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CONVENIENT CATEGORIES OF TOPOLOGICAL 
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Introduction 

Concrete algebraic structures with a topology have long arisen in mathematical 
practice. leading to the notion of a topological space with algebraic operations 
making the underlying set an algebra for the type under consideration. Classes of 
such objects (together with continuous maps respecting the algebraic structure) 
form categories which, understandably, do not share some important properties of 
their purely algebraic analogues. Specially , their relation with the base catego~v S 
ofsefs is nof slrtiifieton, (e.g., they are not monadic (i.e., tripleable) with respect 
to the natural forgetful functors). This is essentially due to the fact that taking 

forgetful functors into S is forgetting too much. Of importance is also the fact that 

the set of morphisms between any two such algebras carries a topology which is 
inherited from the topologies of the algebras, and which is not taken into account 

(it is ignored). That is. the ubiquitous “always at our disposal, no need to be de- 
fined” representable functots do not retain any topological information. 

The category of topological spaces is actually the natural brrs4 category (that is, 
the place where the forgetful and representable functors land) for a categorical 
approach to the study of classes of topologized algebraic structures. However, this 

category is not “set-like’” enough to make such an approach possible. Categories 
which, like S, have enough structure to serve 3s base categories have been recognized 
by category theorists during the sixties. when the concept of close&-utegqr+ was 

developed. The category K of compactly generated Hausdorff topologicai spaces 
is such a convenient Ictosed) category. 

* Reearch supported by a National Science Foundation grant d NSF GP 2043 11. 



~11~ s(~J+ (~j cllriclied c:~tcgory theory has reached a level of dcvelopmenl which 

puts at our disposal enriched versions of‘ ni0st of the important machinery of ordi- 

narv c;lte~~rrv tlrerjry. 11’ the hvsc ca;cgory V is gctod enough, the V-world is as good . . - 
as tile sty-based world, Althouph not cornplctcly. this is very much the case with K. 

I+tlrkirlg it1 t& K-IWWW alhws us rr, deal wifh ~opdogixb al’~abraic ~OTK~W~S iit a 

plirc!,v ~&&~aic way. The continuity of the functions is always gitarantscd, the 

tctpo)ogy in the constructions does not require ad-hoc defdnition. The tc~pological 

information is carried autom;rtically due to the r.Iosed struct*Jre of K. The Cleft) 

adj~ints to the rcprescntahtc functors. currently catied stirs and c~ertsors, can 

not (in the K-world) bc obtained as colimits and limits. Thus, they provide a rcate- 

porical) characrcrization for certain ionstructions which is nor available (or even 

possible) rn an ordinary set based approach. The algebraically defined categories of 

groups in K, modules in K over 3 ring in A’, algebras in K over a ring in K. etc. etc., 

are all K-monadic (i.e.. K-tripleable) with respect to the natural “filfeet-the-algebraic. 
rtrticturc” forgetful A’-functcsrs into K, in exactly the same wry that the anaiog~s 

cateportes in the set ba.~d world. 

I4V ir~tnduw here D ~w.ernatic malmmt cif’categork~s of (cunqdcx/ t~.p~hgical 

alg~~bras C-C vrsi&rfd as ra tqories brrsfd in f/w casfgyv K of’ conipuct~~ pentmhd 

Wau.sckirli’sl)or:Es. This leads to the detiniticln of K-topological algebras 4i.s.. the 

concept cii asst>ctative ai~ebra over the field of complex numbers re&i~~zr~~ to the 

K-world). Koughly. a A’-topoi@A algebra turns out to be a complex algebra with 

a topofogv making the operations continuous when restricted to compact sets. This 

is a broad class of algebras. ccWaining a# algebras with jointly continuous product. 

and a1so many interesting algebras with dtscuntinuous, separately continuous, prn- 

duct (cf. Examples 1.3 lrnd I .4). 

Cotcnst)rs realize the (cktssical) clmstruction of algebras o?‘continuous functions. 

and play an important rvfc in duality theory. as illustrated by the following simple 

forrnulatrcrn of the main result in Geltand Theory: “The complex numbers are a K= 

codense K-cogenerator of the K-category of commutative P-algebras with identity”. 

In Section I we introduce our basic definitions and show how ih’*topological 

algebras (and suhctasses Iike algebras with involution, Rar:ach algebras. FrPchec 

algebras. P-algebras, etc.) form #-categories, in Section 2 we establish some proper- 

ties of these K-categWies, and in Section 3 we show lhat any complete locally PII- 

convex comrnutatrvealpehra with identity, and with an involution such that for a 

defining family of seminorms ip j the identity +.w* j = p(xj2 holds, is the algebra 

of all contmcl)us complex valued functions, with the uniform wnvergence on corn- 

pact sefs, <*!I a certain topologid space ftopulogically 3s well as algebraically. if 

cons&red qua A’-topological algebras) (cf. Thcoren~ 3.13 ). This is done by inter- 
preting functiclnal representation within the general framework of an (enriched) 

dultiity machinery. This machinery is basically the interplay of the cotcnsors with 

the contravariant representable functor determined by the complex numbers (which 
rerrlize the classical construction of the spedrum ol‘ an algebra). in what c&d he 

called an iterated double dualization process. 



Let us remark that the words “topolog,y”, “topologized”, “c‘on tinuous”, etc., 
could have been omitted (except in the examples, of course) immediately after 
Seut ion 0, where WC collect some known basic propertics of K. We did not do so 
in order to remind the reader (and ours&es) tl1at we arc dealing with topological 
spaces and continuous functions. 

Finally, we point out that other categorical approaches to standard Functional 
Analysis theories have been exploited. for instance, in the recent papers 125, 29, 301. 

8 0. The category K 

We wilt denote by K the full subcategory of topological spaces whose objects are 
the cort~/~r*f@ ~CPRVIS~C! Ilarisitr~~~f spaces, rhat is: XE K, if and on!y if X is a tiaus- 
dorft’spstcc and X = Kc x c gdh K A’ runnirlr over 91 the compact subsets of X. This _ 

mearts that X is topolagi<atly equal to the tc,pological colimit of its compact subsets; 
in other words, a map X -* Z into any other topological space Z is continuous if and 
only if it is Continuous on each compact subset of ,r. Following [ 161 , we will call 
such a space Kelley space. Given any Hausdorff space % is clear that 2, as a set is 
equal to the colimit of its compact subsets, The colimit topology defines a Kelley 
space denoted Ke%, and the inclusions h’ -+ % of the compact subsets of Z determine 
a (unique, continuous) map KeZ = * K + Z. Z is a Kelley space if and only if 
Z = KeZ. Ke% has the same underlying set as %, aqd its topology is the finest among 
those having the same compact subsets as the given topology of 2. Given any topo- 
logical space H. a map KeZ + H is continuous if and only if Z -+ H is continuous on 
compai:t subsets. Also: given any Ktlley space X, a map X + Z is continuous if and 
only ii X -+ KeZ is continuous. Denoting by Top, the category of Hausdorff spaces 
and continuous maps, for any Z E Top,. the assignment % - lie2 is then a futtCtor 
Top,% K (Kefm=f. for any Z&Z’) which provides 3 right adjoint (coretlexion) to 
the full irt<\usion K --, Top, _ We call this funct or the A’-ariott ftrnctor. and for 
2% Top, , #eZ will be the K-uth of Z 

We will give below a list of properties of the category K. The reader is referred to 
[ 161 for quick proofs of the results below. For a more extensive treatment and addi- 

tional results, he can use 1311 , f SS] , [ 371 , and for a treatment with a categorical 

flavor. (321 and 1331. 
The categorical lankwage and terminology used here is by now standard in articles 

written in English on this side of the Atlantic. The basic categorical concepts can be 
found in [ 261 . Far the notion of closed category and related subjects there is a c’on- 
densed presentation in 1 Wl . A more extensive presentation is given in 161. On the 

other hand, [ 141 is a complete, exhaustive and meticulous reference article. 171 c 
11 O] and (231 consider further developments of the subject. 

If X and Y are Kelley spaces, the set of 311 continuous functions from X to Y wiH 

be denoted by K#‘, Yj. Thus, K&l’, y) = Top,L%‘, Y). 
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the 



where g is continuous. The proposition will ioltcsw it’ we prove that f is newssad), 

continuous. C’cmsider now the diagram 

where w. is the hijectmn uf 0.12 and 11 is the function (.K_v) -+~‘(.~M_~9. The 
diagram clearly cmmutes, and hence h is continuous. By naturrtlity of a0 the 
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diagram 

also commutes. It fc11lows that f= o#t) and therefore f‘is continuous, as desired. I)&[). 

Observe that K is equivalent to the ~ategq of aN Hausdlarff spaces and all furt~- 
tirtns that are continuous on compact subsets, between them. More precisely, &not- 

ing by KTup, this category, the inclusion K + ,KTop, is still full and the kition 
functor Ke is also a functoa KTop, JA K. TIIC map I&Z -+ % (for 2 E ATop, ) is an 
isomorphism in ATop, and therkjrc Ke (together with the inclusion) is an cquiv- 
alcnce of categories. ‘H’hus. rhrp choirs hczrwwn KC and KTop, is just u matrev of 
pcrsima~ tas tc. 

5 1. Categories of topobgical algebras 

The Geld of complex numbers with the ordinary (metric) topology is a Keliey 
space, that we will denote by C. 
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( ii) 0 is a unit fiw + . That is, the diagram 

caa cc3 mm x kX 
I ,f 
1 id E T Ix1 id ,’ 

., ,‘#-+ 

CaXlhDnX 
l w* / 

-.._ ..--.-+ x&x 



id % l id @ . 
cxl CiE x-- .------+ coo x CE XiJ ,y--.“‘- I- .-+ c’@ x 

I i 

l ozi id and :-aid 
j 

. . I 

It is clear that the complex numbers with the ordinary topology and algebraic 
operations foml a K-topological algebra, which, by abuse of language, WC will also 
denote by C. 

Part I. I. I in the above definition expresses the tact that a K-topological algebra 
is an Abeliart group in K (in the sense of [ 15 1 exercise 2-c or II3] ), or a weak gmcp 
in the scme of 1341, The continuous sum X IxI X $ X is in general only continuous 
on compact subsets when considered as a map X x X $X and hence the topology of 
X will not (in general) be a group topology. This notk)n was introduced by Spanier 
1341 to obtain some results in algebraic topology (exploiting the clear fact that for 
arbitrary Z E Top,, the identity map KeZ + Z is always a homotopy equivalence). 
A different notion relating group structures and functions continuous on compact 
subsets has also been considered: Noble in [ 3 I, Chap. V] defines a “k-gmrrp” as 
being a group X with a group topology behaving within the category of topologital 
@ups as compactly generated spaces behave within the category of all Hausdorff 



The product ( 1.12 above) of a K-topological algebra will be, in general, continuous 
only on compact subsets as a map Xx X -j A’, On the other hand, the product by 
scalars ( 1 .I 3) is continuous Cx X --*X, because C being loca!!y compact, we have 

C@X = cx x (0. I 1). 
We see then that a K-topological algebra is simply an algebra over the curnplex 

numbers with 3 Hausdorff cdmpactty generated topo!ogy which makes the sum and 
the product continuous when each variabic is restricted to a compact subset, and Ihe 
product by scalars g!oba!!y continuous. 

Any IIausdurff topological algebra with sontinuous multiplication (In the sense 

of 1 l?] , for instance) determines canonically a K-topological algebra consisting 01 
the same underlying set with the K-atiun crf the given topoluLq and the same algebraic 
operations. T!\is is clear since the iimctor Ke being a right adjoint. preserves limits, 
and therefore for any tlausdorff spares Y, Z there is an isomorphism Ke( Y x 2) * 
l&Y ~11 IQ%, Observe that different topulogical algebras may determine tfle same 
A’-tspologioa! algebra. 

DetInition 1. t is categorical and could have been given in any category with 
finite products and a terminal object (the empty product). If considered in 3 category 

equivalent to K, Def. I. 1 would yield the concept of a matkematical object which is 
catcgoricaliy indistinguishable from the concept of A” topological algebra. Therefore 
(cf. end of EJI) we can think cjn K-topo!ogicaP algebras as being a Hausdorff space 
with 3 structure cut’ complex algebra in which sum. product and product by scalars 
are continuous only on compact subsets. A morpIlism is then a linear multiplicative 
function which is continuous on compact sets. In this approach, any topologica! 
Jgebra in the classical sense wit!] a product continuous on compact sets is a A’- 
topofogica! algebra. With this internretation, however, algebraically isomorphic topo- 
!ogica! algebras with the same compact subsets are considered equal. Obsenre that 
metrizable algebras (in particular. Fre’chet algebras, normed algebras) satisfy directly 
our definition of K topological algebras, since mesrizable spaces art in K (see 0.1). 

It may be interesting to observe that the Cation of a topological algebra may fail 
to be a topological algebra. We have the following: 

1.2. Example. Let A be an arbitrary complex vector space of dimension larger than 
Ho, and define a (locally convex, se-(: 122j ) topology on ‘4 by means of the semi 
norms da) = 1 f(a) 1 where franges Over the set of al! linear mapsf: A 4 C. If the 
product on A is defined by ub = 0 far a!! a, b E A , clearly A is 3 topologica! (lo&ly 
m-convex, see [ 2’71) algebra (observe that the continuity of the product is obvious, 
and therefore we actually don’t need to know that A is lwally In-convex). It tbHows 

from [22] (p. 53, Ex. H), that the cotnpact subsets of A are finite dimensional. 
whence the topology of KeA can be described by: 0 C Ke.4 is open if and only if for 
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avery finite dimensional subspace FC: A it follows that CNV is open in I;’ (for the 
only Hausdorff linear topology af I$ i.e., KcA has the finite topdqp of (201, But 

thw it hllows firm T!z. I in [ ZO] that Ke.4 x KeA 5 KeA is not continuous. and 
therefore Kerl is IIM a topological algebra (although its product is continuous). 

Obseme that, as in the example above, we can always make a K-topological 
vector sp~c (namely, an object XEK together with 1. I .I and 1 .I .3 of Def. 1.1 

above) into a &topological algebra by defining the product (crh = 0) as 
(XtB,I=X)=(X~X-, GX). 

‘IIre concept of R’-topo’ogkai algebra includes many types of algebras which fail 
to be topological algebras. and which have been studied under the somewhat arti- 
ficial con(:ept of topo!ogical algebra with partially continuous tlperations. The fol- 
lowing examples also show that A-lopological algebras abound in traditionat fields 
such as van Neumann algebras and convolution algebras. The text resumes on 
page 298. 

1.3. Example. Let :,X be a complex Hitbert space with inner product (x f y) and 
norm [ix ii =(x ~.Q1% We denote by @(X) the set of all iincar bounded operators 
T: X -4’. If T E W(X) WC denote 11 T It = Sup { 11 TX I!; xE X, 11 x ii G 1 }. and 
P E ‘H(X) will be the adjoint of T, characterized by the identity I TX 1 J?) = (x f T’@+v) 
for all K,F E X. We define ~%(H)x‘t;C~Jf) s b&X\. ‘8 (X)X ‘h’(X) -G ‘8(W) and 
C’x %(X) j ‘a(X) by (St T)x = .S_r f TX, (ST)x := S(‘Tx ) and (XT)x = AT-v. It is clear 
that I~cLS +pTIf QC Iaf l!Stl + ifif IiTff, fiSTIf G IfSi S1 Til, if TV = It Tk b.S +PW = 

&S+ +$T* and (ST)* ,- 
I. - 

TYP for all S, TE ‘B(X) and cy, fi complex (cu.@ are the COCP 
jugartes of a, 0). In particular \$QX) is an algebm .over The ccmzpZe.~ mfmbers wiftf 08 
irwolu rim T - P. If dim X= II< += then +%t K) is isomorphic to the algebra of 
pt x 111 complex matrices. For general facts concerning Hilbert spaces. we refer to ]8] 
or 1 1 I 1 . 

We will consider now several topologies on ~2$K) that have been extensively used 
in von Neumann algebras (cf. [8] ). 

The uniform ~opul~~n on 58(sC) is the topology induced by the norm 
fI Tff = Sup{t/ TX ll;xfX, 11.x 11 G I ). With this norm.8 (X’) is a P-algebra with 
identity I= id,x (cf. 191 j. 

The strung topol~~ on %(‘X) is detemjined by the following notion of cmver- 
gence: if (T, }aF4 is a net in ‘H(X) and TE +8(.X), then T, + T in the strong 
topolo@ (or strong&) if for each XE X, we have 11 Tax .- ‘Ix {I + 0 with cry A. If 
Sa * S, T’-+ T strongly, it is clear that Il(S, + Tp,” -- (S + T)x 11 G If(S*- S)X 11 + 
If(TI,- ~xII --* 0 so that%(X) x ‘8(X) $ %(sC) is continuous for this topolqy. 
Also, if h, -+ h in C (= complex numbers). the 11 A7TcIx .- XTx 11 Es: [I TfX “-- A)x 11 t 
Ih,lliT~- TxII --+ 0 and C x ‘%/IQ is aiso strongly continuous. 

The l~l~~~s~~~~lg ~~/mktg?? on k@(X’) is dctermmcd by the following notion of 
convergence. Ler X = !JQ jrzl be a sequence in rX with the property 

(“I 2 <t- 



p strong L 
unif‘orni -+ ultrastrong k 

ul t rawcak 
f WC& . 

,v, TE A, trnd XEC‘ we have S* TE A, XTEA. T* E A ;IIIJ IG A. where I = idi, ) is 

by definition a PCMZ Xeun;lann aIge!~u provided rt 1s iloscd in the weak topology. As 
a matter of fact, it can be proved (see IX] 1.3.4, Th. 2) thsl a *-subalgebra &8(K) 
is weakly closed if and only if it is &sed in either the ultraweak, strong or ultra- 
strong topologies (but not the uniform topolagy). Given a van Neumann algebra & 

we will denote by A,, A,, A,,, A,, and A,, the algebra A together with the topcrlo- 

@es unitimn, strong, ultrastrong, weak and ultraweak, respectively. 
Assume now that KC A is compact in any of the above topologies. Then, nem- 

sarily, K is weakly compact. This implies that for x,r, E X’, the fun&ion 7’ ---*(7~~i_~~ 
is (continuous, hence) bounded on A’. It follows from the principle of unifom 

boundcdness 191 (or using the elementary proof in [ 181) that Sup (11 T/l: TEE; ) t: +m, 
that is to say, A’ is FIOMI tirrn&d in $j(K). With this remark in mind, we can I’LOH( 
prove: 



In other words, s’, T h+,-+ ST is continuous as a map bz(A,, x A,) + A,, 
lietA,x A,, -.+ A, md lie(A,,,z A,,,.+ A,, and thcrefcm: Id,, = A,, tirA,am~ 
Kc A,, nrc K-t@4 gicof dgt~bras. ’ 

(‘onsidcr tbtc case of A,. The product is continuous everywhere due to the in- 

equality 11 ST 11 G fi S If fl T\j; moreover, this topology is rnetrizahle (being dcter- 
mined by a single norm) and therefore (from 0.1 ), ?CeA, = A,. Obsrrve naw that 
(Cf. lx] ‘I: 



An argument similar to the one given above ( 1.X) shows that K~A, = KeA1,H.. 
But in gcnerai. the product is rtof c‘ontinuous on weakly compact sets. in fact no: 
even seyucntiatly continuous, as ihe following example shows: take K = I?(Z) where 
2 = (0,+1,-+2, .*. ‘t is the integer and let LE ‘8(W) be the shift defined by 
r;li; Q J = {c&: whcrecjk = c-~+~, k=C), +I. 2. .., . Then L: *I -+(j, [,“?I 3 0 weakly as 
n -+ *. However. C”Vpr = Iderjity. 

We XC then that some weak von Neumann algebras are K-topological algebras (the 

finite dimensional algebras, for Instance) while some others ( ‘S(K),, dimEI = 313) are 
not. The foli<)wing Important algebra is another example of the former, as we shall 
see. Let S be a (fried) set. c)c = @(s) the Hiibert space of ail complex functions 
x: S + C such that C Ilx(s)i”, sES] C +w(with operations defined pointwise ml 

inner product (X f _Y) =‘ v 
_._-_ 

&x(s)?.I(s); sES)). Let I”(s) C ‘H(K) 5e the algebra con- 
sisting of all the operators on 12(S) expressible as ‘Ik = (-I. for stkrne d: S+ C satis- 
fying Sup { I &)J I sES) < += and where d.lr is the function (&‘)(s) = &)x(s). It is 
not hard to see (cf. 181 1.7) that I”(S) is a von Neumann algebra which is AMirm 
(i.e. ST= 75 for S,TE l”(S)). We sfuii identify TEZ”(S) with ii: S+ C when 

7k =dx for ail xE Z2(S). It is clear that II TIf = Sup C IJ(s)lr sES). T* = a the cun- 
jugate function. and (GIL]‘)(s) = d(s) d’(s). It follows from ((81 lll.6, Prop. 5.6 and 7) 
that f”(S), = I”(S),, and Z”(S), = Z”(S),, (in fact, with the notation of 181, 

CA = 1 when A = I”(Sj). In other words, the weak (resp., strong) topology coincides 
on I”(S) with the ultraweak (resp., ultrastrting). Actually one can prove in a very 
elementary way that the weak and ultraweak topologies on 1”(S) both agree with 
the weak + topology of /“{.!I?) as the Hanach dual of I’(s) (cf. [ ll]), which means 
that on I”(S) the weak or ultraweak convergence is determined by the senM-mr\s 
x-+ ~~{x(s)z(s);s~S)~ whercrEIl(S), i.e., T:{/:(s)/; sESi < +adNith this 
in mind, one can prove independently of w = us, s = us, that 



It is mteresting to observe that ~/IV yrdwt S, T -+ ST is rrot wcakltv I - rrltra- 
rrrwk&/ or srrwtg(~~ f = ulrrastrcmg~r’) trmtinwus, et’ctt when mtrictd h l*(S). 
when S is inf’inite. ln fact. we can assume that S 3 f I,?, . . . ‘! = N. Let K!$!Q be 
defined by i&r) = I ln, FEN’, h = 0 elsewhere. Consider 1)’ = {&Z/“(S): fldh ii G 1 ) . 

V is a strong neighhorhuod of OEP”(s). We wiil see that for r10 strong nAghbc?rhood 
IVof’OEl”(S) It will be true that &E Vif dE IV. Clearly. h’can be assumed to be 
of the f&m tr’ = i J: E& &-i!~ iI2 C e !r for some sequence {xk & in P satisfying 
((*) above): r: ftxk iI2 < +=. Since C&,=, \x,J~)l’ < 00 we conclude that 
; Y” I ‘kl] E xk(n)12 i;q is summabie (this is the same argument used in the pror,f of 
1 .X3). Therefore for some positive integer 1t2 we have 8 ‘Irr: 1 1 x&r ) 1” < N1 . 
Choose X real such that r.” S&, lxk(n)i2 < An2 < m-land define d& r”(S) by 
J (m) = A, JO=0 elsewhere. Then 2+ 11&..q 11’ = Z&, x” [xk(n)l* = 
A XF= 1 I x@)I’< f and II& if = A&m ? -I > 1 so that d,E W and d; $ I/. as 
clamed. This shows that ii - d2 is not continuous as a map I”(S),,+ f”(S),. 
A similar argument shows that d - d2 is not continuous as a map P(s),, -+ I”(S), + 

and therefore the product in 1”(S) is not continuous for any of the topologies weak, 

ultraweak. strun,g, ultrastrong. 



Proof. It is clear that if G is finite, dimcC;CG) = card(G) < += and therefore 
dimIf] G card(G) for &ii fC. U(G). 



We recall that iffis a function on a hxaily compact group G and I; is a measure 

on G. the c~~~r~lz~~i~~rt p”f is the function 

(/PjMx) = jj‘fs-‘x) d&) 
c 

and m partkullar. ife, is the point mass measure at PEG with total mass +I ~ then 

for each f. say, c’ontinuous with ~~rrnpxf support. Fubirti’s Thcorcnl applies to show 
thaat 

where for any function h and measure /3, we write P(h) =sh(x) dfi.x) and &II) = 

s 
M.8 ) dp(x). A table of sufficient conditions for the existence of p *f and p * v 

cm be found in the last page of [ 31. One rtf these is the fctflowinp: it.1 arrd P art’ 
bot4&ed therl fi+V exists anrl is 6r~ndd (we recal3 that ii measure /? is hcwided if 

is finite: II fl Of < t 0~). where we denote by A’(G) the space of cant in xws functions 
with compact support). It is not hard to prove that p*v has de$:traf e properties and 
in particular that the se! of bounded measures under ordinary sun a&rd convolution 
is an algebra which we wilt denote by M’(G). The vague ~~~ofqr~ 
M*CC) is the topology corresponding to the simple convergence G 

denoted T,) on 
K(G), i.e., 

MC% -+ P tJaguely if ~,(f, -+ cl(f) for each fEK(G). If G is compact hen all measures 



are bourrded and M1 (G) can he iden t itkl with the dual of the Banach space K(C) 
under the nom I!flt = Sup ( 1 f(s) 1 sf G 1, the vague tt~pology coinciding with the 
w*-topolv~. In particular. the va~ucly rciatively compact sets coincide with the 
nilrm-hounded sets ot‘ Mi (4;). Denote by MI the algebra M’(G) endowed with the 
vague t opchqgy T, . 

Proof. It‘ C; is t’irtitc, M’(G) is tkite dintensicml and therefore any bilinear map 
A$ x MI --* AI, is continuous. Assurnc now that G is infinite. First, let us observe 
that a neighborhood base vf OEM, for the vapo topolu~y is provided hy the sets 
I’- i~Etl.f?:[~fI;)fGe.j= 1,2 ,..., n ~whorc~>Oandf~.fi ,.... f,,EIt’(G).Let 
now f’E X(G) be such that dim [ f] = M (cf. 1 A. I shove ). WC are going to show that 
for any choice of functions it, . . . . _&,, gI, . . . . glpl in K(G), there are measures p, v 
su& that ~4 1; ) = 0, v(pk) = 0 for all 1 Gj G II. 1 < k G m and yet (p*v)(fi # 0. 
This will show that p.v +-+ p*u is not continuous at 0. According to (+ ) above, 
{PJ #+ i 3 l~(.e)f; SEC;] and in particular the linear map p - jPj-, 
Ml + K(G) has infinite dimensional range. clearly the suhspace N C Ml of all 
measures satisfying g((jj) = 0. j = I. 2, . . . . n has fini tc codimerzion in MI + and there- 
fwe the linear map p -+ p*/ restricted to rt’ -, K(G) also has infinite dimensional 
range, which we denote by R C K(G). Hence the subspace [g,, . . . . gnt 1 generated 
by gl % ..-. g, can not contain K, It f3lows then from the Hahn-Banach Theorem 
[ 1 11 that there is an c-lenmt cc E (AI( = Ml vanishing on [gl. . . . . g,,* ] and such 
that v(it) # 0 for some h 6%. But then necessarily h = fi*Jfor some ~1 and (cf. (++) 
ahc~) (p*tvH 1”) = tqfi*f’) ?e: 0. as desired. 

Roof. In fat t , assume HQ -+ 0, vit-+ 0 vaguely and IIN, 11 G L. llva 11 G L ti;r some 1. 

and all QU, 0, Let j’EK(G) and define fb, = fi,*ft or j:(x) =sf(sx) dpJ s). It is clear 

that j;(x) --* 0 fix each x E G. We shall prove that the family {& ) is cqui-uniformly 
continuous on G. First, for each neighborhood Vof the identity eEG, detine . 
p<; = closure U {x F’x” ). Clearly V C PG and c/c; is compact. Assume now zE Vc, 
for all V. Then one can pick xc’ E G, _v~.~E V such that x~~~~ xi! E 2 C’ for each I’,, 
for that, in particular, xcqf, x,! + z following the filter (V ). G being compact. 
there is a subnet { xLi i of {xl, ) such that x1’ --+ x for some xE G‘. Hence xi! + x -1 

and since I*&* E V, clearly _P[: + e. Thus z = lim,: x;,_qJ x$ = XCX” = Y. We wn- 

elude that n vc’ = (e ). It follows easily that the family { VG ) is also a neighborhood 
base of e. We go back now to the equi-uniform continuity of (1; 1. Assume Q > 0 
and choose V such that if xy” E 6;. then i f’(x) - f(y) I < E/L. This is always 
pllssible because fis continuous and G is compact,. Assume now that x.~- E K ‘Then 



By a morphism of AArq~lctg~l algebras we will understand a continuous fur-w 

tim which is linear and ntultiphcattve. Specifically: 

cc wnn~ute. 

The class of Ltopt~iogical algebras with the above morphisms between them 
form a category that we will denote A. Gwen ci.BE.4, A&d,B) will denote the 
set of morphisms t‘rum A tr.1 IL Clearly A,(A,R) C K,(IAJ. I&l) and we have a 
functor A ’ i -_* K, the “~tnde$bqq AMey spuc~” functor. If A s R in A, then I q f = 4. 



Proof. Mine A(d, H) to be the K-ation ofAO(A,R) (considered as a subspace of’ 
k’( 1 A 1. 1 Bl). The proof then is completely straightforward. For example. the som- 
position A(d,R) ~zzi .4(B,D) -+ A(d,D) in K is defined in the diagram 

Sirx~ k is continuous (SW 0.13). it fc~ll~~ws that “y is continuous (use the fact that 

A(A,D)!~ K( \Al.tDI) IS a full injection j. that is. YE K. The cvmnut~tivity of the 

diagram above is prccisdy one of the conditions of K-functoriaiity. Etc. . . . Q.E.D. 

ccrnzttlrrtus. If the product of A has a unit. we wilt say tha A is an oI#rt~~ or?itIJ 
idwhty Given two algebras with identity. a morphism in A whkh preserves the 
identity in the sense that the diagram 

commutes. will be called a tnwphism ofalgebras with idmtity. Algebras with identity 
ar‘d morphisms of algebra with identity form a (not full) subcategory of A that will 
be denoted by A’, and we have A\$d.B) C A,(A.H). Proposition 1.6 holds similarly. 
In general, we have: 

Proof. Similar to the proof of Proposition 1.6. QED. 



WC deduce t’rom tits that some stsndard classes. f’or example. commutative k’- 
r~~pc,togicat algebras, norn~cd (iv Banach 1 atpebras. K-top~.A@3t atget-rras with 
involution and morphisms preserving the mvolution, C *-algebras, locally mutt iptica- 

tive K-topotogicat algebras, Frtkhet algebras. etc., etc., are all K-categories, 

5 2. Categorical properties of A and A ’ 

, In this section we wilt show that .4 and A’ are K-ci~mptete K-categories (cf. 1 to] 1. 

Ths property furnishes the bask (and only!) toof needed for the duat~y theory 
dcvetuped in $3. A second important property to be established is the existence oi 
the free K-top~tog~~at algebra over a Kettey space. Furthermcrr~. we watt show that 
A and A’ are Kmcjnadic (or synonymously, K-tripleable) ijver K, and that both A 
and A’ arc also K-iocomplete. These facts will be esptntted later on. 

Proof. The above z;tatement just means that at1 the representable func:tors ,4”p Af24k 
have a K-left adjoint. in order to prove it. it wilt be enough to uhow thar for all 
ta E A and XEK, the cotensor of .4 with A’ exists, CC in other WO& there 1s an 

CkcK(X.iA() - -- ‘- --- K(X}A 1) 

and 
I -+ K(X,lAlj _- .- -- - . --_. _._. __ 

!@GX-+lo-1.41 
% l 
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A routine diagram dec~mposl~i~~ process shows that these operations make all 
dlsgrams in DeVinition 1 .I commutative, and therefore 4(X, A) E A. It can bc 

checked that the above definitions produce the standard point-wise operations on 
functions. The advantage ot’ this presentation resides not in the algebraic properties 
to be checked, but in the fact that the continuity is automatically guaranteed. 

Given any other R E A. consider the diagram 

It is easy tts see that the isomorphism o restricted to the upper level provides a 
bijection. Since both vertlcbl WOWS are full mjections (see 0.1 A). this bijectiun is 

bicontirtuous, i.e., an isomorphism in K. The K-naturality follows now from the 
K-naturatity in the lower IeveI and the fact that f 1 is a K-faithful K-functor. Finally. 
the commutativity of the diagram above [completed with A(H.A(X.A )I -+ 

KM, A(& A 551 means that I 1 preserves (strictly) the cotensor just constructed. 
For A’ we manipulare similarly: if A EA’, define A’(X.A) = A(X. A ) wiEh the 

identity 

1 s x+ 1 L ldai _*._. . . __“__.__ __“___.__. 

1 -+ KW, f A 0 
wo * 

The proof follows the same lines as in the case of A. QE .D. 

Proof. Define f tim I‘, 1 = lim f 5‘, 1 with operations: 



The fact that for any X I p in r, 1 I‘, 1 -?!Z- 1 rh I is a morphism of K-topological 

algebras, is ail what it is needed in order to check the corntnutativitics required for 
the existence of the dotted arrows. It is indeed a straightforward matter that the 
axioms (Definition I.1 ) are satisfied. In order to see that the resulting K-topological 
algebra is actually the iim of r and that it is preserved by the representabie functors, 
consider the diagram: * 

The homecrmr)rphism at the lower level (which is in fact a homeomorphism 
because K( I A 1, -) has a left adjoint) induces by restriction a bijcction in the upper 
ievei which is Ltontinuous in both directions because both vertical arrows are hi1 

injections (it can be checked easily that a $1 of full injections is a full injection). 
Similar arguments apply to A’. QE‘D. 

Since K is a complete category (see 0.7). it foii~~ws from the Proposition above 
that A and A’ are also complete. The fact that the limits in A and A’ are preserved 
by the representabies intr) K means (see f IO] for definitions) that they are K-limits. 
J=‘~Is together with Proposition 2. I amount to saying that A und A’ arc K-crlmpk~e 
K-categories. It also follows from the proofs of Prop. 2.1 and 2.2 that the inclusion 
A’ +A is a K-functor which preserves limits and cotensors. 

We proceed to prove now some other facts promised at the beginning of this 
sect ion. 

Let X be a Keliey space and A a K-topo!ogicai algebra. We say that X generates A 
Ivia f) if there is a continuous function X f* f A 1 (i.e., a morphism in K) such that 

the set-theoretical image off aigebraicaiiy generates A (or, no proper purely algebraic 
subalgebra of A contains the image off ). The ciass of all K-mpolugical atgehrus 
puncrated by any given Keky space X is a set. In fact, there is only a set of surjec- 
tive functions with domam X. For each of them. there is only a set of algebras 
algebraically generated. and finally, for each of those there is oniy a set of possible 
t opoiogies. 

A similar definition and conclusion are clear in the case of K-topoiogi~ai algebras 
with identity. 

2.3,Paopositioa. The ha:-funrtw.c; A g K artd A’lA K have left adjoints Kc A and 
K z A’. Furthmnore, Fand F’ are K-functors and K-left adjoints. 

Proof. Since A is well-powered and A' ' + K preserves limits, by the Adjoint Functor 
Theorem 1151 it is enough to obtain, for any given XCZ K, a solution set. But the set 



of K-topthgical algebras generated by X furnishes a solution. In f3ct. let X 5 1 ,d 1 

be any mp in K and let l&4 be the algebraic suhalgebra ofA generated by the set- 
thcurctr~al image of’g endowed with the A’-ation of that relative topology correspond- 

ing to I C A. lt is clear that I is a Ltopoiu@xi algebra and the inclusion I 1* A is a 
morphism in A. The map X 5 1 A 1 has a factorization 

Since i is 4 full injectmn,f is continuous and it is clear that X generates / viaJ. there- 

fore the set of k’-topological algebras penerated by X is 3 solution set. 3s clatmed. 
Thus. A ‘-i k’ has 3 kit adjoint K ’ -+ A. Since A is wtensored and 1 f preserves co- 
tensors, the Lst part of 2.3 follows 3s 311 application of the criterion given in (23j 
4.1. p. ! ?3. The corresponding results for A’ ‘-k k’ are obtained m the same way. 

QED. 
A description ot’ FX, XE K can be given as follows: let V(X) be the free mnplex 

vector space over X (which can be pictured as the space of all functions a: X --* C 
such that a(x) + 0 holds only for tinitcly many xEX). A topolopy on C’(X) is 
determined by the converpence 8, -+ u ~t’and only if fix each .4 EA and X s f A 1, 

q a murphtsm in K, we tmve Z Sa,(x) p(x); HEX) --* E {a(x)&v), .rE X ) L This 
topcllopy can be lifted to the tensur algebra TI V(X)/ = C’(X) 139 ( c’(X) @c V(X)) + . . . 
and F(X) = farpcst Hausdorff quotient of KeTl C’(X)) . Similarly. k’A is an estenswn 
rOX by Cwith trivial action (cf. Proposition 2.10). 

Proof. This result is an easy application of the enriched version of Beck’s Triple- 
ability Theorem (cf. [ 101 Theorem 11. 2.1). There is no diftlculty in checking the 
hypat hem for the “underlying Kelley space” K-functors A ‘A K and A’ ‘A K. Q.E.D. 



Proof. Define J to be the set-theoretic image of g with the K-ation, of the relative 
topology. It is easy to check that IE A and clearly 9 factors as ,d ‘-c I L fI. Finahy. 
v is continuous bd:cause i is a full Injection. Q.F. .I). 

2.6. Proposition. ‘J’k K-curqwi~s A and A’ have all c~wqu~bxs. 

Pmof. Let A s B. A s B be any pair of maps in A. From 2.5 follows that there is a 
solution set for the cocqualizer of 9 and JI (namely the set of all B 2 n in A which 
arc surjecfjlve fumtions and such that d9 = d+ ) and therefore the coequahter of q 
and 6. H + H does exist. In fact, form the category r whose objects are maps 
H 5 n as above and whose arrows d -!+ d’ are maps D A III’ in A such that d’ = kl. 

r is ;t small category and therlc is a functor rf A, F(B 5 13) = D, I?=4 Since A is 
complete. the (invzse) limit of F exrsts. Thus, H is this limit with t3 % H defined 
3s fol1ctws 

3!!I 
B v--------+ H 

where Pd is the pr~,.~jection corresponding to (Iy 
d 
-+ fI) E r. The same is done in the 

case of A’. Q.E.D. 

Since K is a cocomplete category (see 0.8) and the K-functorsA i-! K and A”& K 
are K-monadic, and in particular. monadic (= tripleable), it follows from Prop. 2.b 
and a well known resul: of Linton [ 241 that A and A’ have all (smail) colimits. We 
state this; 

Proof. St only remains to be seen that the representabiles Aop !!!2.!!.!+ K preserve 
cohmits. But this is clear since A is cotensored and therefore the K-funct ors 
A(-, A ), have left adjoints. Q.E .D. 

The statement above reads: given any functor Fs A where T‘ is small, then 
cohm Fh exists in A and for any K-topological algebra A EA there is a homeo- 

7 
morphism of the Kelley spaces: 

A(colimrh.A);climA(r,,,A). 
h” X 



lat us ohserve now that, as in the case 0fK (see 0.14), the represcntables of A 
or any kategory of K-topological algebras (Prop. 1.7 ) preserve full injekYions. 

More precisely : 

2.8. Rem&. Given I !+ H irr A such that 1 I f -!+ f 1yl is a full injection (in K), then 
Atn*o for 3111 A f A, A(A. I) ..___:_._--, A(& R) is also a full injection (in .K). 

the two vertlc3l 3rrows and the lower level arrow are full injectlons. whence the 
upper kvel arrow is 31s~) a full mjection. c;).E.D. 

It is clear that the correspondence mc) is one-to-one. Let now S =: f .k’ t AC4.N); 
WE A. h E K, q-,(h) is onto 1. Since there is only ;1 set of sujec~e functions 

U A + N, ,S is a set, In order to see that S is a solution set we proceed 3s fdk~~s. 
X 
Let X L A(A,A) and consider the factorization of tin(j] described In Remark 2.5: 
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clearly ~tjlnllllltes, and therefore, from Remark 2.8 foilows that h is con t irwous, UI 

h E K. Finally, it is obvious that G;O(h) ix = Ri, (for 311 x E X) and therefore 

tin(k) = g. Hence w,,(lr) is onto, that is. /I ES. This completes the proof of the 
existence of 3 left rtrlijuint for A(A, -). Since the representahies preserve crbtensors 

7 (always), it fc*llows as in Prop. _.. 3 that this left adjoint is necessarily 3 K-functor 
3nd a k-left 3djoini. This proof can be adapted without difficulty to A’. Q.E:.lD. 

WC finish this section by expressing K-functorially the standard pt tmduw of 
adding 3n identity to an algebra possibly lacking it. 

A ---- R 
--__ __ 
X-N 

Proof. This result fok~ws. for cxmple. from Prop. 2.3 and 2.b and Thewxn A. 1 in 
the Appendix of [ IO]. It is only necessary to observe that the inclusion A’ -+ A 
commutes with the “underlying Kelley space” K-furrcturs. 

$j 3. Gelfand K-monads, the duality determined by C 

Given a Kelley space XE K, consider the cotensor &b’,C? = .$(X, C) Wquahty 
occurs since C belongs to both A and A’ nnd A’ ’ -+ A preserves cotensors). Accordtng 
to the definitions given ( tJ2) this is nothing but the Iljng-considered algebra of all 
complex valued functions on X, endowed with the K-ation of the compact-open 
topolog)l. in other words, the kation of the topology of uniform convergence on 
compact sets of X. in particular, &X. c) is the K-ation of 3 complete locally VI- 
convex algebra (cf. (27), Appendix D). If K is a compact space, then A(K,C) is just 
the commutative C’*-algebra of all continuous complex valued functions on A’ with 
the supremum norm. which is already a k-space (0. I ). Since th2 K-t’unctor 



3.2. Examlple. Let X be the lr~ally compact space of ordinals .ly = 11 .S2) with the 



order topology. where 52 is the smallest uncountable ordinal, Ab the loyally IP~- 
convex algebra at‘ all continuous complex valued functions on X with the tupology 
of uniform cmwrgence on compact sets. We have &Y.C) = KC& It is well known 
that every t’unctlctn f&4 b is constant on a tail (ai, Q ) for some oi (which degk”nds ot 
course on f) and therefore, f has an e>rtension I* to OX = [ 1 $21 . The corrcspondeqce 
f --+fo is an a@braic isu.>morphism (onto) between A b and &@X.C). Denote now 
by L E A(A(fiX,C’). c) the continuous multiplicative linear map L( $1 = f(R). it is 

clear that I, induces a multiplicative linear map (also denoted by L) from Ab to C 

;Qroof. First, for each a < 5’2 denote by per the seminorm p,( f ) = Sup { If{?) f ; 
1 < y <a). It is easy to see that the family (p, Iv 1 G cr < 52 determmes the ttrpo- 
logy of Ab. Now, lfrt g,E Ab be the function defined by g,(7) = 0 if I G 7 CCL. 
g,(y) = i it’ 7 2 a + I ‘, where 1 Ea:< 52. It r$. clear that pa(go ) = 0 if o > cu. and 
therefore gb --* 0 (as o -+ C2) in A b (0 is the zero function). Howeve! e Lfg, ) = 
g@j = t which s,htiws that L is vmt continuous on A b. In order to prove the first 
part, we observe that L E A(A(X,C), C) just means that the restriztivns of 1, to the 
compact subsets crf A b are continuaus. This follows from the fact that if/Y C A b 
is a compact subset, then there is an ordinal 6 < fl such that all functionsjEH are 
constant on f6. R) f 141 Chap. IV. $4. Ex. 13). For the sake of completeness, we 
sketch here the prmf. First, there is a constant M > 0 such that if’(a)/ G M for all 
f’EM and irEX. since otherwise there would exist ordinals o,< St, n = 1.2, _. and 
fillnctions&$Hwith I~,+,)~ >ur; but necessarily u= Supo,<Q andP,Cf)is 
brlundcd on N (ccmpact). which contradicts the above conclusion. Now define for 
oE X the number ci(u) = Sup ( ) j’(6) -- f(a”)[; fEH, UC 0’. u G 0” 3. Clearly 
.W) G LM and oh 1 &creases as u + $2; this means that .s is eventually constant: 
s(0) = ti for all 0 2c o. in X. If u > 0. f here exist sequences { u,* ) and { 7, ; in X and 
Cf,,‘, inff such that u,$ql Go,,] G7,+1,~~= I, 2, ,.. and I&Jon) -f;,(r,J 2 44,~; 
clearly both (on ) and { q1 j converge to ti = Sup(0, ]I = Sup { 7, ), and { fn j has a 
convergent subset {fit ) with lilnit fEH. This leads vo the contradiction f’(5) = 
lim f;,@,,) # lim&&) =fcii;‘,. Thus, M = 0 and f(u’) = f(u”) for all fE N and 
0’ 2 00. U” 2 00. as desired. From here it follows triviatly that the restriction of L 
to H is continuous, as claimed. Q.&D. 

Observe that qL (f) = 1 I,(f) 1 is an algebra seminorm on A b, continuous on com- 
pact subsets. Thus the locally nl-convex algebra B defined by the family {p, :r U (QL 

on A b satisfies KeA b = Kef?. However A b (with {pa i) is ccrmplete, and B (with 

!P ~],gL)isr;ot: thenet {g,)IG.,crl defined above is a Cauchy net far pO and Q_, 
baut does not converge in S; as is easily seen. This shows in particular that B + A b 
and therefore all the statements made in the last paragraph before 3.2 have now 
been justified. This example will be continued later (see 3.6 below). 



Given a K~topologi~af algebra ,4 f ,4, AM, c) is the se2 ot’ all continuous linear 
multiplicative function& on ,4 with the K-ation of its compact-open topology. If 
il E A’. then A’(‘A,C) consists only of those functionals that preserve the Identity. 
In the case where A 1s determined by (i.e ._ is obtained as the &atiran of) a locaily 
Itt-convex &&r-a B, the above spaces differ from what has been classically cakd 
the “spectrum” or “carrier space” ofB ( [5] , 191, f 171 ) in two different ways. On 
one hand, they contain more points (namely. all those characters [ = tinear multi- 
plicative funstic3nalsf which are Wttinuous on compact sets, but not continuous 
on B); on the other hand, the topology of A(A,Ci (and A’~~4,CH is NO! the cus- 
tomary topol.ogy for spectra. namely. the topology of simpie convergence on the 
elements of H (or even the A’-ation of it ). These facts support a statement asserting 
that A(A.C) and A’QI, C’) diff r”r substan tiaiiy from the t rrariit ionally considered 
spectra. And yet. if.4 (=: 8) is &i <omnrutative c’ ‘*-algebra with identity* then A’(A,l”) 
comtiides ~ttft the spectrum d4, set-wise and even topolagicaliy. In fact. the only 
thing to be verified is that pointwise ojnvergence of &aracters coincides with unni- 
form convergence on cornpast sets, an obvious fact since in this case the characters 
are equicontinuous. In particular A’(A,C) is a compact space; A(A. C) is also corn-- 
pact and in fact is obtained from A’I.4, C) by adding one isolated point: the ze”~o 
functional. It folfowu from these considerations that A’&4,C) is a legitimate gcner- 

alization of ths spectrum of A when A is C*, and therefore A’(A, C), for 1(1 E A 
should play a simillar rule’ than the spectrum concerning, t‘or instance. the exrstence 
of idempotents. representations. etc.. and in particular the Gelfand Theory of C*- 
algebras. Tote rest of the section is devoted to developing a generalization of the 
13t ter. 

C‘onsider the K-c;itegolry A and the pair uf K-adjoint t‘unctors 

The corresponding liC-monad in A will be called the Gr~~~oncl K-ntonu<l. denoted 
T= fT. q,p), where A s A. Cl = A(A(A. C), C) for any given K-topological algebra 
A EA. The unit id 3, 7” is the G’e&~d transfiwmarion (stmetintes called Fflrrtier 
rlcrnsli,prl-lnri~~rz, or even I’iwfw-Gtdfand trumj’urnratitm ): A ‘2 A(A(A, a, c). 

If uE A _ we introduce the notation VA(~) = (3, where ii($) = $(a) for any A s C in 
A. The multiphcatic~n of the monad 77’ !k T, A(A(.&A(.A, C), C). c). 0’2 
&A(& C), C) has tl-e following action: givep A(.&A(A ,C), C), C’) 5 Cpnd A % C, 
then &(q)(Q) = G( $) where &A(A,C), C) ‘r; C is defined on A(A. c) l+ C hy 
&(r’, =f(G). (Reoal! that, as for any K-monad determined by a pair of Kadjoint 
functors, 

P 
=A(ul(A,C),C), where e is the counit (inKoF). Civen_XEK.-rEX, 

then X % A(&X,C), C) is EX(X) = X:, where -i(f) =f’(x) for any X k C in K.) The 
reader can verify easily that this description of the unit (Geifand transformation) 
and multiplication of the Gelfand K-monad actually describes the unit and tnufti- 
plication as intrinsically obtained from the definition of the monad: it suffices to 

go back to the cotensoring isomorphism u of Prop. 2.1, and o’bserve that it is 2 



restriction of the isomorphism u provided by the r*t~:ed CUH&J~ stnrcrurv of K 
(see 0.13). The continuity of the Gelfand transformation is automatically guaranteed, 
since it is a map in A. Analogously. to the pair 

tIhere corresponds a K-monad in A‘. that we also ~311 the Cklf’and K-monad. and 
denote by T’ = U”, qt. p’). 

In order to indicate the overall picture, we take up space to review some past 
examples. 

L.3. Erample. II’A is a commutative C ‘*-algebra with identity, then 7”A = A. We wrll 
consider this in further detail below (see Prop. 3.7). 

3.4. Example. Assume XEK is completely regular (SW [ 2 I 1 i and o-compac’t, that 

is. X has 3 countable covering by compact subsets. Then. the t~aily Denver 
algebra Ab of all continuous complex functions with the compact open topalogv is ..- 
mctrizable. and therefore ,4(X, C} = Ila b. Assume now that @G A(A b, C). C’learly for 
some compact subset K C X we have f tp( f )I G c*pK( .f) where PA’(f) = Sup{ /f‘(k )f ; 
k E k’ ) . Let R C &A’, C) by the algebra of restrictjorss to A’ of functions in .4 b (i.e., 
R is the image of A(X,C) 43 k{K.C) where k’ L X IS the inclusion. q induces an 
element of AIR, C). Let J C R be the kernel of $ : gC3 if and only if G(g) = 0. If 

for every .rEh’ there is a g.+J such that g,(x) # 0. then k, = Igx I2 = jj&&J and 
h, is real valued and satisfies It,(x) > 0. A compactness argument shows that we 
can t”lnd x 1, . . . , x, E A’ with /z = Xizxi>O everywhere an K. But this means that h 
has ao inverse in R and yet G(h) = 0. Thus for some ~6% we have g(x) - 0 for all: 
~$2. Since J is maximal, the converse follows, and ttxrefore for arbitrary g. 
dg -X(-r) 1) = 0, so that q@) = J$x). This proves that A’(‘,4 b, C) can be identified at 
the level of sets to X. tirmgever, if X is completely regular (and XE K). the topologes’ 
also agree and therefore A’(,4 b, c) = X. it follows that for these X. ‘I“&%‘. C) = 
A( A’, C’). Observe that this equality follows from the immediate result A(X. C) = 13 b 
and Car. 3.10. However, we have proved something stronger, namely that 
X = A’(;i(X, C’), C) as !opologicat spaces. 

3.5. Example. Lts S be a set and A = Kel”(S), (notation as in Ex. 1.3). From t .S.4 

follows easily that the family of functions in n with Unite support (i.e., vanishing 
off a finite set’) are dense in A. Then, if qtEA’(/i,C) and 9 is not zero, we must have 
(~(a,) #,O for some sES. where u, E A is the function a,(t j = 0 if t # S, a,(s) = 1. 

Since ai = ff,. clearly &J,) = 1. If a64 is any element, we have a&z - P(S) 1 ) = 0 

so that &a - a(s) I ) = 1, and therefore g(a) = a(s). Thiis shows that A’(A, C} = S 
whence T’A = 7%&“(S), = Il, C # A fin A)). In f&t, T’T’A = T’A . This follows, 
in case of S countable, from Ex. 3.4 above. In generzd it can be seen that l-l s C 
satisfies the conditions of‘ Prop. .Ic.U (see [31] Th. 5.2) and therefore car. 3.10 
applies. 



In fact. for the Geifand K-monad T’ in A’ WC also have 7”.4 a A. vu q’.4. for all 

commutative C*-algebras A. hut It is &ar that T’ ib not isomorphic to the idetttit~ 

on all of A’. 
C’rmsidcr now the K-category ot’ T’-algebras, that IS, ofyezts A E A proUdi’d with 

a T’-algebra structure T’d % d , where CI I, ri.4 = id and Ta a = ~‘,4 a. and maps: 

mar pfi isms A % B in A makimp the diagram 
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commutative. Prop. 1 2 shows how r-algebras form a K-category. (For a historical 

account and further references concerning these 
version used here is considered, for instance and 
[10] .) DenrW2 this K-category by A? For 3n! 
T‘~alpcbra with 

T’hY. C) = A’(A’(~‘(A’.C), C’j, c‘) 

concepts see [ II!]; the enriched 
mong other places. in 161 and 
Krlley space SEK, X(X, C’I is a 

This is a gen,- sal fact f IO\ . Ck en any (?-algebra with identity .d , the inverse ot’ 
$4 is a structure of T’-algebra on ia. which ii trhdai: We will say that a T’-algebra 
T’A %l is trivial if Q is a (two sided) invet se of $4 . Very naturally there arises the 
conjecture that all T’-algebras are trivral. This is equivaknt to saying that T” 1s 
idempotent T’T’ = I” {i.e. I(’ is an isomorphlsm). It is also equivalent to the fact that 
the K-functor A’T’ (J ’ ____+ A’. UT’{ T’A f% A j = A be K-full-and-ialr’Iful. and, finally, 
equivalent to the (apparently weaker) fact that for any T’-alg&ra. T’A 2 A, all maps 
into the complex numbers A + C in A’ be morphism of T’-algebras (see f 101 hp. 

11.4.6. p. 103). In fact, the conjecture would be true (in general) pruvided that is true 
for all 7%lgehras of the form .$(X, C) with Q = A’(& C). XE K. Recall that this IS 
the case if X is completely regular and oxompact (see Example 3.4 above). If there 
is an affirmative answer, a simple categorical K-duality co&i be obtained as we shall 
see in Prop. 3.4. Al! the concrete T’-algebras we have found are indeed trivial, but 
we have not succeeded, however, in proving this conjecture in general. Dus ta this 
unpleasant situation, we are forced to resort to a considerably more sophistxated 
machinery, developed in [ I 1, in order to go on. The enriched version needed here. 
is actually to be found in [ ! 01. 

The K-duality produced below will give, as a byproduct the result that every A’- 
topological algebra A satisfying the equivalent conditions of Prop. 3.1 is of the form 
A = &X, 0 = k-‘(X. C’) for some XE K. Of our conjecture above is true. then neces- 
sarily X = A’fi4.C). Before going to the general case, we will describe some sufficient 
conditions for this to be so. 

3.8. Proposition. If .4 E A’ satisfies tht tquivdent cmrdi~icms in Prop. 3. I, then A irus 
u canmid structure of T’-algebra. 

Proof. We know that A = I@ $, and that for each p, A, E C*. Therefore each A, is 

a trivial T’oalgebra. Hence a!& morphism A -+ A, in A’ is a 
+(cf. [IO] 

morphism of 7”-algebras; 
we can therefore take the limit Oim A, irz A 

‘lp 
P ro xMions Sf 11.4.5 and 
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3. IO. Corollary. A * IF’.4 (” k’(A’(.4,C’).C))itl l 4. Q.E .D. 

This corollary apphes notably to the case of Frcichet algebras (see 127 1 ). that IS. 

to algebras satisfjinp (h) m Prop. 3. I with a WU~IMJ~ 1‘mlily !p 3 and to arhitrarb 

products of suih algebras (cf. I? 11 Th. S.Z!j. 

It is clear that K-tupuloglcal algebras ot’ the fom A’(X.C) tk a general XEK 

wll not satkify the awmptions in Prop. _W (see 3.Z.t rn Esample 2.2 ), and this 
calls for a different approach. But before we dexribe it, let us observe the following. 

Proof. The &ntlty of’,4 IS @e) where e is the Identity of TA = A(A(A.0.C); tf 
A s B in A, I?.($) always preserve the Identity. Q.E .o. 

c 
Consider then the K-fkxtor I + A’ and its codensity K-monad T’. that IS. the 

Gelfand K-monad. The followmg informal constderations are stated and proved in 

detail in 1 IfI] , on pp. 135 ff. under the heading “Second Relative Mkmplet~on”. 
The Gelt‘and K-monad T’ determines the K-category A’*’ of ?“-algebras. and 

CE A’T’, whence, we have a functor I c A’ ? A’T’ is a iotensorect kategory ;md 
then we have a c$ensity K-monad in AfTI. The iott‘nsors in A’T’ are (strictly) pre- 

served by A ‘r’ L-* A’, that is thev are nothing but a &&bra structurle on .a’(*v. * 
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The p,nmj3s to be found in [ IO] . Q.E.D. 

We have the following corollary: 

Proof. WC keep the notations of Prop. 3. I. The considerations made before Prop. 3.1 



justify the “if’ part. ASU.HW stow that A = l$1,4!~. From (c) in 3.12 there are (unique) 

i$, E B such that LB/> = ‘4,. and we can takc’the limit B = iim B, in B (see Twp. 3.8). 
F 

Since L preserves (stri&y) limits, LB = .h 1. On the cjt her hand, it tbllows from (b) in 

3.12 that S * ~(B(B,C’).C), and since L (strictly) preserves eotensors, we have 
.4 =z LR = L&B(B,C’), C) = A’( B(H, C”). Lc‘) = ;ki’(B(S, C), Cl Thus, A = ii’(B(B.C),C?. 
and the proof is <umplete. QED. 

Similar statements establishing functional representations for topological algebras 
can be found in (271 Theorem 8.3 and 1 If)] Thcwcm 5. The result in the Iast 
corollary gives an isomorphlsm with an algebra of continuous complex functions in 
its natural Kelley topology, so that, in a sense, it can not be improved. However, if , 

we adopt the customary standpknt of considering an algebra satisiying (a) and (b) 
in Prop. 3.1 qua Iv~aily oi-convex algebra rather ;han as an tlernent of A’. t!re bi- 
jet t ion A * &X, C’) is no lqger 3 homeorr,orphism for the local!y /?r-convex topo- 
logies on these algebras, but only continuous as &A’, C) -* _4 : this accounts for the 
unpIeas;lnt asymmetry m the main result in f 191 . 

it can easily be seen. following the proof of Prop. 3.9 that the function& 
64 % C which are continuous for the locally nl-convex topology ( p ), can be lifted all 
the way up, or equivalently, they are morphisms at all levels, and therefore every 
such functional determines a pomt of X = B(B.C). This means that X contains the 
classical spectrum c:,f (A, {p) ), but might. a priori. be larger. 

? 
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