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introduction

Concrete algebraic structures with a topology have long arisen in mathematical
practice, leading to the notion of a topological space with algebraic operations
making the underlying set an algebra for the type under consideration. Classes of
such objects (together with continuous maps respecting the algebraic structure)
form categories which, understandably, do not share some important properties of
their purely algebraic analogues. Specially, their relation with the base category §
of sets is not satisfactory (e.g., they are not monadic (i.e., tripleable) with respect
to the natural forgetful functors). This is essentially due to the fact that taking
forgetful functors into § is forgetting too much. Of importance is also the fact that
the set of morphisms between any two such algebras carries a topology which is
inherited from the topologies of the algebras, and which is not taken into account
(it is ignored). That is. the ubiquitous “‘always at our disposal, no need to te de-
fined™ representable functors do not retain any topological information.

The category of topological spaces is actually the natural base category (that is,
the place where the forgetful and representable functors land) for a categorical
approach to the study of classes of topologized algebraic structures. However, this
category is not “set-like’” enough to make such an approach possible. Categories
which, like S, have enough structure to serve as base categories have been recognized
by category theorists during the sixties. when the concept of closed category was
developed. The category K of compactly generated Hausdortt topological spaces
is such a convenient (closed) category.
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282 F.J. Dubuc. H. Portg. Conventent categories of topological algebras

The study of enriched category theory has reached a level of development which
puts at our disposal enriched versions of most of the important machinery of ordi-
nary category theory. If the base caiegory Vis good enough, the Veworld is as good
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Working in the K-world allows us to deal with topologized algebraic structures ina
purely algebraic wav. The continuity of the functions is always guaranteed, the
topology in the constructions does not require ad-hoc definition. The topological
information is carried automatically due to the (losed structure of K. The (left)
adjuints 1o the representable functors, currently called fensors and corensors, can
not (in the K-world) be obtained as colimits and limits. Thus, they provide a (cate-
gorical) characrerization for certain constructions which is not available (or even
pussible) 1n an ordinary set based approach. The algebraically defined categories of
groups in K, modules in K over a ring in K| algebras in K over aring in K. etc. etc.,
are all K-monadic (i.e., K-triplezhle) with respect to the natural “forget-the-algebraic-
structure” forgetful K-functors into K, in exactly the same way that the analogous
categories in the set based world.

We introduce here a systematic treatment of categories of (complex ) topological
algebras considered as categories based in the category K of compactlyv generated
Hausdorf| spaces. This leads to the definition of K-topological algebras (i.e., the
concept of associative algebra over the field of complex numbers relativized to the
K-world). Roughly. a K-topological algebra turns out to be a complex algebra with
a topology making the operations continuous when restricted to compact sets. This
is a broad class of algebras, containing all algebras with jointly continuous product,
and also many interesting algebras with discontinuous, separately continuous, pro-
duct (¢f. Examples 1.3 and 1.4).

Cotensors realize the (classical) construction of algebras o continuous functions,
and play an important role in duality theory, as illustrated by the following simple
forraulation of the main result in Gelfand Theory: “The complex numbers are a K-
codense K-cogenerator of the K-category of commutative C*-algebras with identity™,

In Section 1 we introduce our basic definitions and show how K.topological
algebras (and subclasses like algebras with involution, Barach algebras, Fréchet
algebras, (™-algebras, etc.) form K-categories, in Section 2 we establish some proper-
ties of these K-categories, and in Section 3 we show that any complete locally m-
convex commutative algebra with identity, and with an involution such that for a
defiming family of seminorms {p; the identity p(xx*) = p(x)? holds, is the algebra
of all contineous complex valued functions, with the uniform convergence on com-
pact sers, on a certain topological space (topologically uas well as algebraically, if
considered qua K-topological algebras) (cf. Theorem 3.13). This is done by inter-
preting functional representation within the general framework of an (enriched)
duality machinery. This machinery is basically the interplay of the cotensors with
the contravariant representable functor determined by the complex numbers (which
realize the classical construction of the spectrum of an algebra). in what could be
called an iterated double dualization process.

omnpletely, this is very much the case with K

"
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§0. The category K 283
Let us remark that the words “topology™, “topologized™, *“continuous™, etc.,
could have been omitted (except in the ecamples, of course) immediately after
Section 0, where we collect some known basic properties of K. We did not do so
in order to remind the reader (and ourseives) that we are dealing with topological
spaces and continuous functions.
Finally, we point out that other categorical approaches to standard Functional
Analysis theories have been exploited, for instance, in the recent papers |25, 29, 30].

$0. The category K

We will denote by K the full subcategory of topological spaces whose objects are
the compactly generated Hausdorff spaces, that is: X€ K, if and only if X is a Haus-
dorff space and X = ’;‘-Q’Lg?* K, K running over all the compact subsets of X. This
means that X is topologically equal to the tepological colimit of its compact subsets:
in other words, a map X -+ Z into any other topological space Z is continuous if and
only if it is continuous on each compact subset of X. Following [16], we will call
such a space Kelley space. Given any Hausdorff space Z is clear that Z, as a set is
equal to the colimit of its compact subsets. The colimit topology defines a Kelley
space denoted KeZ, and the inclusions K —= Z of the compact subsets of Z determine
a (unique, continuous) map KeZ = ;_J.un. K —~ Z. Z is a Kelley space if and only if
Z = KeZ. KeZ has the same underlymg set as Z, and its topology is the finest among
those having the same compact subsets as the given topology of Z. Given any topo-
logical space H, a map KeZ - H is continuous if and only if Z = H is continuous on
compact subsets. Also: given any Kelley space X, a map X — Z is continuous if and
only if X = KeZ is continuous. Denoting by Top, the category of Hausdorlf spaces
and continuous maps, for any Z € Top, . the assignment Z ~ KeZ is then a functor
Top, K¢ K ( Kef=f forany Z L7’y which provides a right adjoint (coreflexion) to
the iull inclusion K - Top, . We call this functor the K-ation functor, and tor
Z&Top, , KeZ will be the K-ation ofZ

We will give below a list of properties of the category K. The reader is referred to
[16] for quick proofs of the results below. For a more extensive treatiment and addi-
tional results, he can use [31], (35}, [37], and for a treatment with a categorical
flavor, [32}and [33].

The categorical language and terminology used here is by now standard in articles
written in English on this side of the Atlantic. The basic categorical concepts can be
found in [26]. For the notion of closed category and related subjects there is a con-
densed presentation in [10]. A more extensive presentation is given in [6]. On the
other hand, [14] is a complete, exhaustive and meticulous reference article. [7],
{10} and |23} consider further developments of the subject.

If X and Y are Kelley spaces, the set of all continuous functions from X to ¥ will
be denoted by Ky(X, Y). Thus, Ko(X, ¥) = Top, (X, Y).
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00.Jf X €K, then CC Zis closed if and only if COVK is closed in X for all K com-

pactin X. For Z € Topz. the family {CC Z, CM K is closed in £ tor all K compact
in 2} is a basis of closed sets for KeZ.

0.1. Metrizable spaces are Kelley spaces.
0.2. Locally compact Hausdorff spaces are Kelley spaces.
0.3. Any Hausdorff quotient of a Kelley space is a Kellev space.

0.4. A closed subset o a Kelley space is a Kelley space with the induced topology.

0.5. Anopen:
0.6. Definition. Given a continuous monomorphism X & Y between Kelley spaces,

i is a full infection if given anv other Kelley space V, a function V - X is continuous
if and only if the composite V -+ X % Y is continucus. This is equivalent to saying
that the topology of X is the K-ation of the inverse image under i of the topology
of Y. A topological subspace is a full injection, but the converse does not hold.

0.7. K is a complete caregory. That is: K has all (small) inverse limits (limits), If
A= K (A~~~ X,)is 4 functor, then lim X, € K is the limit space of the X, with the

A
K-ation of the limit topology (which is automatically Hausdorft).

0.8. K is a cocomplete category. That is: K has all (small) direct limits (colimits).
A - K~ X)) isafunctor, colim X, €K is the largest Hausdorft quotient

A
of the colimit space of the X, with the colimit topology (which is automatically
compactly-generated).

0.9. Given two Kellev spaces X and Y we will denote by X ® Y the product of X
and Y in K (the existence of which follows from (.7). We have X® Y = Ke(X x Y),
where X x Y denotes the ordinary cartesian product. If 7: X ® ¥ = Y ® X is defined
by 7(x, ¥) = (v, x), then 7 is an isomorphism,or X Y ZYwr X. The Kelley space
consisting of a single point {*} will be denoted by 1. 1t is a rerminal object of K
and X2 l=1mX=>Xforal XEK.

0.10. Given two Kelley spaces X and Y, X ® Y = colim K x K' where K ¢ X, K'CY

range over all the compact subsets of X and Y. K.k

0.11.If X is locally compact (whence X €K, see 0.2), then X® Y = Xx Y for all
Y€ K and in fact this property characterizes locally compact spaces.
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0.12. Forall XEK, the functor K =% XK Y~YxXhasa right adjoint

KKX DK 1 s KX, V) where K(X, V) is the space of all continuous functions

X =V with the K-ation of the compact-open topology. Thus K(Y & X, 1) X
Ko(Y. K(X, ) with wyy < wq = id (we denote this bijection with the same letter
in both directions). We will also write:

YxX->V
Y= KX, ¥y @0

0.13. 1t follows (categorically ) that the above bijection is actually a (natural} homeo-
morphism K( )’o&c X. WS K(Y, K(X, V). There are also homeomorphisms
K(Y, K(X, PN =K(X,K(Y, Y and the fobviously defined ) maps in the following
list are well defined and continuous.

Y- K(K(X, 1. V)

Y-K(X, "= X)

KiXxYyzX-Y

KXYz K(Y KX,

etc.

0.14. Proposition. If X LYisa Jull injection (see Def. 0.6 then K(V, X) kb Kiv.n
is also a full injection for all VEK.

Proof. Let W€ K be any Kelley space and consider a commutative diagram

f
Wo—" = K(V,X)
7

g \ KV D

vy
K(V.Y)
where g is continuous. The proposition will follow if we prove that f is necessarily

continuous. Consider now the diagram

h
We V-~ X

~\ o
W RS o |
\»

w e

}r

where wy, is the bijection of 0.12 and A is the function (x.v) ~ f(xNv). The
diagram clearly commutes, and hence & is continuous. By naturality of wg the
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diagram

Un(h) )
W’ K(V, X)
Y
.“ / B
J'4 " KV, D

KV,
also commutes. It follows that f'= w(#) and therefore fis continuous, as desired. Q.E.D.

We summarize: the category K is a symmetrical monoidal closed category (0.9 and
0.12) with a tensor product given by the (categorical) product (0.9). That is: K is a
cartesian closed category. Furthermore, K is a complete and cocomplete category
(0.7 and 0.8). Finally, it is casy to observe that 1 € K is a generator and that K is
well-powered (i.e.. the class of subobjects of any fixed object of K is a set).

Observe that K is equivalent to the category of alf Hausdorff spaces and all func-

tions that are continuous on compact subsets, between them. More precisely, denot-
ing by KTop, this category, the inclusion K —~ KTop, is still full and the K-ation
functor Ke is also a functor KTop, Ke, K. The map KeZ 27 (forZC l&'Top2 ) is an
isomorphism in KTop, and therefore Ke (together with the inclusion) is an equiv-
alence of categories. Thus! the choice between K and KTop, is just a matter of
personal taste.

§ 1. Categories of topological algebras

The field of complex numbers with the ordinary (metric) topology is a Kelley
space, that we will denote by C.

1.1. Definition. By a K-topological algebra we will understand an algebra over Cin K.
Specifically, a K-topological algebra consists of the following:
A Kelley space X (that is, an object of K) together with
1.1.1.maps (inK] Xz XbX
1%x
! X>Xx

such that
(1) +isassociative and commutative. That is, the diagrams

d ®+ T
XuXeX ——— XgX Xg X7 X®X
,, , i
id | and . i
+®id } N ) + \ i +
XX — X X

commute (where 71 is defined as in ().9).
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(ii) Qs aunit for +. That is, the diagram

d® o nxid
Xz X- o Xml=X=lgY o e Xu X

id

v .
T X «
commutes.
(iii} - is an inverse for + with respect to 0. That is, the diagram

-%id id ® -
XeX——--XuX~ Y»Xme-ﬂm—*XmX

”

. ,;'/
+ . 1 0 +

\\\s ‘;r « o
commutes {where A(x)=(x. x)and X5 X=X 1% X .

112 amap(in K} X& X=X such that
(i) - s associative (in the same sense as +; see 1.1.1.(1)).
(ii) - is distributive with respect to +. That is, the diagram

i +

d®
Xz XX e X E!\X

| amid & id
' ~
XeXmXe X X
| e
jdBr®id e

% -
X® X’x)m)(mh- ——— XunX
(and the corresponding one expressing distributivity on the right side ) commute.
1.13.amap(inK) Cx X~ X such that
(i) C® X - X is distributive with respect to + and to :he sum of complex num-

bers (also denoted by Ca C 5C). That is, the diagrams

id ® +
e XgX ——— CeX

ia % id ® id \\
CalCrliXc X /,X

! A

1 dRr®id / +

cW.
(&) ] Xﬂ cx X—-—~-~--’ XmX

and
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, + & id .
CaCxX— ~——CrX
dRidZ A
+
CxCrXaX
]
P d®rl

S
f'ﬂ X
e +

‘ P\ - s
Ce Xl X-—- - XX
commulte.

(i’ Cm X = X is associative with respect to - and the product of complex
numbers (also denoted C& C = CJ. That is, the diagrams

id &+ id ® -
Ca(CgX——— CrX cCgXgX— - (e X
*® id .- and ®id ‘
cCaX--— Xr Cé X~ X

conmmute. |
(iii) The action of 1 = Cis the identity. That is, the diagram
o 1mid .
X=lg X—>Cx X

id

commutes.
We will denote such a K-topological algebra by A =(X, +, ., .) and its underlying
Kelley space by X = | A|.

It is clear that the complex numbers with the ordinary topology and algebraic
operations form a K-topological algebra, which, by abuse of language, we will also
denote by C.

Part 1.1.1 in the above definition expresses the fact that a K-topological algebra
is an Abelian group in K (in the sense of [15] cxeruse 2.cor|13]), or a weak group
in the sense of [34]. The continuous sum X ® X SXi is in general only continuous
on compact subsets when considered as amap X x X S X and hence the topology of
X will not (in general) be a group topology. This notion was introduced by Spanier
[34] to obtain some results in algebraic topology (exploiting the clear fact that for
arbitrary Z € Top, , the identity map KeZ = Z is always a homotopy equivalence).
A different notion relating group structures and functions continuous on compact
subsets has also been considered: Noble in {31, Chap. V] defines a “k-group” as
being a group X with a group topology behaving within the category of topological
grdups as compactly generated spaces behave within the category of all Hausdorff
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topological spaces. More precisely, a morphism of groups X = G into any other
topological group Is continuous if and only if it is cont?:..cous over compact subsets.
The topology of a k-group, however, need not be compactly generated (ct. [31]
corollaries to Th. 5.2).

The product (1.1.2 above) of a K-topological algebra will be, in general, continuous
only on compact subsets as a map X x X = X. On the other hand, the product by
scalars (1.1.3) is continuous Cx X = X, because C being locally compact, we have
CaX=CxX (0.11).

We see then that a K-topological algebra is simply an algebra over the complex
numbers with a Hausdorff compactly generated topology which makes the sum and
the product continucus when each variable is restricted to a compact subset, and the
product by scalars globally continuous.

Any Hausdorff topological algebra with continuous multiplication (in the sense
of {17}, for instance) determines canonically a K-topological algebra consisting of
the same underlying set with the K-ation of the given topology and the same algebraic
operations. This is clear since the functor Ke being a right adjoint, preserves limits,
and therefore for any Hausdorft spaces Y, Z there is an isomorphism Ke(Yx Z) =
KeY = KeZ. Observe that different topological algebras may determine the same
K-topological algebra.

Definition 1.1 is categorical and could have been given in any category with
finite products and a terminal object (the empty product). If considered in a category
equivalent to K, Def. 1.1 would yield the concept of a mathematical object which is
categorically indistinguishable from the concept of K topological algebra. Therefore
(cf. end of §0) we can think on K-topological algebras as being a Hausdorff space
with a structure of complex algebra in which sum. product and product by scalars
are continuous only on compact subsets. A morphism is then a linear multiplicative
function which is continuous on compact sets. In this approach, any topological
algebra in the classical sense with a product continuous on compact sets is a K-
topological algebra. With this internretation, however, algebraically isomorphic topo-
logical algebras with the same compact subsets are considered equal. Observe that
metrizable algebras (in particular, Fréchet algebras, normed algebras) satisty directly
our definition of K topological algebras, since metrizable spaces are in K (see 0.1).

It may be interesting to observe that the K-ation of a topological algebra may fail
to be a topological algebra. We have the following:

1.2. Example. Let 4 be an arbitrary complex vector space of dimension larger than
Ry, and define a (locally convex, see [22]) topolegy on 4 by means of the semi
norms p(a) = | f(a)| where f ranges over the set of all linear maps f: A = C. If the
product on A is defined by ab=0 for all 4, € A, clearly A is a topological (locally
m-convex, see [27]) algebra (observe that the continuity of the product is obvious,
and therefore we actually don’t need to know that A4 is locally m-convex). It tollows
from [22] (p. 53, Ex. H), that the compact subsets of 4 are finite dimensional,
whence the topology of KeA can be described by: O C KeA is open it and only if tor
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every finite dirnensional subspace F'C 4 it follows that O F is open in F (for the
only Hausdorff linear topology of F), i.e., Ke4 has the finite topology of |20]. But
then it follows from Th. 1 in [20] that KeA x KeA = Ked is not continuous, and
therefore KeA is not a topological algebra (although its product is continuous).

Observe that, as in the example above, we can always make a K-topological
vector space (namely, an object X € K together with 1.1.1 and 1.1.3 of Def. 1.1
above)intoa K topologtcm algebra by defining the product (ab = 0) as
X2X-X)=(XaX~>13X)

The concept of K-topo ogical algebra includes many types of algebras which fail
to be topological algebras, and which have been studied under the somewhat arti-
ficial concept of topological algebra with partially continuous operations. The fol-
lowing examples also show that K-1opological algebras abound in traditional fields
such as von Neumann algebras and convolution algebras. The text resumes on
page 298,

1.3. Example. Let ' be a complex Hilbert space with inner product (x { y) and
norm |l x [i = (x | x) 2. We denote by B(FH) the set of all linear bounded operators
T:H ~H. If T€ B(I)we denote | TI =Sup{l| Tx ;xET x| < 1}, and

T* € B(H) will be the adjomt of T, dmraucnzed by the identity (Tx | ¥) = (x| )
for all x,3 € 3. We define B (H ) B(H) > B(H0). B (30) x H(H) > B(H) and
CxB(H) > BAH) by (S+T)x =Sx+Tx, (STx = S(Tx) and (A\T)x = ATx. It is clear
that flaS + 8T < lal 1SH+IBLUTI, USTH<USTHTIHNT* = ITH: (aS +8T)* =
@s* + BT and (ST)* = T*S* for all S, T€ B(¥) and a, § complex (a,f are the con-
jugates of a, ). In particular B () is an algebra nver the complex numbers with an
involution T~ T*_If dim H = n < +oo then By K) is isomorphic to the algebra of
nx n complex matrices. For general facts concerning Hilbert spaces, we refer to |8]
or [11}.

V/e will consider now several topologies on B(#) that have been extensively used
in von Neumann algebras (cf. [8]).

The uniform topology on B(H) is the topology induced by the norm
UTH=Sup{iTxll;xE€H, lix || < 1}. With this norm, 8 (¥() is a C*-algebra with
identity / = id;¢ (cf. {9]).

The strong topology on B(¥() is determined by the following notion of conver-
gence: if {T, },c 4 is a net in B(X) and T€ B(H), then T, ~ T in the strong
topology (or strongly) if for each x € ¥, we have | T x - Tx || = 0 witha € 4. If
Sa =S, T~ T strongly, it is clear that H(S +To)x — (S+DxI<(S,- SHxl +
ll(Td T)x!l - 050 that B (3() x B(H) > YB(J() is continuous for this topology.
Also, if A, = X in C(= complex numbers), the ||\ TpX ~ ATx I SHT(A - M) x| +
IN I Tgx - Tx |l = 0 and Cx B(K) is also strongly continuous,

The ultrastrong 1o pologv on B(X) is determined by the following notion of
convergence. Let X = {x, }'k-l be a sequence in 3 with the property

™) E Ix, 12 < +oo
k=1 K
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and tor 7€ B(XH) dcfmep‘,(T) Hk“ Il Txkhzl (observe that ¥ "'k i I Tx, N2
NT? E;:=l i xy 12 is finite). A net fl'o Facq 10 BEI) is convergent to TE B(H)
in the ultrastrong topology (or wltrastrongly convergent) it p (T, - T) = 0 for each
X={xg }-;’:, satisfying (*). Since it can be easily verified that p y(S+T) < py(S5) +
px(T) and pAeAT) = | A py(D), 1t follows that B(H) x B (H)=>B () and
Cx B (H) =B (K) are ultrastrongly continuous,

The weak mpologt on B(H) is determined by the following notions of conver-
gence: aset {T, 1, . 4 converges in the weak topology (or weakly) to T if
(T x|v) -»(T,; ) forallx, v € 3. Again if S, S, Ty~ T weakly, then
((Sq+ T xiv)=(S, xI 3+ (Tyx]y) converges todSx|y) +H{Txiy)=(S+Dx|y)
.md if )\} - Xin C. tnen (A, f xi1) o (ATx )| = 0: thus B(H)x BH) and

" BIH) = BH) are wukl\ continuous.

The wltraweak r:rfmlogv on B(H) s determined by the following notion of con-
vergence. It k’- g gy and Y= b2, 5susfv( ) above and T€ ‘.B()() set
Py y (T = X5 UTxp{ vl (observe that Ty (Txg | u)! SUTHZE Nxelllvgli <
HTH(ZL, ‘H Xy n’) (Xy. {s\kﬁﬂ'- <t o0), rhen aset {T,}, .4 convergesin the
ultraweak topology (or ultr‘mcakly) to Tif py y (T, - 71— O tor all sequences X, ¥
satistying (*). We have again py y(S+ TV S py y(S) +py y(Dandpy y ()=
I py y (1) and theretore B(FH) x B(H) > B(3) and Cx B(H) > B(H) are ultra-
weakly continuous.

It is easy to see that the uniform topology is the strongest and the weak topology
the weakest, and in {act we have:

strong

uniform — ultrastrong \ weak .

ultraweak ?

If dim H = oo_all these topologies are different [8] i dim H <o, they all coincide.

A *subaigebra A of B(H) (that is, a subset A C B(7) such that whenever
STEA and NeCwehave StTE A ATEA T*€ Aund 1€ A, where 1= id;, ) is
by definition a von Neumann algebra provided 1t is closed in the weak topology. As
a matter of fact, it can be proved (see [8] 1.3.4, Th. 2) that a *-subalgebra of B(H)
is weakly closed if and only if it is closed in either the ultraweak, strong or ultra-
strong topologies (but not the uniform topology). Given a von Neumann algebra A,
we will denote by A, A, A A, and A the algebra A together with the topolo-
gies uniform, strong, ultmstrong, v,eak and ultraweak, respectively.

Assume now that K C A is compact in any of the above topologies. Then, neces-
sarily, K is weakly compact. This implies that for x, v € }(, the function T —~—(T x| v)
is (continuous, hence) bounded on K. It follows from the principle of uniform
boundedness {9] (or using the elementary proof in [18]) that Sup (Il Tll: TEK } < +oo,
that is to say, K is norm bounded in B (}). With this remark in mind, we can now
prove:

1.3.1. A x A 5 A is continuous on compact sets for each of the topalogies: uniform,
strong and ultrastrong.
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In other words, S, T ~~—=> ST is mminuous asamap Ke(A xA )~ A,
Ke(AxA) =~ A andKe(A, x A and therefore: KeA, = A, KeA_ and
KeA,, are K-topological algebras.

Consider the case of Au. The product is continuous everywhere due to the in-
equality I ST < S1HIT Il morcover, this topology is metrizable (being deter-
mined by a single norm) and therefore (from 0.1), KesA, = A . Observe now that
(cf. [8])

U\) llS

1.3.2.If r >0 and B, C B(3() is the ball B, = {T€ B(H). (Tl <r} then the strong

and ultrastrong topologies agree on B,. This can be seen as follows. Let {7, },c 4

be a netin B converging strongly to TEB,. For X = IAA %k =1 satisfying (*) above

we have ¥ “‘k 1 h(T T)xk ”‘ = "k =1 H(T I’)rk “ “k \'ﬂ ll(T T)\’k ”“

...;’ 1 (T, T)xku- +2r 3y, Nt lixg 12, so that limsup,, 4E%- IN(T Nxh? <
hmsup,, 4 -k 1 %HT Thx 12+ 2r ‘”k- el ka Ii2. But hmm_A "k lH(T T)xkil" =(
hence lim sup,. q S5y 1Ty Tixpl2 < 2r Exo gy Hxp i forall V=1,

and this means that p y (T~ T) = 0. thus the strong and ultrastrong tupulugles agree
onB,.

The first consequence of this fact is that it is enough to prove the continuity of
the product on strongly compact sets. This is done as follows: let {S,}, - 4 and
{T, }pep be netssuch that S, = S, T, =T strongly and i S, i <r I TGl <7 for all
a. fand some r > 0. Assume X = {x; 1y, satisfies (*) above. Then py(S, Ty-STY<
Px{SoTg- TH + pyl(S, - SIT). Now, for all U, ¥ € B(H) it is easy to see that
py(UN < Ul py(Vyand pp(UN < U VIpy(U). Then py(S, Ty ST <
WS py(Ty- Ty + T pySy - SYSppdTg N+ Tl px (S, - $) > 0O witha€ A,
g€ B. Therefore, S, T ~~— ST is strongly (eq., ultrastrongly) continuous as a map
B, x B, = B,;. and our claim follows.

The second consequence of the agreement on normed bounded sets ot the strong
and ultrastrong topologies is that they have the same K-ation: for any von Neumann
algebra A, KeA_ = KeA; this means that A  and A, are the same K-topological
algebra.

It should be remarked that l(eAs = KeAus is a genuine K-topological algebra in
the sense that it is not obtained as the K-ation of a topological algebra with contin-
uous product. In fact:

1.3.3. If A =8 (3) with dim K = o, the product is not continuous as a rmap

A x Ay = AL A A AL A L x AL AL or A x A= A (ef. [36] or

|8] I 3. Ex. ’) 'ﬂm un be seen as follows Assume H is separablc li X={x; }k*
sausﬁee(*) above with ¢ = “: I xy 112, define B = {T € B(H); px(T)< 1}. Let

now {e). =1 be an orthonmmal basis for J(. Fnr all }\ M pusmve integers we have
-,_!(2- ’,l(xk!e,)l )<= l. I(E, ll(tkle)l )= E =X I < ¢ and therefore

Z[_I(ZZ' l'(xkle,n ) < ¢ which shows that lim,_, ‘“;:" I(x; | 1% = 0. Choose
{d,},-' a sequence of nonnegative reals such that d Zk ) i(xkle,n < lforl=1,2,..
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and lim.., dj==. Let 7, € B(H). n=1, 2, ... be defined by Tyye; =8, d, e, (5, =
Kronecker's deha)’. Clearly E:::x W Tgx, IIc= 1‘;::1 ey 1cx L ep) Tn"luz =

Er 1l e 2dE <1 ie., T, € Bund I T,li = d), ~ . This means that

Sup (i Tl TE€B} = oo, and therefore by the uniform boundedness principle (see
[11]) there is a €7 such that Sup {lITz |l TEB} = oo, with (necessarily) z #0.
Now we will prove that, for x, y €H both different from zero, no choice of

X = {xy by, will make true that if S, TE B then |(STx{y)| < 1. In fact. if z satis-
fies

**) Sup (i Tz, TEB} =00,

define SEB(H) by Su = Mulx)z where A€ Cand |A| > 0is small enough in order

that py(S)< | or S€ B. Then choose TEB with [ A | v | 1TSx || = 1| ] M2 X 20Tz > 1
(use (**) above) and U € B(H) unitary and such that U*y = uTSx where u€ C satis-

fies il WTSxi = v il Then UT, S€B and [(UTSx13) 1= (TSx| U*y)| = |\l ll TSxI> >1.
as claimed. This shows that 8,7 ~~ ST is discontinuous at S = T= 0 € B(H) as a map
BH) o x BOH), = B(30),, which implies that the product is discontinuous in all four

the weak, strong, ultraweak, or uttrastrong topologies, as claimed in 1.3.3.

An argument similar to the one given above (1.3.2) shows that KeA, =KeA ...
But in general, the product is #ot continuous on weakly compact sets, in fact not
even sequentially continuous, as the following example shows: take H = I2(Z) where
Z = {0,+1,22, ..} is the integer and let U € B(H) be the shift defined by
Ulcp b= {dgrwheredy = ¢, k=0,£1, 22, . Then U" =0, U™"~ 0 weakly as
n - oo However, U7 = ldertity.

We sec¢ then that some weak von Neumann algebras are K-topological algebras (the
finite dimensional algebras, for instance) while some others (B(30),,., dim H = =) are
not. The following important algebra is another example of the former, as we shall
see. Let S be a (fixed) set. H = /2(8) the Hilbert space of all complex functions
x: 8 Csuch that T {|x(s){%, sES} < +oo (with operations defined pointwise and
inner product (x| v) = L{x(s) ¥(s); SES}). Let I™(S) C B(H) he the algebra con-
sisting of all the operators on I2(S) expressible as 7x = dx for some d: § - C satis-
fying Sup { | d(s)] . s€E S8} < +o0 and where dx is the function (dxXs) = d(s)x(s). It is
not hard to see (cf. [8] 1.7) that I™(8) is a von Neumann algebra which is Abelian
(i.e. ST = TS for S, TE€I7(S)). We shall identify T€I™(S) with d: § = C when
Tx =dx for all x€ 12(8). 1t is clear that | T = Sup {{d(s)|:sES}. T* = d the cun-
jugate function, and (dd")(s) = d(s) d'(s). It follows from (|8] 1116, Prop. 5.6 and 7)
that [(S),, = I"(S), and I7(S), = I”(S),, (in fact, with the notation of 8],

CA = 1 when A=I(S)). In other words, the weak (resp., strong) topology coincides
on I (8) with the ultraweak (resp., ultrastrong). Actually one can prove in a very
elementary way that the weak and ultraweak topologies on /7(8) both agree with
the weak * topology of /”(S) as the Banach dual of 11(S) (cf. [ 11]), which means
that on I (S) the weak or ultraweak convergence is determined by the seminorms

x ~ | T{x(s)2(5); sES}| where z€ I1(S), i.e., Z{12(s)]: sES?} < +oo_With this
in mind, one can prove independently of w = us, s = us, that
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1.3.4. If K CIT(8). the following are equivalent.
(i) K is strongly (= ultrastrongly ] compact,
(i) N is ulrraweakly compact,
(iii) K is strongly closed and norm bounded,
(v) K is ultraweakly closed and norm bounded,
(v) K is weakly closed and norm bounded.
Moreover, if K satisfies any of the above, the weak, ultraweak, strong (and ulrra-
strong | topologies coincide on K.

We will indicate a proof of 1.3.4 based on the plan?(iii) «==> (1) = (ii) == (iv) and
(i) = (v) = (i). The following remarks are elementary: first, the equivalence (ii) = (iv)
is the Alaoglu-Bourbaki Theorem [11]: second, we observed above (last paragraph
before 1.3.1) that weakly (hence ultraweakly, strongly or ultrastrongly ) compact
implies norm bounded, whence (i) = (ii1). On normed*bounded sets, the strong and
ultrastrong topologies agree (1.3.2 above) and therefore the strong topology is
stronger on these than the ultraweak, which proves (i) = (ii). For similar reasons,
(i) = (v). The implications (i) = (i) and (v) = (i), together with the second half of
1.3.4 tollow from the following: if {d,, !, 4 15 a net, l‘d H<randd,(s) -0 for
each s€ §, then d - 0 strongly. ln fdu for each x € 12($) and a finite F C §, “e
ha\c Id, \'Il- < ‘s»r“l () X(5)2 + rZ 0 IX(s)|2, whenee lim sup, . 4 Ild,x 112

oiF (x(s)|% and since F is arbitrary, lim, - 4 ld, x 112 = 0 as claimed.

Another way of writing 1.3.4 is the following:

1.3.5. Forany set 8,
Kel™(8),, = Kel™(S),, =Kel™(S), =Kel™(S),, .

It is interesting to observe that the product S, T~~~ ST is nor weakly (= ultra-
weaklv; or strongly (= ultrastrongly } continuous, even when restricted to I°(S).
when § is infinite. In fact. we can assume that $ D {1,2, ... 3 = N. Let 4S 12(S) be
defined by h(n) = 1/n, nEN, h =0 elsewhere, Consider V = {dEI™(S): hdh|< 1},
F'is a strong neighborhood of 0€77(8). We will see that for no strong neighborhood
W of 0E€17(S) 1t will be true that d2€ Vif dE W. Clearly. W can be assumed to be
of the form W= (d: Z7_ lldxy 12 < €] } for some sequence {xg }g=y in 12 satisfying
((*)above): T H tkﬂ‘ <400 Since L, < lxk(n)l <o we conclude that

{ZF=) Ixp(m)12 17, is summable (this is the same aq,umun used in the pmnt of
1.3.3). Therefore for some positive integer m: we have €~ ~k 1 !rk(nn" <m”
Choose A real such that ¢! £ i ka(n)i2 < )\"2 < m"‘and define dy€ I(S) by
dolm) =X, dy= 0 elsewhere. Then H&_ 1 Hdoxg 1% = = A trk(n)lz =
M EE Lxg(m 1< e and Ild hit=22m=1 > 1 so thatdg€ Wand d} € V. as
claimed. This shows that d 2 d? is not continuous as a map I* (S')u.; I=(8),.
A similar argument shows that d ~— d? is not continuous as a map [~ (Ouw 2 178y
and therefore the product in ™ (8) is not continuous for any of the topologies weak,
ultraweak, strong, ultrastrong.
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Actually, this proot yields a bit more: if P ={d€I™(S).d(s) =0} and
P, (= Py ). P (= P,) denote P with the relative weak (= ultraweak) and strong
(= ultrastrong) topulogies, respectively and ¢: P = Pis the map od) = d2, then we
just saw the proot of the tirst half ot:

1.3.6. If S is infinite:
(i) ¢ is not continuous as a map Py, = Py, P, = P (P

- P
- ¢ U“r uwe PUS Ius)
(i)Y P 5 P, = Py 5 P, is a homeomorphismi,

[t is clear that 1.3.6 (ii) follows from Sc!z(‘s){x(s)_v(s)i = ..I(d(s)\.x'(.s}_v(s)l'i )2
forx, v &€ 12(S). _

Observe that if we assume that KePy, = P, then P % P = KeP = KeP, 4 P,
would be continuous contradicting 1.3.6 (1) when § is infinite. Thus:

1.3.7.If S is infinite, then Kel™($), #17(8),,

In fact, it can be proved that when § is countable, Ke/™(8),, coincides with the
relative product topology ot [7(8) © L_l C. This completes our Example 1.3,
1.4. Example. For general results concerning topological groups we refer the reader
to |2} and |3]. Let & be a Hausdorff focally compact group and denote by ({43
the algebra of all bounded uniformly continuous functions on G with values in the
complex numbers C. The notm §§ £fi_ = Sup {[/(5).s€G - makes ({G) a Banach
algebra (in fact a C*-algebra since it s casy to see that U(G) is ¢ closed *-subalgebra
of the C*-algebra B((7) ot all bounded complex valued function on & with the
norm {{fH_). For s€ G and f€ [A(), the function ¥(s)f s detined by [ws)f](e) =
fis~n. Clearly y(s)f€ U(GY and Hiy(s) Al = {1/ _. Thus & acts (isometncally ) en U1G)
by s ~ y(s5). H ST UG s any subset, we denote by A(S) the linear subspace of
L(G) spanned by S. It f € LG, then [ f] C ULG)Y denotes the subspace [ f] =
AANLSEG 5Lnudtui by the (lett) translates of /. We shall abbreviate
dim{f}=dim¢|[f].

1.4.1. dim|f] is finite for all f€ U(G) if and onlv if G is finite.

Proof. 1t is clear that if G is finite, dim-U(G) = card(G) < +oe and therefore
dim|f] < card(G) for ail f€ U(G).

Assume now that dim[f] < +oe fos all f€ L(G) and define U, = {f€ L(G):
dim[f] <n}form=1,2, ... Clearly U(G) = U, U,. We claim that each U,, is
closed in U(G). In fact, assume f; = f (15] ~ +°)in UG)and f,€U, torj=1,2. ...
Then for any choice of n+1 elements iy, 5y, ..., 5, of & the functions ¥(sg)J). -...
‘)‘(Sn)f are linearly dependent and taerefore there are Lomplex numbers
o, af, ...,a] such that T} g ofy s;)f; = 0and S} g log | =1 lor eachj=12,....
By passing to an appropnate subse 1ueme we can assume that ak Qg asj o tm
eachk =0, 1, ..., # and therefore T2, | = 1 also. But clearly fmm] - fand ai o
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(as j - %) we obtain a,’:'y(sk)f,» = g Y(sg)f in U(G) and therefore ). ap¥(si )/ =
lim, , . 80 a,ﬁ ¥(sg ) f; = 0 which shows that any n+1 translates of fare linearly
dependent or in other words, that f€ U,,. (Observe that we have actually proved that
U, is closed in U(G) for any linear, translation invariant topology on U(().) Since
UGY under [If11_ is a complete metric space. from Baire’s Theorem (see [21])
follows that there exist ng, f, € Uy, and € >0 such that if AEU(G) and 1A ] <e,
then it - fo€ Ly, . ie.. dim[h-f3] < ngy. Observe now that for f, 1" € U(G), X a
nonzero scalar, always dim[ £+ '] < dim[f] +dim[f’] and dim|)f] = dim|f].
Hence, for f€ L(G) and A small enough (so that A L/} <€) we have dim|f] =
dim{Af] S dim[N-fyl + dim|fy] < 2ng. Thus L(F) = Uy, But now if' s, .. s,
are distinct clements of G, there is a compact neighborhood of V of the identity of
(s such that the sets s;V.j=1, ..., mare pairwise disjoint. Let f€ I{G) be a function
with support in sy I and satisfying f(sy ) = 1. Clearly dim[ f] > m. It follows that
m < Ing and therefore G cannot have more than 2ny different elements, or, G is
finite.

We recall that if fis a function on a locally compact group G and 4 is a measure
on G, the convolution u*f is the function

W) = [ fs7x) duts)
and in particular, if €, is the puint mass measure at 1€ G with total mass +1, then
() €rr=vnN/:
it g and v are measutes on &, u* ¥ is the measure satistying

Jrodweneo=ff s duts) dugx)
[ § ’

for each £, say, continuous with compact support. Fubini's Theorem applies to show
that

(i+) (H*0) () = Ua*f)

where for any function & and measure 8, we write §(h) =fh(x») dB(x) and é(h) =
h(x! ) dB(x). A table of sufficient conditions for the existence of u*fand u*v

can be found in the last page of {3]. One of these is the following: if u and v are

bounded then u*v exists and is bounded (we recall that a measure 8 is bounded if

Bl =Sup{IB NI FEKG) AN forall s€EGH

is finite: )| 81l < + o0, where we denote by K(G) the space of contin :ous functions
with compact support). It is not hard to prove that u*v has desiral e properties and
in particular that the set of bounded measures under ordinary sun aad convolution
is an algebra which we will denote by M!(G). The vague topolcgy denoted Ty on
MY(G) is the topology corresponding to the simple convergence ¢ K(G), i.e.,

Ho = 1 vaguely if p, ()= u(f) for each fFEK(G). If G is compact hen all measures
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are bounded and M1(G) can e identified with the dual of the Banach space K(G)
under the norm {If} = Sup { | f(s)| s€ G }, the vague topology coinciding with the
w*-topology. In particular, the vaguely relatively compact sets coincide with the
nurm-bounded sets of M1(G). Denote by M; the algebra MY(G) endowed with the
vague topology 7.

1.4.2. Let G be a compact group. The convolution Myx My * M, is continuous if
and only if G is finite.

Proof. It G is finite, M1 (G) is firite dimensional and therefore any bilinear map

My x My = M, is continuous. Assume now that (7 is infinite. First, let us observe
that a neighborhood base of 0€ M, for the vague topology is provided by the sets
V=(ueMpiimfi<ej=1,2...n}where e>0and . f3, ... [, € K(G). Let
now /'€ K(G) be such that dim| f] = oo (ct. 1.4.1 above). We are going to show that
for any choice of functions fy, ... f,,. €. .... &, in K(G), there are measures u, v
such that u(j)) =0, g)=0forall 1 <j<n, 1 <k <smand yet (u*v)(f) # 0.
This will show that u,» ~— p*v is not continuous at 0. According to (¥) above,
{u*f. uEM;} D |y()/: s€ (] and in particular the linear map y ~— u*f,

M; - K(G) has infinite dimensional range. Clearly the subspace N C M| of all
measures satistying u(f;) = 0, /=1, 2, ..., n has finite codimerzion in My, and there-
fore the linear map u ~—> u*f restricted to N —~ K(G) also has infinite dimensional
range. which we denote by R C K(G). Hence the subspace [g,, .... g,,] generated
by £}. .... &y can not contain R. It follows then from the Hahn-Banach Theorem
[11] that there is an element v € (K(G)) = My vanishing on [gy, .... g,,] and such
that »{h) # 0 for some A€ R. But then necessarily h = a*f for some u and (cf. (¥1)
above) (u*vN ) = v(a* 1) # 0. as desired.

1.4.3. Let G be a compact group. Then the convolution KeMy® KeM; * KeM is
continuous. In other words, (My, +, *) is a K-topological algebra.

Proof. In fact, assume p,~> 0, v;~ 0 vaguely and llu, | S L, llvgll < L for some L
and all a, 8. Let fEK(G) and define f, = i *f, ot f(x) = f(sx) du,(s). It is clear
that f_(x) — 0 for each x € G. We shall prove that the tamily {f, } is equi-uniformly
continuous on G. First, for each neighborhood V of the identity e € G, detine
VU = closure U {xVx "} Clearly V C VG and VU is compact. Assume now : € K¢
for all V. Then one can pick xyr €G, yj-€ V such that xp- ypr xj! €2V for each ¥,
for that, in particular, xV viV’ -z ionowmg the filter {V'}. G being wmp.n.t
there is a subnet {x; } of {x} } such that x;: = x for some x€G. Hence X'L -x"
and since yy- € V, clearly v = e. Thus z = limg; xq; vy t(' = xex~! = e. We con-
clude that ﬂ Vo= {e}. It follows easily that the family { ¥'C } is also a neighborhood
base of e. We go back now to the equi-uniform continuity of {f, }. Assume € >0
and choose V such that if xv“ € VO then | f(x) - fiI<e/L. Thisis alwav
passible because f is continuous and G is compact. Assume now that xy~ 'e V. Then



298 E.J. Dubuc, H. Porta, Convenient categories of topological algebras

P (XD - S < fl/(m fisvyld qui (YSL Supilf(sx)-f(sv)l:s€G L. But
clearly (sx)sy)y” - sxy ele st ¢ 1o so lhdt Sup{1f(sx) - f(sv)l:s€G 1< €/l
and therefore | f,(x} - [, (V)| < € as desired. Finally, it is easy to see that if £ (x) >0
for each x and the !’amlly is equicontinuous, then 5, = 0 unmiformly on G, Hence
Pg S NS B E AL~ 0 and (u*v) (f) = v4(fo) > 0 as desired.  Q.E.D.

There are several interesting variations on this theme. For instance, in the case of
a lucally compact group ¢, one can consider the following topologies on MU(G):

Ty the weak topology of MY(G) as a Banach space under the norm || 1]
detined above.
Ty~ the topology for which g = it and only of

f‘f’(‘\'!dya(x) —*ff(x) dutx) forall £ G-~C

continuous and hounded.
Tyy  the topology tor which p = w it and only if g (£7) = u(L) for each vpen
set [/ C (.

The convolution product is net continuous on either of the above topologies.
Yet. it is continuous on compact sets in all cases. In other words, if My, My and
Myy denotes the algebra MU(G) with the topologies Ty, Tyyy and Tyy respectively,
then KLA’q 1s a K-topological algebra, 1 < ¢ < IV (¢f. |3] Chap. VIIL, §3, Ex.11).
In fact KeMy;y = Ke My, although My, # M;y. This completes our Example 1 4.

By a morphism of K-topological algehras we will understand a continuous func-
tion which is linear and multiphcauve. Specifically:

1.5. Deﬁnmon Given two K-topological algebras A, B, a morphism A “Bisa map
AL S\ BV in K such that the diagrams

. vRy¢ d®y¢
ldim]|A}" - ——|Bl® B B1Al-— s Cm1BI
RS + and 3
v v R v ¥ ¥ v
lAl—- % B [A} —-n s |B]

commute.

The class of K-topological algebras with the above morphisms between them
torm a category that we will denote 4. Given A.BE€ A4, Ay(A4,B) will denote the
set of morphxsms from A 10 B. Clearly Ap(A4,B) C Ky(141. !Bl) and we have a
functor 4 - K, the “underlying Kelley space” functor. If 4 % B in A, then lgl=

1.6. Proposntlon A is a K-category in such a wayv that A L KisaK- -functor. Further-
more, A(A, B)a KA\ |B!Yis a full injection (cf. 0.6).
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Proof. Define A(A4, B) to be the K-ation of 45(A, B) (considered as a subspace of
K({Al.1BD. The proof then is completely straightforward. For example. the com-
position A(4,B)x A(B,D) > A(A,D) in K is defined in the diagram

A(A,B)% A(B,D) —— A(A.D)
E-30 Y
" k¥
KUALIBDRK(IBLID)—~K(ALID).

Sirce k& is continuous (see 0.13), it follows that ¥ is continuous (use the fact that

! . . - L . — L. -
A(A.D) < K(1ALIDD 1s a full injection), that is, Y€ K. The commutativity of the
diagram above is precisely one of the conditions of K-functoriality. Etc. ...  Q.E.D.

Observe that 44(A4, BYis a closed subset of K(]Al. |B}). and kence, the topology
of A(A, B)is actually the relative topology (see 0.4).

An identity for the product in a K-topological algebra isa map 1 < | A\ in K such
that the diagrams:

X e e®id
fAlrjdle-———lAlrl={Al=18|A4]- — ——]Alx]A]|

. el
id e
!

Al

commutes. If the product of 4 has a unit, we will say that A is an algebra with
identity. Given two algebras with identity, a morphism in 4 which preserves the
identity in the sense that the diagram

| Al ~——> |B]|
= A
\ E
[ \\ p P
1

commutes, will be called a morphism of algebras with identity. Algebras with identity
and morphisms of algebra with identity form a (not tull) subcategory of A4 that will
be denoted by A', and we have Ay(A4. B) C Ay(4, B). Proposition 1.6 holds similarly.
In general, we have:

1.7. Proposition. Let C be a subcategory of A (ie., a class of K-topological algebras
with certain morphisms of K-topological algebras between them, containing all the
identities and closed under composition). Then C is a K-category and ClKisak-
functor such that for all A,B € C, C(A.B) Lok (141, |Bl) is a full infection.

Proof. Similar to the proof of Proposition 1.6. Q.E.D.
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We deduce from this that some standard classes. for example, commutative A-
topological algebras, normed (or Banach) algebras. K-topological algebras with
involution and morphisms preserving the involution, C *-algebras, locally multiplica-
tive K-tepological algebras, Fréchet algebras, etc., etc.. are all K-categories.

& 2. Categorical properties of 4 and A’

In this section we will show that 4 and A" are K-complete K-categories (cf. [10]).
This property furnishes the basic (and only!) tool needed for the duality theory
developed in § 3. A second important property to be established is the existence of
the free K-topological algebra over a Kelley space. Furthermore. we will show that
A and A’ are K-monadic (or synonymously, K-tripleable) over K, and that both 4
and A’ are also K-cocomplete. These facts will be exploited later on.

2.1. Proposition. A and A’ are cotensored K-categories. Furthermore, the “under-
lving Kellev space’ K-functors preserve cotensors (strictly ).

Proof. The above statement just means that all the representable functors 4°P 424 g
have a K-lett adjoint. In order to prove it. it will be enough to show that tor all

A€ A and X€K, the cotensor of 4 with X exists, ur in other words, there is an

object A(X, A) € A and a K-natural isomorphism

Al AXANSKX. A(- AN .

Define [A(X.A)| = K(X. 1A ) with operations:
KX ™)
K(XIAD® K(XAD S KX LATR 14D g oo KOXLAD

Ry

YR}

, K(X."-
KX, 1A ——— K(X,[A4]),

CaKX A~ - K(X|A]
- | - Kr-i<X’-“ ) L T — . R —— [ w('
C— K(ALIAD =% KK AD. KX, 1A )
Cxldl > (4] °
| > K(X,|Al)

and -,

Iz X~ 1% 4]
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A routine diagram decomposiiion process shows that these operations make all

diagrams in Definition 1.1 commutative, and therefore A(X, 4) € A. 1t can be

checked that the above definitions produce the standard point-wise operations on

functions. The advantage of this presentation resides not in the algebraic properties

to be checked. but in the fact that the continuity is automatically guaranteed.
Given any other BE A, consider the diagram

A(B,AX, A)) K(X, AB, A)
| i
R ; K(Y. i)

KB K(X.14Y 2 K(X.K(BILIA])) .

It 1s easy to see that the isomorphism o restricted to the upper level provides a
bijection. Since both vertical arrows are full mjections (see 0.14), this bijection is
bicontinuous, i.e., an isomorphism in K. The K-naturality follows now from the
K-naturality in the lower level and the fact that | | is a K-faithful K-functor. Finally.
the commutativity of the diagram above [completed with A(B,A(X,4)) -~
K(X,A(B, AN] means that | | preserves (stnct]y) the cotensor just constructed.

For A" we manipulate similarly: if A€A’, define 4'(X, 4) = A(X, A) with the
identity

e X~ l 5141
T Wy
I K(X. lA D
The proof follows the same lines as in the case of 4. Q.E.D.

2.2. Proposition.

(3) Given any functor I’ LN . A such that the composite ri A A K has a limit
(=1lim), then T L, A has also a limit which is strictly preserved by A} K. Further-
mnrc given any A €A, the limit of T is also preserved under A = Al x

(b) Similar to (a) with A replaced by A’

Proof. Define | im T, | = lim | I, | with operations:

imif & imil| ---- > limi{l,] im|y] -~~~ =>lm|,|
Ll L PR - <« - -
A N A A A
. P®P L P P P
IN@IN | T N e 1Ty
Cmlmil| ----- » lim|T, | I - —-- = limil, |
- L . -
A A A
idmPy P ad o P,

T .

v v
CoITy = [Ty Ty |
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- [ <~y TN . . - .
The fact that for any N> g in T, |y | -=== | T, | is a morphism of K-topological
algebras, is all what it is needed in order to check the commutativities required for
the existence of the dotted arrows. It is indeed a straightforward matter that the
axioms (Definition 1.1) are satisfied. In order to see that the resulting K-topological
algebra is actually the lim of T" and that it is preserved by the representable functors,
consider the diagram:

AA limT,) lim A(4, T))
: ;A Aodimy
Pt ' T
+ v
KAl lim{F, ) = limK(!Al.H'ﬂ) .
A A

The homeomorphism at the lower level (which is in fact a homeomorphism
because K(| A1, -) has a left adjoint) induces by restriction a bijection in the upper
ievel which is continuous in both directions because both vertical arrows are full
injections (it can be checked easily that a lim of full injections is a full injection).
Similar arguments apply to 4" QED.

Since K is a complete category (see 0.7). it follows from the Proposition above
that 4 and A’ are also complete. The fact that the limits in A and A" are preserved
by the representables into K means (see [10] for definitions) that they are K-limits.
This together with Proposition 2.1 amount to saying that A and A’ are K-complete
K-categories. It also follows from the proofs of Prop. 2.1 and 2.2 that the inclusion
A’ - A is a K-functor which preserves limits and cotensors.

We proceed to prove now some other facts promised at the heginning of this
section.

Let X be a Kelley space and A a K-topological algebra. We say that X generates A
fvia f) if there is a continuous function X & | 4] (i.e..a morphism in K) such that
the set-theoretical image of f algebraically generates A4 (or, no proper purely algebraic
subalgebra of 4 contains the image of f'). The class of all K-topological algebras
generated by any given Kelley space X is a set. In fact, there is only a set of surjec-
tive functions with domain X. For each of them, there is only a set of algebras
algebraically generated. and finally, for each of those there is only a set of possible
topologies.

A similar definition and conclusion are clear in the case of K-topological algebras
with identity.

2.3,‘."l’rop0sition. The K-functors A 4 K and A" 5 K have left adjoints K Eaana
K > A'. Furthermore, i and F' are K-functors and K-left adjoints.

Proof. Since A is well-powered and A LK preserves limits, by the Adjoint Functor
Theorem [15] it is encugh to obtain, for any given X € K, a solution set. But the set
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of K-topological algebras generated by X furnishes a solution. In fact, let X £ | A|

be any map in K and let /€ A be the algebraic subalgebra of A generated by the set-
theoretical image of g endowed with the K-ation of the relative topology correspond-
ing to  C A. Itis clear that / is a K-topological algebra and the inclusion / > 4 is a
morphism in A. The map X% | 4| has a factorization

B
X ~os Al

[

Since 7 1s a full injection, fis continuous and it is clear that X generates / via f, there-
fore the set of K-topological algebras generated by X is a solution set, as claimed.
Thus. A K has a left adjoint K = A Since A4 is cotensored and | | preserves co-
tensors, the lust part of 2.3 follows as an application of the criterion given in [23}
4.1, p. ' 73. The corresponding results for A’ 'L K are obtained in the same way.
QE.D.
A description of FX, X€ K can be given as follows: let V(X) be the tree complex
vector space over X (which can be pictured as the space ot all functionsa: X = C
such that a(x) # 0 holds only for finitely many x € X). A topology on V(X)is
determined by the convergence a, - a it and only if foreach 4 €4 and X LAV
¢ a morphism in K, we have £ {a_(x)p(x). x€X "}~ T{a(x)x). x€X } . This
topology can be lifted to the tensor algebra T{V(X)] = V(X)) # (F(X) - V(X)) = ...
and F(X) = largest Hausdorff quotient of KeT[F(X)] . Similarly . /'4 is an extension
of FX by C with trivial action (cf. Proposition 2.10).

2.4, Proposition. The K-functors A U Kand A’ K are (strictly ) K-monadic. More
specifically, A and A' are (K-isomorphic te ) the K-categories of algebras over the K-
monads determined in K by the pairs of K-adjoint functors F g | | and F' m/ 41

Proof. This result is an easy application of the enriched version of Beck’s Triple-
ability Theorem (cf. [10] Theorem IL. 2.1). There is no dift;ncult_v in checking the
hypotheses for the “underlying Kelley space™ K-functors A L Kand 4”1 K. QED.

2.5. Remark. Giiven any map A S BinAfresp. A’} ¢ can be factored in A (resp. A')

¢
A" B
\ .n
) ‘m. 7 .
W \ .»"/ {
v,

1

where \ is a surjective function and i is a full injection.
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Proof. Define / to be the set-theoretic image of ¢ with the K-ation of the relative
topology. It is easy to check that / € A and clearly ¢ factors as 4 Y 1% B. Finally,
v is continuous because {is a full injection. QED.

2.6. Proposition. The K-categories A and A’ have all coequalizers.

Proof. Let 4 5 B. 4 % Bbe any pair of maps in A. From 2.5 follows that there is a
solution set for the coequalizer of ¢ and ¢ (namely the set of all B = D in 4 which
are surjective functions and such that dg = dy ) and therefore the coequalizer of ¢
and v, B % H does exist. In fact, fnrm the category I’ whose objects are maps

B % D as above and whose arrows 4 5 d” are maps D~ D in A such thatd' = ld.

T is 4 small category and there is a {functor I'-*A P(B DY=D T'l=1l Since A is
complete, the (inverse) limit of T exists. Thus, H is this limit with B K H defined

as follows

3h
B H
d -,Pd

" o

D

where P is the projection corresponding to (Bi D)€ I. The same is done in the
case of 4’ QED.

Since K is a cocomplete category (see 0.8) and the K-functors A UKanda'bK
are K-monadic, and in particular, monadic (= tripleable), it follows from Prop. 2.6
and a well known resul: of Linton [24] that 4 and A’ have all (small) colimits. We
state this:

2.7. Proposition. The K-categories A and A’ have all (small) colimits. Furthermore,
they are preserved by the (contravariant ) representables into K and therefore they
are K-colimits.

Proof. It only remains to be seen that the representables 4P A A} K preserve
colimits. But this is clear since A4 is cotensored and therefore the K-functors
A(-, A), have left adjoints. Q.E.D.

The statement above reads: given any functor IS A where Tis small, then
co_lim I’y exists in 4 and for any K-topological algebra 4 € A there is a homeo-

msrphism of the Kelley spaces:

A(colimTy, 4) = lim AT, A4).
Iy Y
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Let us observe now that, as in the case of K (see 0.14), the representables of 4
or any K-category of K-topological algebras (Prop. 1.7) preserve tull injections.
More precisely:

2.8. Remark. Given / %> B in A such that | 715 | B is a full injection (in K), then
forall A€ A, A(A. D) AD | 4(4, B) is also a full injection (in X).

Proof. In the diagram

AAD
A(AD - -~ A(4.8B)

T

! i

: KAy Y
KoAalin-  —— K(141,iB)

y

the two vertical arrows and the lower level arrow are full injections, whence the
upper level arrow is also a tull injection. Q.E.D.

2.9. Proposition. A4 and A’ are tensored K-categories.

Proof. The meaning of this statement is that all representables A A2 K have a
K-left adjoint. But these functors preserve limits (Prop. 2.2) and A is well powered
(and complete), so that, by the Adjoint Functor Theorem there will exist left ad-
joints provided that tor any given ¥€~ K there 1s a solution set. Let A € 4 and

X € K be fixed objects. Denote by 4% LL A the u)pmdu«.t n A ot 4 repeated as

a factor ongce for each point of X. Given .m\, BEAad X L A4, By K. let
1A “:_f,’.@_ B be the map (in 4) defined by the diagram
X

1]
4. S ;H
x \ ’,,»’/ f(x) xeX.
A

. . I
It is clear that the correspondence wy is one-to-one. Let now S =1.X — A(A H).
HE A, h€K, wy(h)is onto }. Since there is only a set of surjective functions
1l A4 - H, Sisaset. Inorder to see that § is a solution set we proceed as tollows.

Let X 4 A(A.B) and consider the factorization of wq(f) described in Remark 2.5:

X \“., /?»

Define X 5 A(4, H) by h(x)= (4 = L4 %, H). The diagram
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Y- lesaam

) Vs
hos, /A
A(A.H)

clearly commutes, and therefore, from Remark 2.8 follows that & 1s continuous, or
hE K. Finally, it is obvious that wy(h) i, = gi, (for all x € X') and therefore

wy(i) = g. Hence wy(it) is onto, that is, #€S. This compietes the proot of the
existence of a left adjoint for A(A, -). Since the representables preserve cotensors
(always), it fcllows as in Prop. 2.3 that this left adjoint is necessarily a K-functor
and a K-left adjoint. This proof can be adapted without difficulty to A" QLED.

We finish this section by expressing K-functorially the standard procedure of
adding an identity to an algebra possibly lacking it.

2.10. Proposition. The K-inclusion A' = A has a K-lefr adjoint A "\ — A" Thar is,
given any K-ropological algebra A t “re is a K-topological algebra with identity A
and a natural homeomorphism A(A, B) =~ A'(A, B) (for all K-topological algebras
with identity B). At the level of sets, we have a bijection '

14 and B

A—B

berween continuous linear multiplicative functions 4 =~ B and continuous linear
multiplicative functions A —~ B which preserve the identity.

Proof. This result tollows, for example, from Prop. 2.4 and 2.6 and Theorem A.1 in
the Appendix of [10]. It is only necessary to observe that the inclusion A"~ 4
commutes with the “‘underlying Kelley space™ K-functors.

8§ 3. Gelfand K -monads, the duality determined by C

Given a Kelley space X €K, consider the cotensor A(X,C) = A'(X, ) (equality
occurs since C belongs to both A and A" and A’ 5 A preserves cotensors). According
to the definitions given (§2) this is nothing but the long-considered algebra of all
complex valued functions on X, endowed with the K-ation of the compact-open
topology. in other words, the K-ation of the topology of uniform convergence on
compact sets of X. In particular, 4(X, C) is the K-ation of a complete locally m-
convex algebra (ct. [27], Appendix D). If K is a compact space, then A(K, C) is just
the commutative C*-algebra of all continuous complex valued functions on K with
the supremum norm, which is already a k-space (0.1). Since the K-functor
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Kop AL 4 nreserves limits, we have A(X,C) = lim AK,C) for all X € K (where
KoX

K stands for an arbitrary compact subset of X'). Thus, 40X, C)1s alwavs a filtered

nverse linut of commutative C*-algebras (recall however that this limit is taken qua

K-topological algebras). These limits are easily characterized: we write now the

“K-ation” of a well known result:

3.1. Proposition. Given a K-topological algebra A € A, the following are equivalent:
(YA isa limit {in A) of commutative C*-algebras with identiry;
(b) A is commutative with identity and there is a family of algebra seminorms
{p F which defines the topology of A (in the sense thar | A | is the K-ation of the
locaily m-convex algebra (A, {p V) | Furthermore the locally m-convex algebra
(A, ipyis complete and there is an involution * satisfving p(a*a) = pla)* for all
a€ A and all p.

Proof. (2) = (b) 1s straightforward. For (b) = (a), observe that 4 = hm A4, where A
14

18 the completion of the quotient of 4 by the null set of piAp isa Cralgebra and

(4. pty=hmAd, (hmin the category of locally convex algebras). For more details

r
see [17). [19].]27]). Q.E.D.

p

We remark that in the same tashion, the equivalence ot the tollowing statements
about a A -topological algebra 4 can be established:

(a'y Aisalimit(in A} of Banach algebras;

(b there is a family {p’ of algebra seminorms which defines the topology of A
fin the above sense | and such that the locally -m-convex algebra (A, p ) is complete,
As above, we have now A = hm A

Let us remark that given an algebra over the complex numbers (in the purely
algebraiv sense) non-equivalent families of algebra seminorms may deternune the
same K-topological algebra (by non-equivalent families of seminorms we mean to
understand that the induced locally convex topologies do not coincide). For example,
given a locally m-convex algebra 4 whose topology is determined by a tamily {p} ot
seminorms, we can enlarge {p} by adding in any set ot (in particular, all) semmorms
continuous « ~ compact subsets of 4. It s clear that the locally convex topologies
may disagree. and vet, the K-topological algebras determined by these two tamilies
necessarily coincide. Also, starting from an 4 € 4 determined by a complete locally
m-convex algebra, the process of adding seminorms {g ! just described leads to a new
locally m-convex algebra B that may not be complete, in which case 4, although still
determined by B may not coincide with the enlarged limit lim B, . We describe now
some of these phenomena.

3.2. Example. Let X be the locally compact space of ordinals X = [1.82) with the
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order topology . where §2 is the smallest uncountable ordinal, 4® the locally m-
convex algebra of all continuous complex valued functions on X with the topology
of uniform convergence on compact sets. We have AtX.C) = Ke4®. It is well known
that every functicn f €AY is constant on a tail {a, ) for some a (which depends of
course on f) and therefore, f has an extension f9to gX = [1,82]. The correspondence
£~ f9 is an algebraic isomorphism (onto) between AP and A(BX. (). Denote now
by L € A(A(BX, (). C) the continuous multiplicative linear map L(f) = f(Q). It is
clear that L induces a multiplicative linear map (also denoted by L) from 4% to (.

3.2.1. LEAAX,O).C). but L is not continuous on 4 b

Proof. First, for each a < €2 denote by p,, the seminorm p( f) = Sup {|f{(v)i;

| <y <a}. Itiseasy to see that the family {p, }, ] <a < £ determines the topo-
logy of A®. Now, let g, € AP be the function defined by g (y)=0if | <y <a.

g (M=1ify=2a+tl, where ] Sa<. Itisclear that p (g,)=0if 0 > a, and
theretore g, = 0 (as 0= ) in AY (0 is the zero function). Howeve:, Lg,)=
gg(ﬂ‘) = | which shows that L is not continuous on A®. In order to prove the first
part, we observe that L € A(A(X, C), C) just means that the restrictions of L to the
compact subsets of A® are continuous. This follows trom the fact that if H C A

is a compact subset, then there is an ordinal § < §2 such that g/l functions f€H are
constant on [§, Q) ([4] Chap. IV, §4. Ex. 17). For the sake of completeness, we
sketch here the proof. First, there is a constant M > 0 such that | f(0)] < M for all
SJEH and o€ X, since otherwise there would exist ordinals 0, <§2,n=1.2, ... and
functions f, € H with | f, (0, )| 2 n: but necessarily 0 = Supa, <Qand p (f)is
bounded on H (compact). which contradicts the above conclusion. Now define for
0€ X the number s(0) = Sup{| f(0') - f(d")|;: fFEH, 0<0’, 0< 0" }. Clearly

s{9) < 2M and of(s) decreases as 0 = §2; this means that s is eventually constant:
s{o) = u for all 0 22 gy in X If u > 0. there exist sequences {g, } and {7, ; in X and
{fytinHsuchthato,<71,<0,,, <7,,.,n=12, .. and | f(0,) — fp(r,)| 2 %u.
clearly both {g,,} and {7, } converge to & = Sup{o,, } = Sup {7, },and {f,} hasa
convergent subset {f,} with limit f€H. This leads to the contradiction f(g) =

limf, (0,) #limf, (1,) = f(3). Thus,u =0 and f(c') = f(0'") for all fE H and

0’ > 0q. 0" > 0. as desired. From here it follows trivially that the restriction of L
to H is continuous, as claimed. Q.E.D.

Observe that g; ()= |L(f) | is an algebra seminorm on AP, continuous on com-
pact subsets. Thus the locally m-convex algebra B defined by the family {p, ;U {q, |
on AV satisfies Ke4® = KeB. However AP (with { p, })is complete, and B (with
{ps1.q;)is rot: the net (g, }< o< p defined above is a Cauchy net forp, andq,
but does not converge in B; as is easily seen. This shows in particular that 8 # 4®
and therefore all the statements made in the last paragraph before 3.2 have now
been justified. This example will be continued later (see 3.6 below).
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Given a A -topological algebra 4 € 4, A(A4, () is the set of all continuous linear
multiplicative functionals on A4 with the K-ation of its compact-open topology. It
A€ A" then A'(A,C) consists only of those functionals that preserve the identity.
In the case where 4 1s determined by (i.e., is obtained as the A-ation of} a locally
m-convex algebra B, the above spaces ditfer from what has been classically called
the “‘spectrum™ or “carrier space™ of B ({5}, [9]. [17]) in two different ways. On
one hand, they contain more points (namely, all those characters |[= lincar multi-
plicative functionals] which are continuous on compact sets, but not continuous
on B): on the other hand, the topology of A(4,C) (and A'(4, O is not the cus-
tomary topology for spectra, namely, the topology of simple convergence on the
elements of B (or even the K-ation of it). These facts support a statement asserting
that A(4,C) and A'(4, O) differ substantially from the traaitionally considered
spectra. And yet, it A (= B) is a commutative C*-algebra with identity, then 4'(4,()
comncides with the spectrum of 4, set-wise and ¢ven topologically. In fact. the only
thing to be verified is that pointwise convergence of characters coincides with uni-
form convergence on compact sets, an obvious fact since in this case the characters
are equicontinuous. In particular A'(4,C) is a compact space; 4(4, C) is also com.
pact and in fact is obtained from A'(4,C) by adding one isolated point: the zero
functional. It follows from these considerations that 4'(4,C) is a legitimate gener-
alization ot the spectrum of 4 when A4 is C*, and therefore A'(A,C), for A€ A
should play a similar role than the spectrum concerning, tor instance, the existence
of idempotents, representations, etc., and in particular the Gelfand Theory of C*-
algebras. The rest of the section is devoted to developing a generalization of the
latter.

Consider the K-category A and the pair of K-adjoint functors

The corresponding K- nmmd in 4 will be called the Gelfand K-monad, denoted
T=(T.n.u). where A L 4. 11 = A(4(4,C).C) for any given K -topological algebra
A€ A. The unit id L T'is the Gelfand transformation (sc meumes called Founier
transformation, or even Fourier-Gelfand tmmjormatmn) Al A(A(4.0), C)

If a € A. we introduce the notation n4(a) = @, where a(y/) = ¢(a) forany 4 5 Cin
A. The multiplicaticn of the monad TT 5T, A(A(A(A(A 0.0.0).C )“A
A(A(A,C), C) has the following action: given A(A(AA.0), O), C')—»Cand 4%
then pa (eX V) = (V) where 4(4(A4,0), () % C is defined on A(A4, )L Chy
&(f) = f(¥). (Recal! that, as for any K-monad determined by a pair of K-adjoint
functors, ud = A(e4(A, C). C), where € is the counit (in K°).Given XE K. xEX,
then X €3 A(A(X,0). () is eX(x) = x. where x(f) = f(x) for any XL CinK) The
reader can verify easily that this description ot the unit (Gelfand transformation)
and multiplication of the Gelfand K-monad actually describes the unit and multi-
plication as intrinsically obtained from the definition of the monad: it suffices to
go back to the cotensoring isomorphism o of Prop. 2.1, and observe that itis2
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restriction of the isomorphism o provided by the closed Cartesian structure of K
(see 0.13). The continuity of the Gelfand transformation is automatically guaranteed.
since it is a map in 4. Analogously. to the pair

,ARC
4 ko

A't-,0)
there corresponds a K-monad in A, that we also call the Gelfand K-monad. and
denote by T'=(T", 7. ).
In order to indicate the overall picture, we take up space to review some past
examples.

3.3. Example. If 4 is a commutative C*-algebra with identity, then 7°4 = 4. We will
cousider this in further detail below (see Prop. 3.7).

3.4. Example. Assume X €K is completely regular (see [21] } and o-compact, that
is. X has a countable covering by compact subsets. Then, the locally m-convex
algebra A® of all continuous complex functions with the compact open topology is
metrizable, and therefore A(X,C) = A®. Assume now that ¢€ A(A®, C). Clearly for
some compact subset K C X we have [ p(/)| < epg( ) where pe(f) = Sup{ifik)i:
kEK}.Let RC A(K,C) be the algebra of restrictions to K of functions in A (i.e.,
R is the image of A(X,C) AGL) A(K,C) where K & X is the inclusion. ¢ induces an
element of A(R,C). Let JC R be the kernel ot §: gCJ if and only if ¢(g)=0. If
for every x EK there is a g, € J such that g,(x) # 0. then h, = [g, |2 = §,£,€J and
h, is real valued and satisfies i (x) > 0. A compactness argument shows that we
can find x,, ..., x, €K with h = L hy; >0 everywhere on K. But this means that h
has an inverse in R and yet y(h) = 0. Thus for some x €K we have gtx) = 0 tor all
g€J. Since J is maximal, the converse follows, and therefore for arbitrary g,

Ag £(x) 1) =0, so that Hg) = g(x). This proves that 4'(4A®, C) can be identified at
the level of sets to X. However, if X is completely regular (and X €K}, the topologies
also agree and therefore A'(4%, C) = X. It follows that for these X. T"4(X, () =
A(X, C). Observe that this equality follows trom the immediate result A(X,C)y =AY
and Cor. 3.10. However, we have proved something stronger, namely that

X = A'(A(X, C), C) as 'opological spaces.

3.5. Example. Le: § be a set and A = Kel™(§),, (notation as in Ex. 1.3). From 1.34
follows easily that the family of functions in A with finite support (i.e., vanishing
off a finite set) are dense in A. Then, if p€A4'(4,0) and ¢ is not zero, we must have
Plag) # 0 for some sES, where a € A is the functiona(r) = 0if r #5, ag(s) = 1.
Since ag =ag, clearly p(a;) = 1. Il a€ A is any element, we have a(a - a{s)1)=0

so that y{a - a(s)1) = 1, and therefore o(a) = a(s). This shows that 4'(4,C) = §
whence T'A = T'Kel™(S),, = llg C# A (in A). In fact, T'T'A = T'A. This follows,
in case of § countable, from Ex. 3.4 above. In general it can be seen that nS C
satisties the conditions of Prop. 3.9 (see [31] Th. 5.2) and therefore Cor. 3.10
applies.
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3.6. Example. This 1s a continuation of Example 3.2. X denotes again the space
X= |I,..)€K Since 4 = A(X, C) is algebraicaily lsommplm (viz 1~ fO) to the
C*-algebra A(BX, (), it tollows that the linear multiplicative tunctionals ¢ on A are
the following: ¢ = ¢, defined as ¢ (/1 = f(0) (orsome g€ X, which are obviously
continuous, or ¢ = £, which according ta 3.2.1 is also continuous. Thus
A'(A(_A’;C_LC) 8X. Since fX is compact, B = AHH/\ Cyis a C*-algebra, and there-
fore A(B. €)= BX again. In other words, we have T T'A (ll,“l).C)= T A(1.).O=
A, Q). C)= A1, .0). This last equality follows since both sides are algebra-
icallv is ommphu {via f ~- f™), and this torces 5’4 and A'(eX, ) to be mutually
“each other. We have then that KeAY is the C*aaleebra A1 Q1 Oy

&
S :\ul\l. -vL Atudy LR A1 | FIE RWASX I3 10, O 'uli;\'l’ianlll.ah'.\ 1 18

whuh mduatc how substantially the K-ation functor changes the topology ot a
locally m-convex algebra. To add the semi-norm ¢ is an iriermediate step, that.
although it makes every functional which iy continuous over compact subsets be
continuous, still does not constitute a Kelley topology . (CF. [21] corollanies to
Th. 5.2 for similar phenomena,)

Observe that the Geltand K-monad is the codensitv K-monad of the K-tunctor
1= A [IU} p. K33, where Jisthe K -Laiﬂ:mv Luu\nl‘ing ot one \mg.,u. uu;;u
FE€ Tand I(1, 1) = T€K. A K-functor 1 = 4 1s charactenized completely by one
object of 4, and vice versa. This holds, of course, for alt K-categories, and nn( only
for A. Similarly, the Gelfand K-monad in 4 is the codensity K-monad of / Sa

Let now C* denote the K-category of commutative CHalgebras with wdentity
{see Prop. 1.2y Of course, CEC*. From the remarks made immediately atter
Example 3.2, we know that for any A€ C* C*(A, Chis 2 compact space. On the
other hand, given any compact space K €K, A" (X, Cyis a commutative C*-algebia
with identity, and theretore, since C* 5 A" is a K-Tull subcategory . CHK,O) & det
AK. Orisa cotensor of Cwith K i C*so that €* has, at least, um‘nsnrs ot €
with compact spaces. It tollows that the codensity K-monad o< 1 S 0* ensts,
which simply means that we also have a Geltand K monad in C*. 1tas clear that
is the restriction of T' to C*. The classical Gelfand duality (<f. for instance |S}
or [28]) says that this K-monad is isomorphic to the identity C* ¥ (recail that
our A(A4, O) coinaides with the spectrum of A € C*, as obhserved above). Thus, in
the language of [10}:

3.7. Proposition. The algebra C of complex numbers is a K-codense cogenerator of
the K-category C* of commutative C*-algebras with identity. Q.E.D.

In fact. for the Gelfand K-anonad T/ in A" we also have 774 = 4 via 0’4, for all
commutative C*-algebras 4., but it is clear that T is not isomorphic to the identity
onall of A",

Consider now the K-category of T'-algebras, that is, objects 4 € A" provided with
a T'-algebra structure T'4 & A4, where an'4 =idand Ta & =p'A @, and maps:
morphisms 4 % B in 4" making the diagram
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T'A-—" -4

t

Ty 1

i

v ¢
TB—— B

commutative. Prop. 1.2 shows how T -algebras form a K-category. (For a historical
account and further references concerning these concepts see [12]: the enriched
version used here is considered, for instance and among other places. in 6] and
[10].) Denote this K-category by A'T . For any Kelley space YEK, A(X,)is a
T -algebra with

Ry . ¥ r,ut -, A' 'X,(.' = ")
TAX.O=AUAX0.0.00 257 s,

This is a gencral fact [10]. Given any C*-algebra with identity 4, the inverse of

n'A is a structure of T -algebra on A, which is trivial: We will say that a T'-algebra
T'AS Ais trivial if a is a (two sided ) inverse of n'4. Very naturally there arises the
conjecture that all T”-algebras are trivial. This is equivalent to saying that T is
idempotent T'T" = ;" (i.e. 4’ is an isomorphism). It is also equivalent to the fact that
the K-functor A'T LT, 4" UT(T'4 % A) = A4 be K-full-and-faihful, and, finally,
equivalent to the {apparently weaker) fact that for any T'-algcbra, T'4 % 4, all maps
into the complex numbers 4 - C in A" be morphism of T'-algebras (see [10] Prop.
11.4.6. p. 103). In fact, the conjecture would be true (in general) provided that is true
for all T”-algebras of the form A'(.Y,C) with a = A'(eX, C). X € K. Recall that this is
the case if X is completely regular and o-compact (see Example 3.4 above). If there
is an atfirmative answer, a simple categorical K-duality could be obtained as we shall
see in Prop. 3.9. All the concrete T'-algebras we have found are indeed trivial, but
we have not succeeded, however, in proving this conjecture in general. Due to this
unpleasant situation, we are forced to resort to a considerably more sophisticated
machinery, developed in {1], in order to go on. The enriched version needed here,

is actually to be found in [10].

The K-duality produced below will give, as a byproduct the result that every K-
topological algebra A4 satistying the equivalent conditions of Prop. 3.1 is of the form
A = A(X,0) = A'(X,C) for some X € K. If our conjecture above is true. then neces-
sarily X = A'(A4, C). Before going to the general case, we will describe some sufficient
conditions for this to be so.

3.3. Proposition. If A€ A' satisfies the equivalent conditions in Prop. 3.1, then A has
a canonical structure of T -algebra.

Proof. We know that 4 = lim 4, and that for each p, Ap € C*. Therefore each Ap is

' p v .
a trivial T -algebra. Hence any morphism 4, » 4, in A" is a morphism of T-algebras;
we can theretore take the limit lim A, in A'T (cf. [10] Propositions 11.4.5 and
p
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11.4.8). The T -algebra so obtained can also be described by

. 3 a _
r’.»1 Cem e e */{1 = hl_" ‘4[,
: P
{1 T " ) énp
; !
T4, . -4, ‘
(n'Ap) QED.

39. Propusition. Ler A € A’ saﬂsjv the equivalent conditions in Prop. 3.1 and assurme
furthermeare that all morphisms A ™ C in 4 are continuous in the locally m-convex
topology defined by < p . Then, the canonical T -algebra structur: of A (Pron. 3.8} is
trivial '

Proof. Since 4 % Cis { p :-continuous we can assume, after replacing the tanuly of
acmmmms by an equivalent family, if necessary | that ¢ is one of the projections
AR Ap with A, = C. Then, by definition (see diagram (1) above), ¢ 1s a morphism
of T'-algebras. Thus, any morphism A % € in A is a morphism of T’ -algebras, and
Prop. 11.4.6 of [10] applies to complete the proot. QE.D.

3.10. Corollary. A = T'A (= A(A"(4,O).C)Hin A. G.ED.

This corollary apphes notably to the case of Fréchet algebras (see |27] ). that 1s,
to algebras sanusfying (b) in Prop. 3.1 with a countable tamily {p} and to arbitrary
products of such algebras (¢f. {31] Th.5.2).

It is clear that K-topological algebras of the form 4'(X, () for a general X€K
will not satisfy the assumptions in Prop. 3.9 (see 3.2.1 in Example 3.2), and this
calls for a different approach. But before we describe it, let us observe the tollowing.

3.11. Rematk. If A€ A has a structure of T-algebra o, then A has an identity, ie.,
AEA' If both A, BE A are T-algebras, any morphism of T-algebras A - B preserves
the identity.

Proof. The identity of 4 is ofe) where e is the identity of TA = 4(A(4,0), O of
A5 Bin A, Tig) always preserve the identity. Q.ED.

Consider then the K-functor / —C>A' and its codensity K-monad T, that is, the
Gelfand K-monad. The following informal considerations are stated and proved in
detail in [10], on pp. 1351f. under the heading **Second Relative }'-Completion™.
The Gelfand K-monad T' determines the K-category 4 'T" of T'-algebras, and
CE A'T  whence, we have a functor 1S A'T". A'T is a cotensored K-category and
then we have a wqenuty K-monad in A'T". The cotensors in A'T are (strictly) pre-

served by A'T v A'. that is they are nothing but a T'-algebra structure on A'(X. ),
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for X € K (see the second paragraph after Prop. 3.7). The codensity K-monad in
A'T determines its own K-category of algebras, which in turn, gives rise to a new
K-monad. and the whole process repeats itselt again. After going up in this way an
intimte numbes of umes (once for each natural number). we have the (inverse)
limit of the chain of K-categories thus obtained. This category, due to the complete-
ness of K. is also a K-category. which happens to be cotensored and *to contain™
the obgect C (hecause € is coherently contamed in each of the K-categories in the
chain). But then we have its codensity K-monad, and this chain process starts again:
and in this way we go through all the ordinals, The limir of the (large !} chain just
described (exists and ) is also a K-caregory, call it B, which is cotensored and such
that Cis a K-codense cogenerator for B: this means that the process stops. It s
possible (and sometimes handy) to think on the objects of B as being those K-
topological algebras 4 € A" which can be lifted all the way up. i.e.. which admit a
structur2 ot algebra at every level in the chain. More accurately, in view of the
possibility of different liftings. they should be considered as K-topological algebras
together with a structure of algebra at every level. If a K-topological algebra A € A’
is a trivial T' aigebra (e.g., a commutative C*-algebraj then it admits a unique lifting
all the way up. This is essentially due to the fact that the inverse of 4 provides a
(forced) lifting into A'T and that for the object so determined, the K-monad in A'T’
is also trivial. This phenomenon is preserved in the steps corresponding to limit
ordinals. too. We can summarize as follows:

3.}2. Theorem. There is a K-complete K-category B and a K-faithful K-functor
B > A' which {strictlv ) preserves cotensors and K-limits. Furthermore:
(a) there is a unique object CEB such that 1.C = C: the diagram

c -B
1< L
C ‘xAv

commaiites,

(b) Cis a K-codense cogenerator of B, that is, for all BE B, B ~ B(B(B,C).C);
(c) given anv A€ A’ such that T'A =~ A vian' A, there is a unique object B € B
such that LB = A; and moreover, for any other B'€ B, B(B,B') ~ A'(A,LB') via L.

The proofis to be found in [10] . Q.E.D.

We have the following corollary:

3.13. Theorem. A K-ropological algebra A € A is of the form A'(X,C) for some k-
space X if and onlv if it satisfies the equivalent conditions in Prop. 3.1.

Proof. We keep the notations of Prop. 3.1. The considerations made before Prop. 3.1
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justify the “if™ part. Assume now that 4 =lim 4, From (c)in 3.12 there are (unique)

p
Bp € B such that I.Bp = Ap, and we can take the limit B = li_m Bp in B (see Prop. 3.8).
r
Since L preserves (strictly) limits, LB = 4. On the other hand, it follows from (b) in
3.12 that B =~ B(B(B, (). (). and since L (strictly) preserves cotensors, we have

and the proof is complete. Q.E.D.

Similar statements establishing functional representations for topological algebras
can be found in [27] Theorem 8.4 and |19] Theorem 5. The result in the last
corollary gives an isomorphism with an algebra of continuous complex functions in
its natural Kelley topology, so that, in a sense, it can not be improved. However, if
we adopt the customary standpoint of considering an algebra satisiying (a) and (b)
in Prop. 3.1 qua locally m-convex algebra rather :han as an 2lement of A'. the bi-
jection 4 = A'(X, ) is no loger a homeom.orphism for the locally m-convex topo-
logies on these algebras, but only continuous as A'(X,{) -> 4 this accounts for the
unpleasant asymmetry in the main result in {19].

It can easily be seen, following the proof of Prop. 5.9 that the functionals
A % C which are continuous for the locally m-convex topology {p 1, can be lifted all
the way up, or equivalently, they are morphisms at all levels, and therefore every
such functional determines a point of X = B(B, (). This means that X contains the
classical spectrum of (4, {p 1), but might, a priori. be larger.
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