivations in
a phrase structure g rammar and allow for a concrete realization to the categorical t reatment
of derivations due to Hotz. In this paper a simple self-embedding property of the domain
and codomain functions of this realization will be established. This property can be used
for simplifying most definitions and making the proofs much shorter.

1. INTRODUCTION

Derivation languages as defined by Hart [I] seem to be appropriate tools for algebraic
representation of phrase structure derivations. They have a straightforward connection
with the syntactical graphs of Loeckx [2] and are deterministic context-sensitive languages.
But from the algebraic point of view it is more important that the composition and
juxtaposition of derivations introduced by Hotz [3] can be given in terms of operations
on derivation words. These operations are based on two functions defining the domain
and the codomain of a derivation word.

In the present paper an interesting self-embedding property of these functions will
be established which can be used for a more compact characterization of derivation
languages and to render the proofs of the relevant theorems much shorter.

In Section 2 we recapitulate the original definitions given by Hart [1]. In Section 3 we
present the alternative definitions and establish the self-embedding property of the
domain and codomain functions. Also, we give the proofs of the basic theorems by using
this property. Section 4 deals with the operations on derivation words where we slightly
generalize the original definitions.

The reader may skip Section 2 if he is not interested in the connection with the original
definitions. In either case it is assumed that the reader is familiar with the notions of
phrase structure grammar and derivation in a phrase structure grammar.

In accordance with Hart [1] we slightly deviate from the standard notation of phrase
structure grammars to the extent of assigning production names (or labels) to the elements
of P. More precisely, let G -- (V N , V r , S, P) be a phrase structure grammar where
V N , V r , S , and P are the set of nonterminal symbols, the set of terminal symbols, the

232
Copyright �9 1977 by Academic Press, Inc.
All rights of reproduction in any form reserved. ISSN 0022-0000

PROPERTIES OF DERIVATION WORDS 2 3 3

initial symbol, and the set of production rules, respectively. Then each production rule
in P will have a unique name, in symbols

p: u - - - ~ v ~ P

where u, v e (V N u V)T* and p is the name of the production rule. Hence the set of
productions can be given in the form

P == { Pa, P2 , P*:}

where each p~ stands for a specific production assigned to it. It is assumed that the
production names are distinct symbols of the alphabet P such that P ~ (V N w Vr) ~ .
For the sake of brevity l,~ u V r will usually be denoted by V. The empty string will be
denoted by A and the length of a string w by] w i. Often we shall use mixed strings, that
is, words over the alphabet V v3 P.

2. OLD DEFINITIONS

If Pi c P with Pi : ala2 "'" a,,, -+ b~b 2 "'" b~ for some m ~ 1, n ~> 0 (the a's and b's

are in V), we say that the head stratification of P i , H (p i) , is m, and the tail stratification

of P i , T (p i) , is n.

DEFINITION 2.1. Let G : (VN, Vr , S, P) be a phrase structure grammar. The
head sum of x c (V v) P)'<, Sl,(x) is defined as

(1) &(~) o,

(2) S,,(ax) - S , , (x) - 1 i f a e V a n d S a (x) > 0 ,

(3) Sh(ax) - S,,(x) -+- H (a) if a e P, and

(4) S h (x) i s undefined in all other cases.

The tail sum of x ~ (V u P) * , S t (x) , is defined as

(j) s , (a) : o,

(2) S,(xa) S,(x) - - I if a e 17 and S t (x) > O,

(3) St (xa) =: S,(x) _L_ T(a) if a e P, and

(4) S~(x) is undefined in all other cases.

Note that if A't~ and S~ are defined, they are nonnegative. If Sh(x) 0, then x = a x ' p

for some a c V, x' e (V u P) * , and p e P, or else x =- h. If S t (x) 0 and x /a A, then
either x px 'a as above or x x 'p for somep E P with T(p) -- 0 and x' with St(x') - - 0.

DEFINITION 2.2. Let G -- (V N , V r , S, P) be a phrase structure grammar. A string
w ~ (V u P)* is said to have domain ala 2 ... a written dom(w) ata 2 "" a if and
only if w can be written as

W alxla.zx 2 "'" amx m ,

234 GY6RGY l~Vl~SZ

w i t h a l , a 2 a , , , ~ V a n d S t (X l) S t (x2) - St(xo~) O.
b 1 -'" b~, wri t ten cod(w) = bib` , ". . b , , , if w can be wri t ten as

w = y o b l y 2 b . 2 "'" 3,~_1b,~

w has codomain

wi th h i , b 2 br c V and S h (y o) = S ~ , (y l) - " " = S h (y , , _ ~) - - O.

T h e defini t ion of dora(w) and cod(w) is precise, for a word w has at most one such

factorization. Also, if d o m (w l) = x I and dom(w2) -= x.,, then dom(wlw`,) == X l X ` , .

Likewise , if cod(w1) - - Yl and cod(w,,) y e , then cod(w~we) Y l Y ` , . Thus , dora and

cod are h o m o m o r p h i s m s where they are defined.

DEFINITION 2.3. Le t G (I / ~ , V r , S, P) be a phrase s t ructure grammar . A

der ivat ion word with domain x c V* and codomain y ~ V* is defined recursively as

follows.

(1) I f w : a l a 2 " " a m c V * (m ::~-~ 0), then w is a der ivat ion word with dom(w) =

cod(w) w.

(2) I f w ~ (V U P) * is a derivat ion word with w w l w 2 w ~ , cod(w1) u, cod(w`,)--

a l a 2 --" a cod(w.~) - - v, and dom(w) :== x, and if p: ala , , " " a,, - ~ b i b 2 " . b.~ ~ P , then

z - - w l w z p b l b 2 . ' . b,~w a

is a derivation word with dom(z) ~:: x and cod(z) u b I " " b,~v.

(3) Noth ing else is a derivat ion word unless its being so follows f rom (1) and (2).

Th is definition is precise, and it is easy to check (using recursion) that the derivat ion

words have the indicated domain and codomain as defined by Defini t ion 2.2.

DEFINITION 2.4. Le t G = (V N , ~/'T , S , P) be a phrase s tructure g rammar and w 1 , 7./)2

der ivat ion words of G. T h e n the juxtaposi t ion of w~ with w 2 is the concatenat ion of w~

and w,,, i.e., the product WxW`, in the free mono id (V t j p) * .

DEFINITION 2.5. Le t G (VN, V r , S, P) be a phrase s tructure g rammar and w I , w 2

derivat ion words with dom(w2) = cod(w1). I f dora(w2) =: b, " - b~ (b i e V) wi th

w 1 y o b t y l . . . y~_~b ,~ (S h (y ~) == 0, i == 0, 1 n - - 1)

and

w`, b ~ x l - . . b ~ x , ~ (S ~ (x ~) = 0 , i - 1 , .)

then the composi t ion of w 2 wi th w 1 , wri t ten w 2 o w 1 , is

w 2 o w 1 - - y o b l X , y l b 2 X 2 y o "'" b ~ x n .

I n the next section we shall see that the funct ions H (x) , T (x) , S n (x) , and S t (x) are not

needed here at all.

PROPERTIES OF DERIVATION WORDS 235

3. NEW DEFINITIONS AND THE SELF-EMBEDDING PROPERTY

DEFINITION 3.1. Let G : (V~v, VT, S, P) be a phrase structure grammar. T h e
domain of a string w ~ (V u P)*, dom(w), is defined recursively as follows.

(1) I f w c V*, then dora(w) = w,

(2) if dom(xv) is defined and p: u --+ v c P, then dom(xpvy) = dom(xy).

The codomain of a string w ~ (V k3 P)*, cod(w), is defined recursively as follows.

(1) I f w ~ V*, then cod(w) = w,

(2) if cod(xy) is defined and p : u -+ v ~ P, then cod(xupy) = cod(xy).

Note that dom(w) and cod(w) are in V* whenever they are defined. I t is easy to show
by induction on the number of production names occurring in w that these definitions
are precise. For, if w has two different decompositions Xl pxvly 1 and x2 p2v~y2, then the
substrings pxvl and p2vz may not overlap, that is, either w ~ XpWlzp2v2y or w =
xp2v2zPlVly for some x, z, y e (V t3 P)*. Therefore

dom(w) = dom(xxyl) == dom(x2y2) = dom(xzy)

which is precise by the induction hypothesis. The argument is quite similar for cod(w).
These functions have the self-embedding proper ty expressed by the next lemma.

LEMMA 3.1.

and

I f wl , w2, wa ~ (V t3 P)* , then

dom(wxw2%) = dom(w 1 dom(w,,)%),

cod(wlw2ws) = cod(w 1 cod(w2)wa)

whenever the right-hand side of the corresponding equation is defined.

Proof. This will be shown by induction on the number of production names occurring
in w. z . Basis: I f w 2 ~ V*, then the assertion is trivial. Induction step: Suppose that w 2
contains n production names (n) 1) and dom(w 1 doln(wo)w3) is defined. This implies
that dom(w2) is also defined, hence w, ~ xpvy for some x, y ~ (V k3 P)* a n d p : u ~ v ~ P
with dom(w2):- dom(xpvy) == dom(xy). Then

dom(wtw2w3) = dom(wlxpvyw3) = dom(wlxyw3)

by definition and

doin(wlxywa) = dom(w I dom(xy)ws)

by the induction hypothesis which completes the proof.
The second equation of the lemma can be shown by a similar argument.

DEFINITION 3.2. Let G = (V~ , V r , S, P) be a phrase structure grammar. T h e
derivation language of G, D(G), is defined recursively as follows.

236 GYORGY REVI~SZ

(I) I f w ~ V * then w ~ D (G) ,

(2) if xy ~ D(G) with cod(x), cod(y) being defined and p: u--~ v ~ P such that
cod(x) : - zu for some z e V*, then xpvy ~ D(G).

(3) Nothing else belongs to D(G).

The elements of D(G) are called derivation words of G.

EXAMPLE 3.1. Let G = (1/~, 1~ , S, P) be a phrase structure grammar with
V N - {S, A, B}, [') =- {a, b}, and P = { Pl : S --~ SAb, pz : bAb -+ aBa, pa : Aa -~ AB,
p, : B B -*- aBb}. Then the derivation word

w ~- SpiSplSAbAbp2aP3ABBa

represents the derivation given by the syntactical graph in Fig. 1.

Pl

Fie.. I. Syntactical graph of Example 3.l.

To show the domain and the codomain of this derivation word, we parenthesize its
substrings in both ways.

domain: S (p l S (p l S A b) Ab)(p2a(paAB) Ba),

codomain: (Sp,)(Spl) S(A(bAbp2) ap3) ABBa.

PROPERTIES OF DERIVATION WORDS 237

As can be seen in this example the domain and the codomain correspond to the starting
and the ending nodes, respectively. This is true in general for derivation words as it is
shown below. Actually, derivation words can be considered as morphisms of a category
whose objects are the strings in V*. First we show the following lemma.

LEMMA 3.2. I f w ~ D(G) then both dora(w) and cod(w) are defined.

Proof. The proof is given by induction on the number of production names occurring
in w. Basis: For w ~ V* the assertion is trivial. Induction step: Assume that the lemma
is true for derivation words containing at most n production names and let w contain
n +] of them. According to the definition of D(G), w must be of the form xpvy where xy

contains n production names. Hence,

dom(w) -- dom(xpvy) ~- dom(xy)

which is defined by the induction hypothesis. On the other hand,

cod(w) = cod(cod(x)pry) ~ cod(zupvy)

for some z ~ V* with p: u ~ v ~ P. Then

cod(zupvy) = cod(z cod(up) vy) = cod(zvy)

where zvy contains at most n production names and this completes the proof.
Note that dom(w) or cod(w) may be defined even if w ~ D(G). Now we can show the

basic theorem which justifies the name of derivation words.

THEOREM 3.l. I f w ~ D(G) then dom(w) *~o cod(w).

Proof. Again this is shown by induction on the number of production names in w.
Basis: For w ~ V* the assertion is trivial. Induction step: Let w contain n production
names (n ~ 1). Then w = xpvy for some x, y 6 (V u P)*, p ~ P, and v ~ V* as required
by the definition of D(G). Hence

and

dom(w) dom(xpvy) = dom(xy)

dom(xv) *~ cod(xy)
G

by the induction hypothesis. Further, by Lemma 3.1 we have

cod(xy) ---- cod(cod(x)y) = cod(cod(x)cod(y)) ~ cod(x)cod(y)

-- zu cod(y) *~ zv cod(y) : cod(zv cod(y)) = cod(zvy)
G

== cod(z cod(up)vy) = cod(zupvy) = cod(cod(x)pvy) = cod(w)

and this completes the proof.

238 GYORGY RI~VI~SZ

COROLLARY. The language generated by the grammar G can be given as

L(G) = (cod(w)] w ~ D(G), dom(w) = S, cod(w) 6 Vr*).

We conclude this section by an important characterization theorem to the effect that
the conversion of Lemma 3.2 is also true.

THEOREM 3.2. W ~ D(G) i f and only if both dom(w) and cod(w) are defined.

Proof. We have to show only the if part which will be done by induction on the
number of production names occurring in w. Basis: For w ~ V* the assertion is trivial.
Induction step: Let w contain n production names (n ~ 1) and both dom(w) and cod(w)
be defined. Then there must occur some p in w such that w ~- xpvy and dom(w) =
dom(xpvy) = dom(xy). If there is more than one such p then we choose the rightmost
one. In this case y must be in V* and thus, cod(y) must be defined. (Namely, the com-
putation of dom(w) is performed by successive cancellation of production names occurring
in w together with a possibly empty substring from the right context of the given p.
Hence, the rightmost p in w may be canceled first.)

For this particular p we have cod(w) = cod(xpvy) = cod(cod(xp)vy) provided that
cod(xp) is defined. But, this must be the case, otherwise in the course of the computation
of cod(w) we could not cancel this p at all. Further, cod(xp) -- cod(cod(x)p) therefore,
cod(x) must be also defined with cod(x) = zu, z ~ V*, andp: u --~ v ~ P. This means that
cod(xy) is also defined for cod(xy) = cod(cod(x) cod(y)) = cod(x) cod(y).

Now, xy ~ D(G) by the induction hypothesis and thus, w = xpvy ~ D(G) by the
definition of D(G).

4. OPERATIONS ON DERIVATION WORDS

For the juxtaposition of derivation words we will use the same definition as given in
Section 2. (See Definition 2.4.)

THEOREM 4.1. I f w a and w 2 are in D(G) then the juxtaposition of w 1 with w 2 is also
in D(G).

Proof. By Lemma 3.2 dom(wl), dora(w2), cod(Wl), and cod(w2) are all defined.
Therefore

dom(wlw2) = dom(dom(wa) dom(w~)) = dom(wl) dom(wo),

cod(wlw2) = cod(cod(w0 cod(w2)) = cod(w0 cod(w2).

Hence by Theorem 3.2 WlW 2 ~ D(G) which completes the proof.

and

DEFINITION 4.1. Let wl , w 2 E (V U P)* with cod(w1) = dom(w2) and cod(W1) 4 : 2
if W 1 -~ A. Then the composition of w~ with w 1 , written w 2 o w 1 , is defined recursively
as follows.

P R O P E R T I E S O F D E R I V A T I O N W O R D S 239

(1) I f w 1 -~ A then w 2 o w I : We,

(2) if for some v ~ V+ and u l , ue, Z l , Z 2 ~ (V k.) P) * w 1 u~vzx with c o d (w 1) :

v cod(z1) and w 2 : uevz ~ with dom(ue) - - A, then w 2 o w 1 : UeUlV(Z 2 o z l) .

Note that cod(u1) : A always holds here. Namely, we have

cod(w1) = cod(UlVZl) : cod(UlV cod(z1)) : cod(u I cod(w1)) - - cod(u1)cod(w1)

provided that cod(u1) is defined. But this mus t be the case since cod(w1) is defined and
any t runca t ion of w I f rom the r ight preserves the computabi l i ty of the codomain funct ion.
(Symmetrical ly, left t runca t ion preserves the computabi l i ty of the domain funct ion.)

I t is easy to see that for derivat ion words the above defini t ion is equivalent to Defini-
t ion 2.5. Actually, by a repeated application of recursion scheme (2) we obta in the

decomposit ions

W 1 = U l , I ' U l U l , 2 U 2 ' ' " Ul,lc'UkZl,!c

W 2 = U 2 , 1 ' U l U 2 , e V 2 " ' " U2,kVk~2,?c ,

W 2 o W l = U2,1121,1"/) 1 " ' " U2,kUl,~7)k(Z2,Ic o Z l , k)

where cod(ul,i) ~ dom(ue,i) - A for i = I,. . . , k and dom(ze,~) = Zl.7~ = A. Here we
may choose each v i to consist of only one letter, that is, we may insert r edundan t empty
ul. i and ue, i str ings between the letters of the v's. Now, if w 2 is a derivation word then
ue, 1 mus t be A and thus, we obta in the same result as with Defini t ion 2.5.

On the other hand, w I and w e need not be derivation words. If, for instance, p : A B --~

C D ~ G and Wl, w 2 are derivation words with cod(w1) = dom(we) then p C D w 2 o w 1 is
also defined though p C D w 2 is no t a derivation word since cod(pCDw2) is undefined.

The impor tan t features of the composi t ion follow immedia te ly from our definit ion
as we will show below.

THEOREM 4.2 (Composi t ion Theorem) . I f w t and w 2 are derivation words w i th

cod(w1) = dom(we) then dom(w2 owl) = dom(wl) and cod(wz o Wl) = cod(we).

Proof . For w 1 = A the assertion is trivial. Otherwise recursion scheme (2) mus t be
applied finitely m a n y times. Thus , we have

dom(w2 o w l) = dom(ue, lUl . lV 1 "" Ue,kul,kVk(Ze. k o z l . k))

= dom(dom(u2,l) U l . l V I " ' " dom(ue.k) U l . k V k dom(ze.k))

dom(ul , lv I .-. ut,~vk) = dom(wl).

Similarly,

cod(we owl) = cod(ue,1 cod(u1.1) vl "'" ue.k cod(Ul.k) v~ze,~:)

: cod(Ue.lV 1 -.. ue,~)kZe.~) : cod(we).

THEOREM 4.3 (Juxtaposi t ion Theorem) . xeY2 ~ x l Y l = (x2 o x l) (y z o y:) whenever the

latter is defined.

240 GYORGY RI~VI~SZ

Proof . If xt =- A then the assertion is trivial. Let xl = u~vz 1 and x 2 = u2vz 2 according
to (2) of Definition 4.1. Then

x,, y~ o x l y l U2UlV(z2y 2 o zay~) = u.~utv(z 2 o Zl)(y ~ o y t) = (x2 o x~)(y~ o Yl)

by definition and by the induction hypothesis.
Clearly the operations of composition and juxtaposition can be extended to more than

two operands and analoguous theorems will hold for this case.
Finally, let us consider the same example as given by Hart [1]. (See Example 3.1 in

his paper.) The rules of the grammar are

and

are derivation
decompositions

and

Pl : A B --~ C A B , pe : C --* B A , Pz : B A A --+ C B A ,

w 1 - - A B p l C A B p l C p 2 B A A B ,

Wz = C p e B A B p l C A B A A p a C B A B ,

words with cod(~01)= d o m (w z) = C B A A B . Now, we will have the

W 1 glV,~'l , where ua = A B p t , v = C, 211 = A B p x C p 2 B A A B ,

w e - - u2vz2 , where u 2 = A, v = C, z 2 = p 2 B A B p I C A B A A p a C B A B .

It can be observed that z 2 is not a derivation word here, but z 2 o zt is still defined. The
repeated application of recursion scheme (2) will yield

w~ o w 1 = A B p l C p ~ B A A B p ~ C p 2 B p l C A B A A p ~ C B A B

which is again a derivation word with dom(w z o W l) = dora(w1) and cod(w 2 owl) =
cod(wz). This means, of course, that

A B = dora(w1) *=~ cod(w~) = B C A C B A B . G

REFERENCES

1. J. M. HAaT, Derivation languages and syntactical categories, Inform. Contr. 28 (1975), 204-220.
2. J. LOEeKX, The parsing of general phrase structure grammars, Inform. Contr. 16 (1970),443--464.
3. G. HOTZ, Eindeutigkeit und Mehrdeutigkeit formaler Sprachen, Elektron. Informationsverarbeit.

Kybernetic 2 (1966), 235-246.

