
Practical Reflection for Sequent Logics

Jason Hickey, Aleksey Nogin, Xin Yu and Alexei Kopylov

Department of Computer Science, 256-80
California Institute of Technology

Pasadena, CA 91125
Email: {jyh,nogin,xiny,kopylov}@cs.caltech.edu

Abstract

It is well-known that adding reflective reasoning can tremendously increase the power of a proof assistant.
In order for this theoretical increase of power to become accessible to users in practice, the proof assistant
needs to provide a great deal of infrastructure to support reflective reasoning. In this paper we explore the
problem of creating a practical implementation of such a support layer.

Our implementation takes a specification of a logical theory (which is identical to how it would be specified if
we were simply going to reason within this logical theory, instead of reflecting it) and automatically generates
the necessary definitions, lemmas, and proofs that are needed to enable the reflected meta-reasoning in the
provided theory.

One of the key features of our approach is that the structure of a logic is preserved when it is reflected. In
particular, all variables, including meta-variables, are preserved in the reflected representation. This also
allows the preservation of proof automation—there is a structure-preserving one-to-one map from proof
steps in the original logic to proof step in the reflected logic.

To enable reasoning about terms with sequent context variables, we develop a principle for context induction,
called teleportation.

This work is fully implemented in the MetaPRL theorem prover.

Keywords: Reflection, Higher-Order Abstract Syntax, Meta-Theory, Type Theory, MetaPRL, NuPRL,
Languages with Bindings, Mechanized Reasoning.

1 Introduction

By reflection, we mean the ability to use one logic to reason about another, or

the ability to use a logic to reason about itself. At its core, a reflection system

has two parts. There is a representation function, written �t�, that defines the

representation or “quotation” of a logical formula t. Then, there is a provability

operator, written � q, which is a predicate specifying that q is a quotation of a

provable formula.

An implementation of a reflection system needs to have two corresponding parts:

a specific representation function, and a mechanized reflective reasoning (including

a definition of � · and some degree of reasoning automation)?

The issue of representation is central, and far from trivial. For example, while

Electronic Notes in Theoretical Computer Science 174 (2007) 79–94

1571-0661 © 2007 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.01.019
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82482812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jyh@cs.caltech.edu,nogin@cs.caltech.edu,xiny@cs.caltech.edu,kopylov@cs.caltech.edu
http://metaprl.org/
http://metaprl.org/
http://nuprl.org/
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

it is conceptually easy to define a representation function using a Gödel numbering

[10], such schemes are impractical as the structure of a reflected term (a number)

is so different from the original formula. Any plan to re-use mechanized reasoning

methods on reflected terms would be extremely difficult.

The challenge is an instance of a general canonical problem—that of using mech-

anized reasoning to reason about meta-properties of systems, languages, or logics.

Our goal is to develop a canonical solution that can be used for meta-reasoning

in general. In our approach, we use reflection to implement a framework where

meta-reasoning is higher-order. For example, one can develop theorems of the form,

“Any system that has meta-property P also has meta-property Q,” or “Every meta-

property of system A is also a meta-property of system B.”

However, mechanized reflection is not easy. The general issue is that, if one

wants to talk about provability, then it seems necessary to formalize or emulate the

theorem prover and its meta-logic. This näıve approach is not only difficult, but

it would also require reimplementing the theorem prover within itself. Following

Barzilay [4], we aim at reusing the theorem prover instead of reimplementing it.

We present an approach to practical reflection as part of a logical framework,

where the representation function �·� is defined over a logic, as well as the formulas,

inferences, and theorems that it contains. That is, to develop an account of system

L and its meta-properties, one first defines the system L as a primitive logic, using

the exact same syntax and definition mechanism that are used in not-reflective case.

Then, to develop an account of the meta-properties of L, the logic is (automatically)

reflected en masse to �L�, where each theorem T in L is reflected as �L�T � in �L�,

and any proof of T is reflected to form a proof of �L�T �. In our system, it is not

necessary to prepare for reflection. One may develop a theory in the usual way,

calling upon reflection if/when it is necessary to perform meta-reasoning.

Of course, this would still not be practical if reasoning in the reflected logic is

difficult. The fundamental reason that our approach is practical is that the repre-

sentation function preserves structure exactly in this sense: all variables, including

both object and meta-variables, are preserved by the representation. One might

call this meta-higher-order abstract syntax. In particular, since we are working

with logics that use sequents to express their judgments, the representation func-

tion preserves sequent context variables. To do so, we develop a weak induction

principle for sequent contexts, called teleportation.

The benefit of preserving the term structure is that mechanized reasoning works

transparently. That is, there is a one-to-one correspondence from proof steps in

the original logic L to proof steps in �L�. In fact the translation is direct and

mechanical, which means that proof automation in the original logic L also applies

in the reflected logic �L�.

This work is implemented in the MetaPRL logical framework [14, 17], and is

available at http://www.metaprl.org/. The following is a summary of the contri-

butions.

• A representation function �e� that preserves the structure of formula e, specifi-

cally preserving object and meta-variables, and all binding structure.

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–9480

http://metaprl.org/
http://www.metaprl.org/

t ::= x object (first-order) variables
| z[t1; · · · ; tn] second-order meta-variables
| Γ � t sequents
| op{b1; · · · ; bn} concrete terms

b ::= x1, . . . , xn.t bound terms
Γ ::= h1; · · · ;hn sequent contexts
h ::= X[t1; · · · ; tn] context meta-variables 1

| x : t hypothesis bindings and terms
L ::= R1;R2; · · · ;Rn a logic
R ::= t1 −→ · · · −→ tn an inference rule (ti are closed w.r.t. object variables)

Fig. 1. Syntax of formulas and logics

• A one-to-one map from proofs in L to proofs in the reflected logic �L�.

• A new induction principle, called teleportation, for induction on sequent contexts.

• A practical implementation in the MetaPRL system.

The organization of the paper is as follows. In Section 2 we develop the syntax

and language of logics. This then allows the formal definition of the representation

function in Section 3, as well as the definition of provability � t in Section 4. In

order to work with sequent context variables, we develop the teleportation induction

principle in Section 5. The final step in Section 6 is to develop methods for proof

induction in reflected logics. We present related work in Section 7, and we conclude

with a discussion of our approach to reflection in Section 8.

2 Terminology

We assume we are working in a meta-language with sequents, second-order meta-

variables, and terms, as shown in Fig. 1. A term t is a formula containing variables,

concrete terms, or sequents. A concrete term op{b1; · · · ; bn} has a name op, and

some subterms b1, . . . , bn that have possible binding occurrences of variables. For

example, a term for representing the sum i + j might be defined as add{.i; .j}

(normally we will omit the leading . if there are no binders, writing it as add{i; j}).

A lambda-abstraction λx.t would include a binding occurrence lambda{x.t}. Note

that here the primitive binding construct is the bound term b, and λ-binders are a

defined term. An alternate choice would be to use a single primitive λ binder (for

example, as is done in LF [11]).

A sequent Γ � t includes a sequent context Γ, which is a sequence of dependent

hypotheses h1; · · · ;hm, where each hypothesis is a binding x : t or a context variable

X[t1; · · · ; tn] (x and X bind to the right). Note that sequents can be arbitrarily

nested inside other terms and are not necessarily associated with judgments.

Second-order meta-variables z[t1; · · · ; tn] and context variables X[t1; · · · ; tn] in-

clude zero-or more term arguments t1, . . . , tn. These meta-variables represent closed

1 Strictly speaking, context variables are bindings and meta-variables have context arguments in addition
to term argument. This does not affect the presentation until we get to context induction (Section 5, and
we omit context arguments for now.

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–94 81

http://metaprl.org/

substitution functions, and are implicitly universally quantified for each rule in which

they appear [19]. For example, a second-order variable z[] represents all closed terms

(we will normally omit empty bracket, writing simply z). The second-order variable

z[x] represents all terms with zero-or-more occurrences of the variable x (that is,

any term where x is the only free variable).

To illustrate, consider the “substitution lemma” that is valid in many logics. In

textbook notation, it might be written as follows, where t1[x ← s] represents the

substitution of s for x in t1.

Γ, x : t3,Δ � t1 ∈ t2 Γ,Δ � s ∈ t3

Γ,Δ � t1[x ← s] ∈ t2

In our more concrete notation, s, t1, t2, t3 are all represented with second-order

variables, and Γ,Δ with context variables. Substitutions are defined using the term

arguments; rules are defined using the meta-implication · −→ ·, and we consider all

meta-variables to be universally quantified in a rule. The concrete version is written

as follows (where we use s ∈ t as a pretty form for a term member{s; t}, and zi are

second-order meta-variables).

(X;x : z3;Y � z1[x] ∈ z2) −→
(X;Y � z0 ∈ z3) −→
(X;Y � z1[z0] ∈ z2)

(2.I)

In the final sequent, the term z1[z0] specifies substitution of z0 for x in z1.

Note how the term arguments are used to specify binding precisely—the variable

x is allowed to occur free in z1, but in no other term. The reason we adopt this

second-order notation is for this precision. All rule schemas representable with

substitution notation are also representable as second-order schemas, but not vice-

versa.

For the final part, a logic L is an ordered sequence of rules. Each rule may be

an axiom, or it may be derived from the previous rules in the logic.

3 Representation of reflected terms

We will assume that we are working in the context of a logical framework, so there

are at least three logics in consideration—L: the object logic, M: the meta-logic in

which reasoning about the object logic is to be performed; and F: the meta-meta-

logic, or framework logic, in which the meta-logic M is defined. The first step in

the reflection process is to define a representation of formulas, judgments, rules and

theorems of L in terms of formulas, propositions, and sentences in M.

The representation function �·� produces a quoted form of its argument. As

we have mentioned previously, to preserve a one-to-one correspondence between

proofs in an original logic L and its reflected logic �L�, it is important that �·�

preserve the structure of the term, including variables, meta-variables, and binding

structure. Note that the representation function itself is not a part of the language

of the logical framework; it is only a symbol of the “on-paper meta-meta-language”

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–9482

Terms

�t� : �x� ≡ x

�z[t1; · · · ; tn]� ≡ z[�t1�; · · · ; �tn�]
�Γ � t� ≡ �Γ�����t�

�op{b1; · · · ; bn}� ≡ �op�{�b1�; · · · ; �bn�}
�b� : �x1, . . . , xn.t� ≡ λbx1. . . . λbxn.�t�

Sequent contexts

�Γ� : �h1; · · · ;hn� ≡ �h1�; · · · ; �hn�

�h� �x : t� ≡ x : �t�

�X[t1; · · · ; tn]� ≡ X[�t1�; · · · ; �tn�]

Rules and logics

�L� : �R1; · · · ;Rn� ≡ �R1�; · · · ; �Rn�

�R� : �t1 −→ · · · −→ tn� ≡ (Z � �L�t1�) −→ · · · −→ (Z � �L�tn�)

Fig. 2. The definition of the representation function

that we use for describing our implementation. Only for operators, �op� refers to

some concrete way of reflecting the operator op within the system itself [21].

The representation function is shown in Fig. 2. The parts of interest are the quo-

tations for concrete terms, sequents, and inference rules. The quoted representation

of a concrete term, �op{b1; · · · ; bn}�, produces a new term with a quoted name �op�,

and the quotation is carried out recursively on the subterms �b1�; · · · ; �bn�. 2 The

quotation of a sequent, �Γ � t�, is similar: the “turnstile operator” is quoted, and

the parts are quoted recursively.

The quotation of bound terms introduces a binder, written λbx.t, that represents

each binding in quoted form. 2 Note that the binding variable itself is unchanged;

the variable is preserved as a binding, but each binding is explicitly coded as a λb.

Finally, the quotation of an inference rule, �t1 −→ · · · −→ tn� becomes a judg-

ment about provability (Z � �L�t1�) −→ · · · −→ (Z � �L�tn�). The context

variable Z is fresh, and each sequent Z � �L�ti� is a judgment in the meta-logic

about provability.

Informally, the reflected rule states that if each premise t1, . . . , tn−1 is provable in

logic L, then so is tn. A key goal is that the reflected rule �R� must be automatically

derivable from the definition of L. For clarity, when reasoning about a single logic

we will normally omit the subscript �L and just write �.

The choice of meta-logic is somewhat arbitrary. For our purposes, we have

chosen to use computational type theory (CTT), which is a variant of Martin-Löf

intuitionistic type theory as implemented in the MetaPRL logical framework [16]. In

other words, our meta-logic Mis CTT and our framework logic F is the one provided

by MetaPRL. Note that in CTT, the reflected rules �R� are sometimes required to

2 Further discussion on quotations of names and concrete terms can be found in [21]. The encoding we
use is an essential foundation for this work, however the specific encoding details have little effect on the
presentation here.

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–94 83

http://metaprl.org/
http://metaprl.org/

include additional well-formedness constraints on the typing of the meta-variables.

Returning to our example, the quoted form of the substitution lemma (2.I) is as

follows, where we write s �∈� t for �member�{s; t}.

Z � �(X;x : z3;Y ��� z1[x] �∈� z2) −→
Z � �(X;Y ��� z0 �∈� z3) −→
Z � �(X;Y ��� z1[z0] �∈� z2)

(3.I)

The operators have been quoted (in this case ��� and �∈�), and the theorem

is now a judgment about provability stated in the meta-logic as Z � � · · · . Only

the operator names have been changed, otherwise the structure, including variables

and binding, has not changed.

For an example with binding, consider the rule for universal-introduction, shown

below with the translated version. In this case, the binder x is translated to a meta-

binder with λb.⌈
X;x : z1 � z2[x] −→
X � ∀x : z1.z2[x]

⌉
=

(
Z � �(X;x : z1 ��� z2[x]) −→
Z � �(X ��� �∀�{z1;λbx.z2[x]})

)

3.1 Proof reflection and automation

One important consequence of structure-preservation is that proofs can be reflected

as well. Consider a proof in the original logic L of some theorem t1 −→ · · · −→ tn.

In a foundational prover, the proof is expressed as a tree of inferences that can be

linearized to a finite sequence of rule applications R1, R2, . . . , Rn.

Since the structure of each inference is preserved, there is a corresponding

proof in the reflected logic �L� of the reflected theorem (Z � ��t1�) −→ · · · −→

(Z � ��tn�). In fact, the proof is a one-to-one map of the original theorem, us-

ing reflected justifications in place of the original. That is, the reflected proof is

�R1�, �R2�, . . . , �Rn�.

While this might seem quite straightforward, the important property here is that

the prover internals do not need to be reflected. It is not necessary to formalize the

inference mechanics of the theorem prover, because the original mechanism works

without change in the reflected theory.

Proof automation is similar. Again, in a foundational prover, 3 each run of a

heuristic or decision procedure is justified by a sequence of inferences R1, R2,

The existing automation may be used for reasoning in the reflected logic, provided

that rule selection for reflected proofs uses the reflected rules rather than the original

ones.

3.2 Syntax and reasoning

Reflected rules have an important property—the quoted terms are syntactical ex-

pressions, and they can be manipulated. There are constructors and destructors

3 It isn’t clear to us whether a similar mechanism might work for non-foundational provers (those with
“trusted” decision procedures).

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–9484

for quoted terms, and more importantly there is an inductively-defined type that

contains all quoted terms. The specific details of the encoding have been published

previously [21]. For our current purposes it simply matters that there is a type, so

that meta-properties can be expressed.

For example, one may wish to prove a formal cut-elimination property. Using

the type Context for sequent contexts, and the type BTerm for quoted terms, a

cut-elimination theorem can be written as the following predicate.

∀X : Context.∀a, b : BTerm.�(X ��� a) ⇒ �(X,a ��� b) ⇒ �(X ��� b)

In addition, we have yet to define the provability predicate � t, where it will again

be necessary to give a type to the quoted term t. Provability is the topic of the next

section.

4 Defining provability

So far, we have postponed the treatment of the provability predicate �L t, which

specifies that the quoted formula t is provable in logic L. To define provability

properly, we take the following steps.

• First, for each rule R ∈ L, we define a proof checking predicate that specifies

whether a proof step is a valid application of rule R.

• Next, we define the (legal) derivations to be the proof trees where each proof step

in the tree is validated by some rule R ∈ L.

• A formula t is provable in logic L if, and only if, there is a derivation with root t.

The usual properties hold: proof checking is decidable, provability is not decidable

in general.

4.1 Proof checking

A logic L is an ordered list of inference rules R1, . . . , Rn. A proof is a tree of

inferences, and it is legal only if each proof step corresponds to an inference using

some rule Ri. A proof step is a node in the proof tree that corresponds to a concrete

inference t1 −→ · · · −→ tn−1 −→ tn. We call the terms t1, . . . , tn−1 the premises,

and the term tn the goal.

In general, a rule R defines a schema, where each second-order meta-variable

stands for a term, and each context meta-variable stands for a context. A concrete

proof step is a valid inference of a rule R iff for each second-order meta-variable

in R there is an actual term, and for each context-meta variable in R there is an

actual context, such that the concrete inference is an instance of the rule.

Let us state this more formally. The arity of a meta-variable is the number

of arguments, so a variable z[t1; · · · ; tn] has arity n. Let BTerm{i} be the type

of quoted terms of arity i, corresponding to the space of substitution functions

BTermi → BTerm. Similarly, let Context{i} be the type of contexts of arity i (the

contexts correspond to lists of quoted terms).

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–94 85

Consider a rule R with free context variables {Xi1
1 , . . . ,Xim

m } and free second-

order variables {zj1
1 , . . . , z

jn

n }, where the superscripts ik and jk indicate the arities

of the variables. 4 Then a concrete inference r is a valid instance of rule R iff the

following holds.

∃Xi1
1 : Context{i1}, . . . ,X

im
m : Context{im}.

∃z
j1
1 : BTerm{j1}, . . . , z

jn

n : BTerm{jn}.r = R ∈ ProofStep
(4.I)

That is, the concrete inference r is equal to an instance of rule R. The type

ProofStep is the type of proof steps BTerm list × BTerm containing the pairs

(premises, goal).

For the purposes of proof checking, the existential witnesses are assembled into

a proof witness term, and passed as explicit arguments to the checker. A proof

witness is defined to be an element of the Witness type, which in turn is defined as

Context list× BTerm list. Returning to the example of the substitution lemma

(3.I), the corresponding proof checker is defined as follows, where r is the concrete

proof step to be checked.

checks(subst lemma, r, 〈[X;Y], [z1; z2; z3; z0]〉) ≡

r=

(
[(X;x : z3;Y ��� z1[x] �∈� z2); (X;Y ��� z0 �∈� z3)],

(X;Y ��� z1[z0] �∈� z2)

)
∈ ProofStep

(4.II)

In general, the “rule checker” predicate checks{R; r;w} takes three arguments,

where R is a rule, r ∈ ProofStep is a concrete inference, and w ∈ Witness is the

witness for the rule instantiation. Given a logic L with rules R1, . . . , Rn, a proof

step is valid iff it is an instance of one of the rules in the logic.

checks{r;w} ≡ ∃R ∈ {R1, . . . , Rn}.checks{R; r;w}

Since proof step equality is decidable, and each logic has a finite number of rules,

the checks{r;w} predicate is decidable as well.

4.2 Derivations

Now that we have defined proof step checking, the next part is to define the valid

derivations, or proof trees. The type D of all derivations is defined inductively in

the usual way.

D0 ≡ void

Di+1 ≡ Σpremises : Di list.Σgoal term : BTerm{0}.Σw : Witness.
checks{(goal{premises}, goal term);w}

D ≡
⋃

i∈N
Di

(4.III)

In this definition, the term goal{[d1; · · · ; dn]} is the list of goal terms for derivations

d1, . . . , dn.

4 In a setting where context variables are treated as binders, the variable arities are expressions that depend
on the lengths |Xk|.

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–9486

This definition also allows us to prove an induction principle, which will form

the basis for proof induction.

∀P.(∀premises : D list.∀g : BTerm{0}.∀w : Witness.
checks{(goal{premises}, g);w}

⇒ (∀p ∈ premises.P [p]) ⇒ P [(premises, g, w)])
⇒ (∀d : D.P [d])

At this point, the definition of the provability predicate � t is straightforward.

A quoted term t is provable iff there is a derivation where t is the goal term.

� t ≡ ∃d : D.(goal{d} = t ∈ BTerm{0})

5 Sequent context induction

At this point, we now have a representation function where rules are reflected into

statements of provability, and in addition we have a proof-checking predicate for

establishing proof correctness. The next step is to prove that the reflected rules

are valid using the definition of provability. For example, consider the substitu-

tion lemma example. From the proof-checking predicate (4.II), we must prove the

reflected rule (3.I).

However, there is a substantial gap between the two forms. We have glossed over

the fact that the proof-checking predicates are defined using standard existential

quantifiers (4.I, 4.III). For a quantifier of the form ∃X : Context{i}. · · · the variable

X is a first-order variable in the meta-logic MCTT. In contrast, the reflected rules

preserve meta-variables, and are expressed using context and second-order meta-

variables (variables of the framework logic FMetaPRL).

Second-order variables can be modeled with functions on BTerm, so the object

quantifiers are expressive enough to represent second-order quantification. The

question remains, how does one derive a formula involving context variables from a

similar formula that does not? In general, sequent context variables are bindings,

sequent contexts are not terms, and they cannot be modeled directly in the object

logic.

Since the framework meta-logic we are using (the FMetaPRL meta-logic) does

not include context quantifiers, one option is to add them and use them in the proof-

checking predicate. However, this is undesirable in part because the framework’s

meta-logic would become extremely expressive and powerful, but also because the

extension is perilous and difficult to get right.

Instead, we extend the framework’s meta-logic with a weak theory of sequent

context induction that we call teleportation. The central logical property is that

contexts are finite and inductively defined. Note that this represents a strengthening

of the meta-logic by effectively including Peano arithmetic.

5.1 Teleportation

The concept behind teleportation is deceptively simple. Since contexts are induc-

tively defined, contexts can be “migrated,” one hypothesis at a time, from one point

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–94 87

http://metaprl.org/
http://metaprl.org/

in a rule to another. Scoping must be preserved, including context variable scoping,

but beyond that the migration locations are unconstrained.

To formalize this more precisely, we introduce the notion of teleportation con-

texts, written R[[Γ]], which represents a term or a rule with exactly one occurrence

of the context Γ. We will use the symbol ε to denote the empty context. These

definitions are for presentation purposes; they are not part of the meta-logic. Tele-

portation is specified using a pair of nested teleportation contexts, which we will

write as F [[·;G[[·]]]]. Here F [[Γ;G[[Δ]]]] must be a rule that has exactly one occurrence

of each of the Γ, Δ and G; in addition G must be in scope of Γ.

The simplest teleportation rule hoists the context from G to F .

(base) ∀X. F [[ε;G[[X]]]]
(step) ∀X,Y, z. F [[X;G[[x : z;Y [x]]]]] −→ F [[X;x : z;G[[Y [x]]]]]

∀X. F [[X;G[[ε]]]]

For clarity, we have written explicit universal quantifiers for the meta-variables

to emphasize that meta-variables are quantified for each clause/rule. Again, these

do not exist explicitly in the meta-logic, and we will omit them in the remaining

rules. As usual, it is assumed that the schema language of the teleportation contexts

would alpha-rename the bound variables as needed to avoid capture.

For generality, it is frequently useful to transform the hypotheses during migra-

tion. In the following rule f is an arbitrary function.

(base) F [[ε;G[[X]]]]
(step) F [[X;G[[x : f(z);Y [x]]]]] −→ F [[X;x : z;G[[Y [x]]]]]

F [[X;G[[ε]]]]

There is a corresponding reverse-hoisting rule.

(base) F [[X;G[[ε]]]]
(step) F [[X;x : f(z);G[[Y [x]]]]] −→ F [[X;G[[x : z;Y [x]]]]]

F [[ε;G[[X]]]]

We add the teleportation rules as new primitive rules in our framework logic

FMetaPRL. The conservativity theorem for sequent schema [19], which states that

the language of framework meta-variables is a conservative extension of the meta-

theory, can be extended to include teleportation rules. The central observation here

is that for any particular finite concrete context Γ, any proof using the teleporta-

tion rules can be transformed into a proof without teleportation by posing a finite

sequence of lemmas, one for each of the intermediate steps.

5.2 A simple example

For a fairly natural example, consider the problem of context exchange. That is,

we are given an exchange rule for hypotheses, and we wish to derive a rule for

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–9488

http://metaprl.org/

exchanging contexts.

X; y : z2;x : z1;Y [x; y] � z3[x; y]

X;x : z1; y : z2;Y [x; y] � z3[x; y]
=⇒

X;Z2;Z1;Y � z

X;Z1;Z2;Y � z

The proof in this case can be posed as a nested induction. To begin, we propose

to migrate Z2 left, where the • denotes the target: X; •;Z1;Z2;Y � z. The base case

follows by assumption, and the step case presents us with the following subproblem.

(X;Z3;x : z′;Z1;Z2;Y � z) −→ (X;Z3;Z1;x : z′;Z2;Y � z).

The proof is concluded by migrating Z1 past the hypothesis x : z′.

5.3 Computation on sequent terms

The sequent induction scheme also introduces a sequent induction combinator for

computation over a sequent context. We introduce two new terms to the meta-logic.

The sequent ind{x, y.step[x; y]; s} performs computation over a sequent term s.

The reduction rules for sequent computation are as follows.

sequent ind{x, y.step[x; y]; (� t)} → t

sequent ind{x, y.step[x; y]; (z : t1;X[z] � t2[z])} →

step[t1;λz.sequent ind{x, y.step[x; y]; (X[z] � t2[z])}]

To illustrate, suppose we wish to develop a “vector” universal quantifier. That is,

a sequent with the following definition, given that the logic has a “scalar” quantifier

∀x : t1.t2[x].

x1 : t1; · · · ;xn : tn �∀ tn+1 ≡ ∀x1 : t1, . . . , xn : tn.tn+1

The definition is implemented in terms of sequent induction.

Γ �∀ t ≡ sequent ind{x, y.∀z : x.(yz); (Γ � t)}

We get the following reductions.

�∀ z → z

x : z1;X[x] �∀ z2[x] → ∀x : z1.(X[x] �∀ z2[x])

The simple introduction rule can be derived directly.

Z;x : z1 � (X[x] �∀ z2[x])

Z � (x : z1;X[x] �∀ z2[x])
vall-intro-single

A general introduction rule is also derivable using the teleportation rules.

Z;X � z

Z � (X �∀ z)
vall-intro

Using similar methods, it is possible to define a logic of vector operators, quantifiers,

and a vector lambda calculus.

Note that in these rules, the variable X is a context variable, and the rules are

valid for any instance of X.

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–94 89

5.4 Sequent induction and reflection

With this new tool in hand, let us return to the topic of reflection, where the issue

was that we need to derive proofs of the reflected rules (with context variables) from

the proof-checking predicates (no context variables).

At this point, the plan is conceptually easy. There are two parts. First, we

develop a canonical representation of concrete sequents without context variables.

For the second part, we define a (formal) function that computes the canonical

representation from the non-canonical form that includes context variables.

The first part is an issue of coding, where the goal is to define a representation

that preserves the structure of concrete sequents. We choose the following repre-

sentation, where �λH�x : t1.t2 is a quoted term that represents a hypothesis, its

binding, and the rest of the sequent; and �concl�{t} represents the conclusion of

the sequent. The proof-checking predicates operate directly on quoted terms with

this representation.

x1 : t1; · · · ;xn : tn���tn+1 ≡ �λH�x1 : t1. . . . �λH�xn : tn.�concl�{tn+1}

For the second part, we define a function using sequent ind that computes the

canonical representation from its non-canonical form. This function, written �B, is

defined as follows.

X �B t ≡ sequent ind{x, y.�λH�z : x.(y z); (X � �concl�{t})}

The original reflected form of a rule R = (Γ1 � t1) −→ · · · −→ (Γn � tn)

is �R� = Z � �(�Γ1� ��� �t1�) −→ · · · −→ Z � �(�Γn�����tn�). Using the

non-canonical forms, the new representation is as follows.

�R� = (Z � �(�Γ1� �B �t1�)) −→ · · · −→ (Z � �(�Γn� �B �tn�))

The right-hand-side is now proved by reducing the �B sequents to canonical

form, then proving that the reduced form passes the proof–checking predicate for

all instances of the meta-variables. Note that contexts and context variables are

not terms, and so it remains impossible to quantify over them directly. However,

the reduced form of a non-canonical �B sequent with context variables does contain

sequent subterms with context variables. With teleportation it is possible to show

that these embedded terms are well–defined.

These correspondence between a reflected rule and its proof-checking predicate

is very close. In our implementation, the reflected rule and the proof checking

definitions are created mechanically, and the proof is completely automated.

6 Reflection and induction

So far, we have presented a structure-preserving representation function, a mech-

anism for formalizing reflected logics, and a procedure for deriving reflected prov-

ability rules. This system is already powerful enough to express and prove meta-

properties over reflected systems. However, it remains impractical. There is a

crucial piece missing—induction on the provability predicate.

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–9490

What exactly is the induction principle for provability? Suppose we wish to

prove a theorem of the form �x ⇒ P [x], where x is a variable, and P is a predicate

on quoted terms. Since x is provable, that means there is a derivation with root x,

and we can apply induction on the length of the derivation.

Now, for illustration, assume the logic L contains three rules, L = t11, t21 −→

t22, t31 −→ t32 −→ t33. Then the induction form has the following shape.

(rule sketch)
Γ;� t11 � P [t11]
Γ;� t21;� t22;P [t21] � P [t22]
Γ;� t31;� t32;� t33;P [t31];P [t32] � P [t33]

Γ;�x � P [x]

However, this rule is not quite right. The issue is that the terms tij will in general

contain meta-variables, and the meta-variables must be separately universally quan-

tified for each induction case. As we explained in Section 5, explicit quantification

of meta-variables is not expressible in our meta-logic.

However, here it is acceptable to use object-quantifiers. There is no appreciable

effect on proof automation as long as the first-order form is compatible with the

automatically–generated reflected rules. The correct form of the rule explicitly

quantifies over the meta-variables, re-using the mechanism for generating the proof-

checking rules. For the current example, we introduce explicit quantifiers. In this

case we write tij[X] to represent a term that may contain any of the variable X

but is otherwise free of context variables.

Γ;X : Context;� t11[X] � P [t11[X]]
Γ;X : Context;� t21[X];� t22[X];P [t21[X]] � P [t22[X]]
Γ;X : Context;� t31[X];� t32[X];� t33[X];P [t31[X]];P [t32[X]] � P [t33[X]]

Γ;� x � P [x]

In our implementation, we generate a variant of this rule that allows for induction

over terms, not just variables. This is done by introducing a “shared” term u that

establishes a connection provable term t and the predicate P . The actual theorem

has the form Γ;u : t1;� t2[u] � P [t3[u]], where u is the shared part. The new form

is derivable from the previous case for provability on variables, and we omit it here.

In fact, the size of the rule is one of the main drawbacks. In practice, even for fairly

small logics L, the statement of the elimination rule is already several pages long,

and it is difficult to use the rule interactively. We are expecting to address this in

future work.

This mechanism establishes the principle of proof induction. The principle of

structural induction is reducible to proof induction by specifying the syntax of a

language as a logic of type-checking.

For every object logic, the corresponding induction principle is not only auto-

matically formulated by our system, but is also automatically derived. Since the

proof induction principle implies soundness, this means that while we do not prove

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–94 91

the soundness of our formalization in general, for each particular object logic, it will

be established automatically.

7 Related work

This work build upon a very large number of related efforts. In fact, the number of

such efforts is so big that we are unable to give an adequate overview in this limited

space. Harrison [12] has written an excellent survey and critique of a broad range

of approaches to reflection. We give another broad survey in a previous paper [21].

Our approach to representing the syntax with bindings has some similarities to

the HOAS implemented in Coq by Despeyroux and Hirschowitz [6] and to the modal

λ-calculus [9, 7, 8].

In 1931 Gödel used reflection to prove his famous incompleteness theorem [10].

A modern version of the Gödel’s approach was used by Aitken et.al. [3, 1, 2, 5]

to implement reflection in the NuPRL theorem prover. A large part of this effort

was essentially a reimplementation of the core of the NuPRL prover inside NuPRL’s

logical theory.

A number of approaches to logical reflection were explored in the Coq proof assis-

tant. Rueß [23] has implemented a computation reflection mechanism. Hendriks [13]

formalized natural deduction for first-order logic in the proof assistant Coq, using de

Bruijn indices for variable binding. O’Connor [22] constructively proved the Gödel–

Rosser incompleteness theorem using the natural numbers to encode formulas and

proofs.

8 Conclusion

The goal of this work is to develop a practical theory of logical reflection. We

claim that doing so requires preserving the structure of a theory when it is re-

flected, including variables, meta–variables, and bindings. We presented a structure-

preserving representation, building on previous work with the representation of log-

ical terms [21]. Besides, we developed a new account of sequent context induction,

called teleportation, to allow reasoning and computation over terms that include se-

quent context variables. This led to a formalization of proofs, proof–checkers, and

derivations, together with automated generation of reflected rules and induction

forms in the reflected theory.

In some ways, the result seems startlingly simple. When a logic is reflected, its

presentation changes only slightly, and the existing reasoning methods and proof

procedures continue to work. The difference is, of course, that reasoning about

meta-properties of the logic becomes possible.

It was important to us that the development of the theory of reflection be ac-

companied by its implementation. This makes it more useful of course, but an

additional reason is that the theory of reflection is rife with paradoxes, and it is

easy to fall into false thinking. While we have tried to simplify the account in this

paper, the actual formalization was demanding. In particular, the formalization of

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–9492

http://coq.inria.fr/
http://nuprl.org/
http://nuprl.org/
http://nuprl.org/
http://coq.inria.fr/
http://coq.inria.fr/

context induction required several man-months of effort, mainly due to the need

to develop a logical infrastructure for reasoning about terms containing context

variables.

We are currently using reflection to develop an account of F<:type theory, which

has acted both as a challenge and a guide [15]. For work in the near future, we are

considering alternate ways to pose the proof induction principle. Induction is, by

nature, not modular. However, we believe that significant practical advances can

be made through improved automation and hierarchical decomposition.

We believe that our results may be generalized to other provers and frameworks.

The non-standard properties of the logical framework that we rely upon are the fol-

lowing. 1) Programs may be expressed without first giving them a type; in addition,

programs may have more than one type. 2) Computation defines a congruence; any

two programs that are computationally (beta) equivalent can be interchanged in

any formal context. 3) For reasoning about sequents, the teleportation principle is

needed. 4) A function image type [20].

References

[1] Aitken, W. and R. L. Constable, Reflecting on NuPRL : Lessons 1–4, Technical report, Cornell
University, Computer Science Department, Ithaca, NY (1992).

[2] Aitken, W., R. L. Constable and J. Underwood, Metalogical Frameworks II: Using reflected decision
procedures, Journal of Automated Reasoning 22 (1993), pp. 171–221.

[3] Allen, S. F., R. L. Constable, D. J. Howe and W. Aitken, The semantics of reflected proof, in: Proceedings
of the 5th Symposium on Logic in Computer Science (1990), pp. 95–197.

[4] Barzilay, E., “Implementing Reflection in NuPRL,” Ph.D. thesis, Cornell University (2006).

[5] Constable, R. L., Using reflection to explain and enhance type theory, in: H. Schwichtenberg, editor,
Proof and Computation, NATO Advanced Study Institute, International Summer School held in
Marktoberdorf, Germany, July 20-August 1, NATO Series F 139, Springer, Berlin, 1994 pp. 65–100.

[6] Despeyroux, J. and A. Hirschowitz, Higher-order abstract syntax with induction in Coq, in:
LPAR ’94: Proceedings of the 5th International Conference on Logic Programming and Automated
Reasoning, Lecture Notes in Computer Science 822 (1994), pp. 159–173, also appears as
INRIA research report RR-2292.

[7] Despeyroux, J. and P. Leleu, A modal lambda calculus with iteration and case constructs, in:
T. Altenkirch, W. Naraschewski and B. Reus, editors, Types for Proofs and Programs: International
Workshop, TYPES ’98, Kloster Irsee, Germany, March 1998, Lecture Notes in Computer Science
1657, 1999, pp. 47–61.
URL http://www.springerlink.com/link.asp?id=984f76cm6b6qv0a4

[8] Despeyroux, J. and P. Leleu, Recursion over objects of functional type, Mathematical Structures in
Computer Science 11 (2001), pp. 555–572.
URL http://citeseer.ist.psu.edu/despeyroux00recursion.html

[9] Despeyroux, J., F. Pfenning and C. Schürmann, Primitive recursion for higher–order abstract syntax,
in: Hindley [18], pp. 147–163, an extended version is available as Technical Report CMU-CS-96-172,
Carnegie Mellon University.

[10] Gödel, K., Über formal unentscheidbare sätze der principia mathematica und verwandter systeme I,
Monatshefte für Mathematik und Physik 38 (1931), pp. 173–198, english version in [24].

[11] Harper, R., F. Honsell and G. Plotkin, A framework for defining logics, Journal of the Association for
Computing Machinery 40 (1993), pp. 143–184, a revised and expanded version of the 1987 paper.

[12] Harrison, J., Metatheory and reflection in theorem proving: A survey and critique, Technical Report
CRC-53, SRI International, Cambridge Computer Science Research Centre, Millers Yard, Cambridge,
UK (1995).
URL http://www.cl.cam.ac.uk/users/jrh/papers/reflect.html

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–94 93

http://nuprl.org/
http://nuprl.org/
http://coq.inria.fr/
http://www.inria.fr/rrrt/rr-2292.html
http://www.springerlink.com/link.asp?id=984f76cm6b6qv0a4
http://citeseer.ist.psu.edu/despeyroux00recursion.html
http://reports-archive.adm.cs.cmu.edu/anon/1996/CMU-CS-96-172.ps.gz
http://www.cl.cam.ac.uk/users/jrh/papers/reflect.html

[13] Hendriks, D., Proof reflection in Coq, Journal of Automated Reasoning 29 (2002), pp. 277–307.

[14] Hickey, J., A. Nogin, R. L. Constable, B. E. Aydemir, E. Barzilay, Y. Bryukhov, R. Eaton, A. Granicz,
A. Kopylov, C. Kreitz, V. N. Krupski, L. Lorigo, S. Schmitt, C. Witty and X. Yu, MetaPRL — A
modular logical environment, in: D. Basin and B. Wolff, editors, Proceedings of the 16th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs 2003), Lecture Notes in Computer
Science 2758 (2003), pp. 287–303.
URL http://nogin.org/papers/metaprl.html

[15] Hickey, J., A. Nogin, X. Yu and A. Kopylov, Mechanized meta-reasoning using a hybrid HOAS/de
Bruijn representation and reflection, Accepted to the International Conference on Functional
Programming (ICFP) (2006).

[16] Hickey, J. J., B. Aydemir, Y. Bryukhov, A. Kopylov, A. Nogin and X. Yu, A listing of MetaPRL theories.
URL http://metaprl.org/theories.pdf

[17] Hickey, J. J., A. Nogin, A. Kopylov et al., MetaPRL home page.
URL http://metaprl.org/

[18] Hindley, R., editor, “Proceedings of the International Conference on Typed Lambda Calculus and its
Applications (TLCA’97),” Lecture Notes in Computer Science 1210, Springer-Verlag, Nancy, France,
1997.

[19] Nogin, A. and J. Hickey, Sequent schema for derived rules, in: V. A. Carreño, C. A. Muñoz and S. Tahar,
editors, Proceedings of the 15th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2002), Lecture Notes in Computer Science 2410 (2002), pp. 281–297.
URL http://nogin.org/papers/derived rules.html

[20] Nogin, A. and A. Kopylov, Formalizing type operations using the “Image” type constructor, Accepted
to Workshop on Logic, Language, Information and Computation (WoLLIC) (2006).

[21] Nogin, A., A. Kopylov, X. Yu and J. Hickey, A computational approach to reflective meta-reasoning
about languages with bindings, in: MERLIN ’05: Proceedings of the 3rd ACM SIGPLAN workshop on
Mechanized reasoning about languages with variable binding (2005), pp. 2–12, an extended version is
available as California Institute of Technology technical report CaltechCSTR:2005.003.

[22] OConnor, R., Essential incompleteness of arithmetic verified by Coq, in: Proceedings of the 18th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2005), Lecture Notes
in Computer Science 3603, 2005, pp. 245–260.

[23] Rueß, H., Computational reflection in the calculus of constructions and its application to theorem
proving, in: Hindley [18].

[24] van Heijenoort, J., editor, “From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931,”
Harvard University Press, Cambridge, MA, 1967.

J. Hickey et al. / Electronic Notes in Theoretical Computer Science 174 (2007) 79–9494

http://coq.inria.fr/
http://metaprl.org/
http://nogin.org/papers/metaprl.html
http://metaprl.org/
http://metaprl.org/theories.pdf
http://metaprl.org/
http://metaprl.org/
http://nogin.org/papers/derived_rules.html
http://resolver.caltech.edu/CaltechCSTR:2005.003
http://coq.inria.fr/

	Introduction
	Terminology
	Representation of reflected terms
	Proof reflection and automation
	Syntax and reasoning

	Defining provability
	Proof checking
	Derivations

	Sequent context induction
	Teleportation
	A simple example
	Computation on sequent terms
	Sequent induction and reflection

	Reflection and induction
	Related work
	Conclusion
	References

