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Derivation words introduced by Hart  represent the canonical (leftmost) derivations in 
a phrase structure g rammar  and allow for a concrete realization to the categorical t reatment 
of derivations due to Hotz. In  this paper  a simple self-embedding property of the domain 
and codomain functions of this realization will be established. This  property  can be used 
for simplifying most  definitions and making the proofs much  shorter. 

1. INTRODUCTION 

Derivation languages as defined by Hart [I] seem to be appropriate tools for algebraic 
representation of phrase structure derivations. They have a straightforward connection 
with the syntactical graphs of Loeckx [2] and are deterministic context-sensitive languages. 
But from the algebraic point of view it is more important that the composition and 
juxtaposition of derivations introduced by Hotz [3] can be given in terms of operations 
on derivation words. These operations are based on two functions defining the domain 
and the codomain of a derivation word. 

In the present paper an interesting self-embedding property of these functions will 
be established which can be used for a more compact characterization of derivation 
languages and to render the proofs of the relevant theorems much shorter. 

In Section 2 we recapitulate the original definitions given by Hart [1]. In  Section 3 we 
present the alternative definitions and establish the self-embedding property of the 
domain and codomain functions. Also, we give the proofs of the basic theorems by using 
this property. Section 4 deals with the operations on derivation words where we slightly 
generalize the original definitions. 

The reader may skip Section 2 if he is not interested in the connection with the original 
definitions. In  either case it is assumed that the reader is familiar with the notions of 
phrase structure grammar and derivation in a phrase structure grammar. 

In accordance with Hart [1] we slightly deviate from the standard notation of phrase 
structure grammars to the extent of assigning production names (or labels) to the elements 
of P. More precisely, let G -- (V N , V r , S, P)  be a phrase structure grammar where 
V N , V r , S ,  and P are the set of nonterminal symbols, the set of terminal symbols, the 
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initial symbol, and the set of production rules, respectively. Then  each production rule 
in P will have a unique name, in symbols 

p:  u - - - ~ v ~ P  

where u, v e (V N u V)T* and p is the name of the production rule. Hence the set of 
productions can be given in the form 

P == { Pa, P2 .... , P*:} 

where each p~ stands for a specific production assigned to it. It is assumed that the 
production names are distinct symbols of the alphabet P such that P ~ (V N w Vr) ~ .  
For the sake of brevity l,~ u V r  will usually be denoted by V. The empty string will be 
denoted by A and the length of a string w by ] w i. Often we shall use mixed strings, that 
is, words over the alphabet V v3 P. 

2. OLD DEFINITIONS 

If  Pi c P with Pi : ala2 "'" a,,, -+ b~b 2 "'" b~ for some m ~ 1, n ~> 0 (the a's and b's 

are in V), we say that the head stratification of P i ,  H ( p i ) ,  is m, and the tail stratification 

of P i ,  T ( p i ) ,  is n. 

DEFINITION 2.1. Let G : (VN, Vr ,  S, P)  be a phrase structure grammar. The  
head sum of x c ( V  v) P)'<, Sl,(x) is defined as 

(1) &(~)  .... o, 

(2) S,,(ax) - S , , ( x ) -  1 i f a e V a n d S a ( x  ) > 0 ,  

(3) Sh(ax  ) - S,,(x) -+- H ( a )  if a e P, and 

(4) S h ( x ) i s  undefined in all other cases. 

The tail sum of x ~ ( V u P ) * ,  S t (x) ,  is defined as 

( j )  s , (a )  : o, 

(2) S,(xa) S,(x) - -  I if a e 17 and S t (x  ) > O, 

(3) St (xa)  =: S,(x) _L_ T(a) if a e P, and 

(4) S~(x) is undefined in all other cases. 

Note that if A't~ and S~ are defined, they are nonnegative. If Sh(x  ) 0, then x = a x ' p  

for some a c V,  x'  e ( V  u P ) * ,  and p e P, or else x =- h. If S t ( x  ) 0 and x /a A, then 
either x px 'a  as above or x x 'p  for somep E P with T(p)  --  0 and x' with St(x' ) - -  0. 

DEFINITION 2.2. Let G --  (V N , V r , S, P)  be a phrase structure grammar. A string 
w ~ (V u P)* is said to have domain ala 2 ... a ..... written dom(w) ata 2 "" a .... if and 
only if w can be written as 

W alxla.zx 2 "'" amx m , 
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w i t h  a l ,  a 2 . . . . .  a , , ,  ~ V a n d  S t (X l )  S t (x2)  . . . . .  - St(xo~ ) O. 
b 1 -'" b~, wri t ten  cod(w) = bib` ,  ". .  b , , ,  if w can be wri t ten  as 

w = y o b l y 2 b . 2  "'" 3,~_1b,~ 

w has codomain  

wi th  h i ,  b 2 . . . . .  br c V and S h ( y o )  = S ~ , ( y l )  - " "  = S h ( y , , _ ~ )  - -  O. 

T h e  defini t ion of dora(w) and cod(w) is precise, for a word  w has at most  one such 

factorization.  Also, if d o m ( w l ) =  x I and dom(w2) -=  x.,, then  dom(wlw`, ) == X l X ` , .  

Likewise ,  if cod(w1) - -  Yl and cod(w,,) y e ,  then  cod(w~we) .... Y l Y ` , .  Thus ,  dora and 

cod are h o m o m o r p h i s m s  where they are defined. 

DEFINITION 2.3. Le t  G ( I / ~ ,  V r ,  S, P )  be a phrase s t ructure  grammar .  A 

der ivat ion  word  with  domain  x c V* and codomain  y ~ V* is defined recursively as 

follows. 

(1) I f  w : a l a  2 " "  a m c V *  ( m  ::~-~ 0), then w is a der ivat ion word  with dom(w) = 

cod(w) w. 

(2) I f  w ~ (V U P ) *  is a derivat ion word  with  w w l w 2 w  ~ , cod(w1) u, cod(w`,)-- 

a l a  2 --" a .... cod(w.~) - -  v, and dom(w) :== x, and if p:  ala , ,  " "  a,, - ~  b i b  2 " .  b.~ ~ P ,  then  

z - -  w l w  z p b l b  2 . ' .  b,~w a 

is a derivation word  with  dom(z)  ~:: x and cod(z) u b  I " "  b,~v. 

(3) Noth ing  else is a derivat ion word  unless its being so follows f rom (1) and (2). 

Th is  definition is precise, and it is easy to check (using recursion) that  the derivat ion 

words  have the indicated domain  and codomain  as defined by Defini t ion 2.2. 

DEFINITION 2.4. Le t  G = ( V  N , ~/'T , S ,  P )  be a phrase s tructure g rammar  and w 1 , 7./)2 

der ivat ion words  of G. T h e n  the juxtaposi t ion of w~ with  w 2 is the concatenat ion of w~ 

and w,,, i.e., the  product  WxW`, in the free mono id  (V t j p ) * .  

DEFINITION 2.5. Le t  G (VN, V r ,  S, P )  be a phrase s tructure g rammar  and w I , w 2 

derivat ion words  with dom(w2) = cod(w1). I f  dora(w2) =: b, " -  b~ (b i e V) wi th  

w 1 y o b t y l  . . .  y~_~b ,~  ( S h ( y ~ )  == 0, i == 0, 1 ..... n - -  1) 

and 

w`,  b ~ x l  - . .  b ~ x , ~  ( S ~ ( x ~ )  = 0 ,  i - 1 . . . .  , .) 

then  the composi t ion of w 2 wi th  w 1 , wri t ten  w 2 o w 1 , is 

w 2  o w 1 - -  y o b l X ,  y l b 2 X 2 y o  "'" b ~ x n .  

I n  the next  section we shall see that  the funct ions H ( x ) ,  T ( x ) ,  S n ( x ) ,  and S t ( x )  are not  

needed  here at all. 
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3. NEW DEFINITIONS AND THE SELF-EMBEDDING PROPERTY 

DEFINITION 3.1. Let  G : (V~v, VT, S, P)  be a phrase structure grammar. T h e  
domain of a string w ~ (V u P)*,  dom(w), is defined recursively as follows. 

(1) I f  w c  V*, then dora(w) = w, 

(2) if dom(xv) is defined and p:  u --+ v c P, then dom(xpvy) = dom(xy). 

The  codomain of a string w ~ (V k3 P)*,  cod(w), is defined recursively as follows. 

(1) I f  w ~  V*, then cod(w) = w, 

(2) if cod(xy) is defined and p :  u -+  v ~ P, then cod(xupy) = cod(xy). 

Note that dom(w) and cod(w) are in V* whenever they are defined. I t  is easy to show 
by induction on the number  of production names occurring in w that these definitions 
are precise. For,  if w has two different decompositions Xl pxvly 1 and x2 p2v~y2, then the 
substrings pxvl and p2vz may not overlap, that is, either w ~ XpWlzp2v2y or w = 
xp2v2zPlVly for some x, z, y e (V t3 P)*.  Therefore 

dom(w) = dom(xxyl) == dom(x2y2) = dom(xzy) 

which is precise by the induction hypothesis. The  argument is quite similar for cod(w). 
These functions have the self-embedding proper ty  expressed by the next lemma. 

LEMMA 3.1. 

and 

I f  wl , w2,  wa ~ ( V  t3 P)* ,  then 

dom(wxw2% ) = dom(w 1 dom(w,,)%), 

cod(wlw2ws) = cod(w 1 cod(w2)wa) 

whenever the right-hand side of the corresponding equation is defined. 

Proof. This will be shown by induction on the number  of production names occurring 
in w. z . Basis: I f  w 2 ~ V*, then the assertion is trivial. Induction step: Suppose that w 2 
contains n production names ( n )  1) and dom(w 1 doln(wo)w3) is defined. This  implies 
that dom(w2) is also defined, hence w, ~ xpvy for some x, y ~ (V k3 P)*  a n d p :  u ~ v ~ P 
with dom(w2):- dom(xpvy) == dom(xy). Then  

dom(wtw2w3) = dom(wlxpvyw3) = dom(wlxyw3) 

by definition and 

doin(wlxywa) = dom(w I dom(xy)ws) 

by the induction hypothesis which completes the proof. 
The  second equation of the lemma can be shown by a similar argument. 

DEFINITION 3.2. Let  G = (V~ ,  V r ,  S, P )  be a phrase structure grammar. T h e  
derivation language of G, D(G), is defined recursively as follows. 
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(I) I f w ~ V *  then w ~ D ( G ) ,  

(2) if xy ~ D(G) with cod(x), cod(y) being defined and p: u--~ v ~ P such that 
cod(x) : -  zu for some z e V*, then xpvy ~ D(G). 

(3) Nothing else belongs to D(G). 

The elements of D(G) are called derivation words of G. 

EXAMPLE 3.1. Let G = (1/~, 1~ ,  S, P)  be a phrase structure grammar with 
V N - {S, A, B}, [ ' )  =- {a, b}, and P = { Pl : S --~ SAb, pz : bAb -+ aBa, pa : Aa -~ AB,  
p,  : B B  -*- aBb}. Then the derivation word 

w ~- SpiSplSAbAbp2aP3ABBa 

represents the derivation given by the syntactical graph in Fig. 1. 

Pl 

Fie.. I. Syntactical graph of Example 3.l. 

To show the domain and the codomain of this derivation word, we parenthesize its 
substrings in both ways. 

domain: S ( p l S ( p l S A b  ) Ab)(p2a(paAB) Ba), 

codomain: (Sp,)(Spl) S(A(bAbp2 ) ap3 ) ABBa.  
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As can be seen in this example the domain and the codomain correspond to the starting 
and the ending nodes, respectively. This is true in general for derivation words as it is 
shown below. Actually, derivation words can be considered as morphisms of a category 
whose objects are the strings in V*. First we show the following lemma. 

LEMMA 3.2. I f  w ~ D(G) then both dora(w) and cod(w) are defined. 

Proof. The proof is given by induction on the number of production names occurring 
in w. Basis: For w ~ V* the assertion is trivial. Induction step: Assume that the lemma 
is true for derivation words containing at most n production names and let w contain 
n + ] of them. According to the definition of D(G), w must be of the form xpvy where xy 

contains n production names. Hence, 

dom(w) -- dom(xpvy) ~- dom(xy) 

which is defined by the induction hypothesis. On the other hand, 

cod(w) = cod(cod(x)pry) ~ cod(zupvy) 

for some z ~ V* with p: u ~ v ~ P. Then 

cod(zupvy) = cod(z cod(up) vy) = cod(zvy) 

where zvy  contains at most n production names and this completes the proof. 
Note that dom(w) or cod(w) may be defined even if w ~ D(G). Now we can show the 

basic theorem which justifies the name of derivation words. 

THEOREM 3.l. I f  w ~ D(G) then dom(w) *~o cod(w). 

Proof. Again this is shown by induction on the number of production names in w. 
Basis: For w ~ V* the assertion is trivial. Induction step: Let w contain n production 
names (n ~ 1). Then w = xpvy for some x, y 6 (V u P)*, p ~ P, and v ~ V* as required 
by the definition of D(G). Hence 

and 

dom(w) dom(xpvy) = dom(xy) 

dom(xv) *~ cod(xy) 
G 

by the induction hypothesis. Further, by Lemma 3.1 we have 

cod(xy) ---- cod(cod(x)y) = cod(cod(x)cod(y)) ~ cod(x)cod(y) 

-- zu cod(y) *~ zv  cod(y) : cod(zv cod(y)) = cod(zvy) 
G 

== cod(z cod(up)vy) = cod(zupvy) = cod(cod(x)pvy) = cod(w) 

and this completes the proof. 
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COROLLARY. The language generated by the grammar G can be given as 

L(G) = (cod(w) ] w ~ D(G), dom(w) = S, cod(w) 6 Vr* ). 

We conclude this section by an important characterization theorem to the effect that 
the conversion of Lemma 3.2 is also true. 

THEOREM 3.2. W ~ D(G) i f  and only if both dom(w) and cod(w) are defined. 

Proof. We have to show only the if part which will be done by induction on the 
number of production names occurring in w. Basis: For w ~ V* the assertion is trivial. 
Induction step: Let w contain n production names (n ~ 1) and both dom(w) and cod(w) 
be defined. Then there must occur some p in w such that w ~- xpvy and dom(w) = 
dom(xpvy) = dom(xy). If  there is more than one such p then we choose the rightmost 
one. In  this case y must be in V* and thus, cod(y) must be defined. (Namely, the com- 
putation of dom(w) is performed by successive cancellation of production names occurring 
in w together with a possibly empty substring from the right context of the given p. 
Hence, the rightmost p in w may be canceled first.) 

For this particular p we have cod(w) = cod(xpvy) = cod(cod(xp)vy) provided that 
cod(xp) is defined. But, this must be the case, otherwise in the course of the computation 
of cod(w) we could not cancel this p at all. Further, cod(xp) --  cod(cod(x)p) therefore, 
cod(x) must be also defined with cod(x) = zu, z ~ V*, andp:  u --~ v ~ P. This means that 
cod(xy) is also defined for cod(xy) = cod(cod(x) cod(y)) = cod(x) cod(y). 

Now, xy ~ D(G) by the induction hypothesis and thus, w = xpvy ~ D(G) by the 
definition of D(G). 

4. OPERATIONS ON DERIVATION WORDS 

For the juxtaposition of derivation words we will use the same definition as given in 
Section 2. (See Definition 2.4.) 

THEOREM 4.1. I f  w a and w 2 are in D(G) then the juxtaposition of w 1 with w 2 is also 
in D(G). 

Proof. By Lemma 3.2 dom(wl), dora(w2), cod(Wl), and cod(w2) are all defined. 
Therefore 

dom(wlw2) = dom(dom(wa) dom(w~)) = dom(wl) dom(wo), 

cod(wlw2) = cod(cod(w0 cod(w2)) = cod(w0 cod(w2). 

Hence by Theorem 3.2 WlW 2 ~ D(G) which completes the proof. 

and 

DEFINITION 4.1. Let wl ,  w 2 E (V U P)* with cod(w1) = dom(w2) and cod(W1) 4 : 2  
if W 1 -~ A. Then the composition of w~ with w 1 , written w 2 o w 1 , is defined recursively 
as follows. 
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(1) I f  w 1 -~ A then w 2 o w I : We, 

(2) if for some v ~ V+ and  u l ,  ue,  Z l ,  Z 2 ~ ( V  k.) P ) *  w 1 u~vzx with c o d ( w 1 )  : 

v cod(z1) and  w 2 : uevz  ~ with dom(ue) - -  A, then  w 2 o w 1 : UeUlV(Z 2 o z l ) .  

Note that  cod(u1) : A always holds here. Namely,  we have 

cod(w1) = cod(UlVZl) : cod(UlV cod(z1)) : cod(u I cod(w1) ) - -  cod(u1)cod(w1) 

provided that cod(u1) is defined. But  this mus t  be the case since cod(w1) is defined and  
any  t runca t ion  of w I f rom the r ight  preserves the computabi l i ty  of the codomain  funct ion.  
(Symmetrical ly,  left t runca t ion  preserves the computabi l i ty  of the domain  funct ion.)  

I t  is easy to see that  for derivat ion words the above defini t ion is equivalent  to Defini-  
t ion  2.5. Actually,  by a repeated application of recursion scheme (2) we obta in  the 

decomposit ions 

W 1 = U l , I ' U l U l , 2 U 2  ' ' "  Ul,lc'UkZl,!c 

W 2 = U 2 , 1 ' U l U 2 , e V  2 " ' "  U2,kVk~2,?c , 

W 2  o W l  = U2,1121,1"/) 1 " ' "  U2,kUl,~7)k(Z2,Ic o Z l , k  ) 

where cod(ul,i) ~ dom(ue,i) - A for i = I,. . . ,  k and  dom(ze,~) = Zl.7~ = A. Here we 
may choose each v i to consist of only  one letter, that  is, we may insert  r edundan t  empty  
ul. i and  ue, i str ings between the letters of the v's.  Now, if w 2 is a derivation word then 
ue, 1 mus t  be A and thus,  we obta in  the same result  as with Defini t ion 2.5. 

On the other hand,  w I and w e need not  be derivation words. If, for instance, p :  A B  --~ 

C D  ~ G and  Wl, w 2 are derivation words with cod(w1) = dom(we) then  p C D w  2 o w 1 is 
also defined though p C D w 2  is no t  a derivation word since cod(pCDw2) is undefined.  

The  impor tan t  features of the composi t ion follow immedia te ly  from our  definit ion 
as we will show below. 

THEOREM 4.2 (Composi t ion Theorem) .  I f  w t and  w 2 are derivation words w i th  

cod(w1) = dom(we) then dom(w2 owl)  = dom(wl) and  cod(wz o Wl) = cod(we). 

Proof .  For  w 1 = A the assertion is trivial. Otherwise recursion scheme (2) mus t  be 
applied finitely m a n y  times. Thus ,  we have 

dom(w2 o w l )  = dom(ue, lUl . lV  1 "" Ue,kul,kVk(Ze. k o z l . k )  ) 

= dom(dom(u2,l)  U l . l V I  " ' "  dom(ue.k) U l . k V k  dom(ze.k)) 

dom(ul , lv  I .-. ut,~vk) = dom(wl). 

Similarly, 

cod(we owl)  = cod(ue,1 cod(u1.1) vl "'" ue.k cod(Ul.k) v~ze,~:) 

: cod(Ue.lV 1 -.. ue,~)kZe.~) : cod(we). 

THEOREM 4.3 (Juxtaposi t ion Theorem) .  xeY2 ~ x l Y l  = (x2 o x l ) ( y z  o y:)  whenever the 

latter is defined. 
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Proof .  If xt =- A then the assertion is trivial. Let xl = u~vz 1 and x 2 = u2vz  2 according 
to (2) of Definition 4.1. Then  

x,, y~ o x l y l  U2UlV(z2y 2 o zay~) = u.~utv(z 2 o Zl)(y ~ o y t )  = (x2 o x~)(y~ o Yl) 

by definition and by the induction hypothesis. 
Clearly the operations of composition and juxtaposition can be extended to more than 

two operands and analoguous theorems will hold for this case. 
Finally, let us consider the same example as given by Hart [1]. (See Example 3.1 in 

his paper.) The rules of the grammar are 

and 

are derivation 
decompositions 

and 

Pl : A B  --~ C A B ,  pe : C --* B A ,  Pz : B A A  --+ C B A ,  

w 1 - -  A B p l C A B p l C p 2 B A A B ,  

Wz = C p e B A B p l C A B A A p a C B A B ,  

words with cod(~01)= d o m ( w z ) =  C B A A B .  Now, we will have the 

W 1 glV,~'l , where ua = A B p t  , v = C, 211 = A B p x C p 2 B A A B ,  

w e - -  u2vz2 ,  where u 2 = A, v = C, z 2 = p 2 B A B p I C A B A A p a C B A B .  

It  can be observed that z 2 is not a derivation word here, but  z 2 o zt is still defined. The 
repeated application of recursion scheme (2) will yield 

w~ o w 1 = A B p l C p ~ B A A B p ~ C p 2 B p l C A B A A p ~ C B A B  

which is again a derivation word with dom(w z o W l ) =  dora(w1) and cod(w 2 owl) = 
cod(wz). This means, of course, that 

A B  = dora(w1) *=~ cod(w~) = B C A C B A B .  G 
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