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In this paper we study the linked nonlinear multiparameter system 

where Y, c [a,, b,], yT is subject to Sturm-Liouville boundary conditions, and 
the continuous functions a,, satisfy : A , (w) : det(a,,(x,)} ;- 0. Conditions on 
the polynomial operators M, , P,, are produced which guarantee a sequence of 
eigenfunctions for this problem y”(s) : nr , y,“(q), n > 1, which form a basis 
in L?([a, b], ) A I). Here [a, h] = [a, , /),I ‘v ... x [ok, b,]. 

1. IXTROIXCTION 

In a recent paper [3], Ii. J. Brown proved interesting completeness results for 
a Sturm-Liouville eigenvalue problem perturbed by certain nonlinear factors. 
His main theorem is a direct application of a bifurcation result of Crandall and 
Rabinowitz [8]. The Crandall-Rabinowitz result follows readily from an implicit 
function theorem in Banach space It is our purpose here to use the implicit 
function theorem to produce a result similar to that of Crandall and Rabinowitz 
and then, following the ideas of Brown, to obtain a completeness theorem for a 
linked system of nonlinear second-order ordinary differential equations. 

During the past few years, increasing interest has been paid to the linked 
system of linear differential equations 

d2yr(xr) 
ds,2 A- q,(.x,)?;,(x,) -I i /\au,,(.~,)~r(.~r) 7 0, r =: 1, 2 ,..., k, (1) 

r-l 

where s, E [a, , 6,], X,Y are complex parameters, and q,(.x,), a,,(~,) arc continuous 
real-valued functions defined on [a,. , b,], r, s 1, 2 ,..., K. 
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Sturm-Liouville boundary conditions are imposed; viz 

~~(4 ~0s av + ~~‘(4 sin a, = 0, 0 < c+ < 37, 

Y,@,) ~0s A + Y,V,) sin A = 0, O<&.<n, r-l,2 ,..., k. 

The functions u,.~(x,) are assumed to satisfy the definiteness condition 

I A I (4 = detb&)) > 0 

for x = (x1 ,..., xn) E [a, 4 = [a, , b,] x ... x [al; , &j. A k-tuple of (necessarily 
real) numbers X = (h, ,..., &) and a function f(x) = fi(xJ ...fk(+) are then 
called an eigenvalue and eigenfunction, respectively, if X andf, ,...,fk satisfy the 
above equations and boundary conditions. In this manner a so called multi- 
parameter eigenvalue problem is formulated. 

It is known that L2([a, b], 1 A j ) the space of all real-valued measureable 
functions f defined on [a, b] for which 

ilf!l" = J;tz bl If(x I A I(x) dx < to 

has a complete orthonormal basis of eigenfunctions of the above multiparameter 
problem. The inner product in this space is given by 

(f,d = J; 
a, 

b1f(x)cd41 A I(x) dx. 

For details of this result and an overview of recent developments in multi- 
parameter spectral theory, the reader may consult Atkinson [ 1, 21, Browne [4-71, 
Faierman [lo], and Sleeman [ 12- 161. 

We intend perturbing the above linear equations by nonlinear operators 
acting on the functions y,(x,). Our main result will be that the new linked 
problem has a sequence of eigenvalues h” and corresponding eigenfunctions 
f”(z) forming a basis for L2([a, b], / A I). In this context the word “basis” means 
that f EL2([a, b], / A 1) will be expressible uniquely as f = Cj"=, cjfj, cl, c2 ,... 

real numbers. 
To conclude our introductory remarks we state two propositions which will be 

needed in the sequel. 

PROPOSITION 1. Let {un} be a complete orthonormal system for a Hilbert space H. 
If (u,} is a sequence of vectors in H such that CL, Ij uj - wj /I2 < 1, then {v,} is a 
basis for H. 

Proof. See [ 1 I, Sec. 5, Theorem 2.20 et seq., p. 2651. 

PROPOSITION 2 (The Implicit Function Theorem). Let E, F, G be three 
Banach spaces, f a continuous mapping of an open subset A of E x F into G. Let the 
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map y +f(x, y) of A, = {y EF ( (x, y) E A} into G be difleerentiuble in A, for 
each x E E such that A, # ,B, and assume the derivative of this map, denoted by 
f, , is continuous on A. Let (x,, , yO) E A be such tuatf(x, , yO) = 0 andf,(x, , yO) is 
a linear homeomorphism of F onto G. Then there are neighborhoods U of X, in E 
and V of y,, in F such that 

(i) U x VC A, 

t 
xeuy h 

ere is exactly one function u: U - V satisfying f (x, u(x)) = 0 for 

(iii) the mapping u of (ii) is continuous. 

If, moreover, the mapping f is k times continuously differentiable on A, then (iii) 
above may be replaced by 

(iv) u is k times continuously diflerentiable. 

Proof. This theorem is stated by Crandall and Rabinowitz [S] who quote 
[9, Theorem 10.2.1, p. 2701 as a suitable reference. 

2. THE BIFURCATION PROBLEM 

We adopt the following notation. The subspace D, of L2([a,, br]) is defined 

by 

D, = {fAxA EL~([~, > hl)lf;W is absolutely continuous, 

f :(x74 + 4r(xr)fr(xr) E L2(kr 9 U 

and 

f?(a,) cos c+ +fr’(4 sin 01~ = 0, 

f,(h) cos P, + f,‘(h) sin Is, = 0). 

VrS: L2([a, , b,]) + L2([a,. , b,]) denotes the continuous linear map ( Vr,fr)(xr) = 
%(4fr(4 

It will be assumed that the linear problem (1) is in a “normalized” form in the 
sense that 

Vx, E [a, , &I7 Y = 1, 2 ,..., k. 

This is no real restriction as is discussed in [16, Sect. 3, pp. 203-2061. Lemma 2 
of this reference states that we may select real numbers pi ,..., pk such that 

CL1 whk4 > 0 Vx, f [ar , hl, r = 1, T..., k. As stated the lemma allows the 
possibility of the intervals [ar , b,] being half-lines. The result is not correct in 
this case. It is essential that these intervals be compact-the proof given tacitly 
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makes this assumption. W’c also see that we may select each ps of 0. This is an 
immediate consequence of the continuity of the functions a,,(~,). 

T,. will denote the operator with domain D, defined by T?j,. =.. j” -i q,.j,. . 
II’, is self-adjoint in L2([a, , 6,]). A-r will denote the space D, equipped with the 
graph norm j,l jr Ii, = ,, jr , - ‘1 T,.j,. !I. Under this norm, Xr is a Banach space. 

1%.e shall denote by M, , P,., , nonlinear maps defined on A-, and taking values 
inL2([a,. , b,]). These maps are assumed to be continuously Frechet differentiable 
and satisfy M,(O) -.-: Prp,,(0) : : 0, X,‘(O) = P,!JO) = 0, r, s : - 1, 2 ,..., k. 

Sow let h =L (A, ,..., hk) bc an eigenvalue of the linear multiparameter problem 
(1) with associated 1 A I-normalized eigenfunction u(.x) == Us ..’ u,(x~). 
Then 0 is a simple eigenvalue of each Sturm-Liouville operator 

T, + i h,V,,: D,-+L2([a ,,&I), r 1,2,...,k. 
r=1 

Let Z, be any complement of span{u,] in -1; . We define a map 
F,: R x (R x Z,.)+L’([a, , b,]) . f 11 as 0 ows. If (Y,. E R, (tr , a,) E II3 X Z, , we put 

= T,-(u, -i- 4 -k i (As i- t,) V&r + 4 if a, = 0, 
s-1 

I := 1, 2,..., k. F, is continuously differentiable in (t, , z,) for each fixed OLD and 
satisfies F,(O, 0, 0) .= 0. F,(O, r,. . z,.) has as its (tr , sr) derivative at the point 
(t, , z,.) =. (0, 0) the linear map defined on R x Z, with values in L2([a,. , h,]) 
given by 

We have made use here of the normalization x:-t a,,(.~,) = 1. Notice that 
T,zr + x:-1 hSVrrar is orthogonal to u, and indeed the simplicity of the cigen- 
value 0 of T, + z” J-r h,L’,, implies that the linear map (2) is a linear homeo- 
morphism of R x Z,. onto Lz([a, , h,]). W e now apply the implicit function 
theorem and claim the existence of continuously differentiable functions 
ir(n,): R -+ IR’ and ~,(a,): W + Z, satisfying t,(O) = 0, z,(O) - 0 and 

These remarks hold for each choice of I -= 1, 2,..., K. 
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The implicit function theorem guarantees that the functions t,(a,), z,(a,) 
are once continuously differentiable. Higher degrees of differentiability of these 
functions will depend on the nature of the maps M, , P,, . To produce bifurca- 
tion from the eigenvalue h it will bc necessary to impose conditions on the maps 
M, , P,,5 which ensure the possibility of selecting a1 ,..., at so that tl(ar) 1. ... = 
t,(a,) thus preserving the linking in our eigenvalue problem. In the remainder of 
this section we display some simple situations in which this bifurcation occurs. 

Our first example is covered by 

HYPOTI~IS 1. Assume P,, -- 0, Y, s = 1, 2 ,..., k and that each -VI, is a 
polynomial operator with constant coefficients 

where A:” > 0, i = 0, l,..., [p/2 - f]> Y 7 1, 2 ,..., k, with at least one of these 
inequalities being strict for each T. 

Here [.] represents the integer part function. We are interested in the first 
nonvanishing derivative of the functions t,(a,) at a, = 0. If this derivative has 
odd order then t,(a,) takes both positive and negative values for at ranging 
through some neighborhood of 0. Suppose then that 0 = t,(O) = t,‘(O) = ... = 
t?-“(O), P(0) # 0 h w ere tl is even. The value of tl will, in general, be different 
for each Y. Then by the implicit function theorem and [8, Eq. (1.20)] we have 

(a”/aa,n)F,(O, 0,O) -r (aF,/at,)(o, 0,O) Q’(O) + (w,/az,)(o, 0,O) p(o) = 0. 

Evaluating these derivatives we obtain 

n! A:-lu;+l + tl^‘(O) II, + 
( 

T, + i h,V,, $‘(O) .= 0. 
s-1 

Multiply this equation throughout by U, and integrate over the interval [a,, b,]. 
Recall that T, -/- cta, h,V,, is self-adjoint and that I(, is in its kernel. These 
calculations yield 

t?‘(O) = [n! A:-’ J-a; (U&)y+” fqJ-a; (u,(x,))2 dxr] 
>O 

in view of Hypothesis 1. Thus assuming the first nonvanishing derivative of 2, at 

a, = 0 has even order leads to the conclusion that this derivative must in fact be 
positive. Kotice that Hypothesis 1 and the above calculations show that not all 
derivatives of r, at a, 0 can vanish. We conclude in this case that there is a 
neighborhood of a, : 0 in which b, has positive values. 

We now appeal to the intermediate value theorem and claim the existence of 



290 PATRICK J. BROWNE 

co > 0 such that for 0 < t < 6, there exist (or ,..., 01~ with tr(~~r) = ... = 
t,(ol,) = t. Accordingly we can find solutions t, fi ,..., f* of the linked problem 

Trfr + n/r,f, + 5 (h + 4 Vmfr = 0, T = 1, 2,..., k 
851 

with f,. of the form a,~,. + ar,z, . Regarding t and z, as functions of o1= (0~~ ,..., 01~) 
we have t -+ 0, z, ---f 0 as 01+ 0. 

It is clear that corresponding results can be obtained by methods similar to the 
above if Hypothesis 1 is replaced by any of the following. 

HYPOTHESIS 2. Assume P,, = 0, r, s = I, 2 ,..., k, and that each Mr is a 
polynomial operator 

where @+‘(x,) >, 0, i = 0, J,..., [p/2 - $1, Y = 1,2 ,..., k, with at least one of 
the inequalities being strict for each r. 

HYPOTHESIS 3. Assume P,, = 0, Y, s = 1, 2 ,..., k, and that each M, is a 
polynomial operator 

where AF+‘(x,) ,( 0, i = 0, l,..., [p/2 - 31, I = 1, 2 ,..., k, with at least one of 
the inequalities being strict for each Y. 

HYPOTHESES 4, 5, 6. Assume M,. = 0, r = I,2 ,..., k, and that each P,, is a 
polynomial operator with no constant or linear terms and such that the operators 
Cr, X,P,, satisfy the conditions of Hypotheses I, 2,3, respectively, Y = 1,2,..., k. 

These hypotheses provide a range of simple situations in which we have a 
bifurcation phenomenon at the simple eigenvalue /\. 

Notice that in case k = 1 we may return to the hypotheses of Brown [3], for 
then the problem of preserving the linking in the eigenvalue problem no longer 
arises. 

3. THE COMPLETENESS THEOREM 

THEOREM. Assume that one of Hypotheses 1,2,3 holds OY that one of Hypotheses 
4, 5, 6 holds at each eigenvalue of the linear problem (1). Then the problem 

T,fr + M.fT + $ ~s(lJrs + Pm)f+- = 0, Y = 1, 2,..., k 
S=l 
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has a sequence of eigenvalues t.~” = (pin,.. ., ,.+n) and corresponding eigenfunctions 

fr” such that (n~=,frfi)~-_, forms a basis for L2([a, 61, I A I). 

Proof. Let hn = (AI”,..., &“) denote the eigenvalues of the linear problem (I) 
with u%(x) = Gus ... ukn(xk), n = I, 2 . . . the corresponding orthonormal 
basis of eigenfunctions for L2([a, 61, / A I). We shall denote by 11 llA , the norm in 
this space. Note that this norm is equivalent to the usual unweighted Lebesque 
norm in L2([a, b]). 

Applying the theory of paragraph 2, at each h”, we select tiTn # 0, 
Y = 1, 2,..., k so that tI(aln) = **. = tk(olkn) = t, , say. We shall further require 
that if YI,% = urr2 + z,(c~,~) and v” = vrn ... vlc71 then II un - vn jlA < 1/2tn+l). 
That this is possible follows from the continuity of the functions z,(cL,) 
discussed in paragraph 2. We now have Czz:=, I( un - vUn /I2 < 1, so that by 
Proposition 1, {@> forms a basis for12([a, b], j A I). The claim of the theorem now 
follows by setting f,.* = a,%rn, r = 1, 2 ,..., k, n = 1, 2 ,,.., and noting that f,.“, 
Y = 1, 2,..., k are solutions of the nonlinear system for py = h,” + t, . 
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