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One of the main functions of androgen is in the sexually dimorphic development of the male reproductive tissues.
During embryogenesis, androgen determines the morphogenesis of male specific organs, such as the epididymis,
seminal vesicle, prostate and penis. Despite the critical function of androgens in masculinization, the downstream
molecular mechanisms of androgen signaling are poorly understood. Tissue recombination experiments and
tissue specific androgen receptor (AR) knockout mouse studies have revealed epithelial or mesenchymal specific
androgen-AR signaling functions. These findings also indicate that epithelial-mesenchymal interactions are a key
feature of AR specific activity, and paracrine growth factor action may mediate some of the effects of androgens.
This review focuses on mouse models showing the interactions of androgen and growth factor pathways that
promote the sexual differentiation of reproductive organs. Recent studies investigating context dependent AR
target genes are also discussed. This article is part of a Special Issue entitled: Nuclear receptors in animal

© 2014 Elsevier B.V. Open access under CC BY=NC-ND license.

1. Introduction

One of the most important functions of sex steroid receptors is in the
sexually dimorphic development of the male and female reproductive
tissues. The reproductive tissues arise from ‘anlagen’ or precursor
structures which are identical in both male and female during early
development. Subsequent male sexual differentiation of reproductive
tract anlage starts after testicular differentiation and androgen produc-
tion. Embryonic developmental programs control the formation of re-
productive anlagen and these are not hormone-regulated, however
subsequent growth and sex specific development are controlled by
sex hormones. Several signaling cascades control reproductive organo-
genesis and this is a versatile system to study how hormones regulate
organ growth and differentiation. Some molecular pathways have
been identified in initial anlagen formation as well as later hormone
driven development. These include fibroblast growth factor (FGF),
hedgehog (HH), Wnt, transforming growth factor (TGF) signals and
other “effector” genes. Androgen dependent signaling and downstream
events are involved in not only developmental processes but also
disease processes — such as hypospadias and prostate cancer.

¥ Thisarticle is part of a Special Issue entitled: Nuclear receptors in animal development.
* Corresponding author at: Department of Developmental Genetics, Institute of
Advanced Medicine, Wakayama Medical University, Kimiidera 811-1, Wakayama
641-8509, Wakayama, Japan. Tel./fax: +81 73 499 5026.
E-mail addresses: genyama77@yahoo.co.jp, transg8@wakayama-med.acjp (G. Yamada).

http://dx.doi.org/10.1016/j.bbagrm.2014.05.020
1874-9399 © 2014 Elsevier B.V. Open access under CC_BY-NC-ND license.

2. Androgens regulate male reproductive tract masculinization

A characteristic feature of sexual reproduction is sexually dimorphic
adult reproductive organs and these are formed during embryonic
development and mature during post-natal puberty. In vertebrates,
sex is defined by genetic determination of gonad type followed by the
production of gonadal hormones that pattern the rest of the body into
a male or a female phenotype and physiology. In mammals and other
vertebrates, males are masculinized by androgens produced by the
differentiated testes, which regulate reproductive tract patterning and
other male characteristics.

In 1953, Alfred Jost castrated rabbit fetuses in utero before sexual
differentiation of the genital tract and observed that they developed
a feminine reproductive tract. Implantation of testosterone propio-
nate crystals into the castrated fetuses led to male reproductive
tract stabilization and differentiation [1]. It appeared that the testos-
terone may not be distributed through the bloodstream during early
male reproductive development because male specific differentia-
tion was rescued only in the side where testosterone crystals
were placed [2,3]. Recently, circulating androgens have been also
shown as important to induce Wolffian duct (WD) stabilization and
subsequent formation of the epididymis, as well as the prostatic
formation and masculinization of the genital tubercle (GT) and other
male traits [4].

Androgen function is dependent on signaling through androgen
receptor (AR), a member of the nuclear receptor superfamily [5-7].
Like other members of nuclear receptor superfamily, the AR structure
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is organized into functional domains, consisting of an N-terminal do-
main (NTD), a DNA binding domain (DBD), a C-terminal ligand binding
domain (LBD), and a small hinge region between DBD and LBD. The DBD
and LBD are highly conserved, whereas the NTD sequence varies among
species which may underly different homeostatic control and signaling
between species [8-10]. The NTD mediates the majority of AR transcrip-
tional activity and is the most active co-regulator interaction surface.
Spontaneous AR mutants with an androgen insensitivity phenotype
have been known as testicular feminized (Tfm) in animals, and complete
or partial androgen insensitivity in man (CAIS, PAIS) [11,12]. Various AR
gene mutations have been identified in mouse, rat and man [13-15].
Rodent Tfm males lack a vas deferens, an epididymis and male accessory
sex glands and are a valuable experimental model to investigate the
mechanism of androgen receptor-mediated sex differentiation.

3. Differential AR signaling between epithelium and mesenchyme

The male reproductive tract develops principally from two embryonic
anlagen: the WD and urogenital sinus (UGS) (Fig. 1). The WD, whose
epithelium is mesodermal in origin, gives rise to the epididymis, ductus
deferens, and seminal vesicle (SV). The UGS, whose epithelium is derived
from the endoderm, gives rise to the bladder, prostate, bulbourethral
glands, urethra, and periurethral glands. The epididymis functions in
storing and preparing sperm for fertilization, including the resorption of
fluid to concentrate sperm. The prostate and SV are male accessory sex
glands that secrete proteins, zinc and sugars into seminal plasma and
which provide a high proportion of the seminal fluid. Because of their
secretory or resorptive functions, the epithelia within these organs are
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highly convoluted to provide a large surface area. The epididymis is a
single epithelial tube that is highly coiled within the mesenchymal
matrix. The prostate and SV are organs with branched or infolded
epithelia surrounded by the mesenchyme. The development and pat-
terning of these organs depend on androgen signaling, particularly,
within the mesenchymal compartment.

At the beginning of the ambisexual stage of sex differentiation, AR
expression is present in the mesenchyme of urogenital anlagen [16,
17] and is absent from the epithelia. Despite the absence of AR in the
epithelium, several androgen-dependent processes are observed in
the epithelia during male reproductive tract development. For example,
WD epithelia survive and avoid from cell death, SV and prostate epithelia
bud or branch, and male mammary epithelial anlagen regresses. These
observations suggest the paracrine interaction between mesenchyme
(AR-positive) and epithelia (AR-negative) controls androgen dependent
epithelial development.

The work of Cunha and colleagues using tissue recombination
techniques has demonstrated that AR signaling in mesenchymal tissue
is important for epithelial growth and morphogenesis (reviewed in
[18-20]). For example, embryonic mesenchyme from the SV (AR-
positive) induced cell proliferation and SV-like morphological differ-
entiation of AR-negative ureter epithelium [21]. Conversely, Tfm
mesenchyme that lacks AR did not induce epithelial morphogenesis,
cell proliferation and cytodifferentiation despite the presence of wild
type AR in the epithelia [18]. These experiments support the idea that
mesenchymal androgen signaling plays a major role in epithelial cell pro-
liferation and morphological differentiation during masculinization.
These results led to the hypothesis that there are paracrine signaling
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Fig. 1. A schematic diagram of male genital tract masculinization. WD epithelium is stabilized by androgen exposure, and the epididymis elongates and coils three-dimensional manner
(left low and upper illustration). Prostate develops from the UGS. During sexual differentiation, solid buds from the urogenital sinus epithelium invade into the urogenital sinus
mesenchyme where subsequent branching occurs (right low and upper illustration). Circulating or testis-derived androgens initiate these developmental processes through the
mesenchymally expressed AR which regulates paracrine signaling to epithelia. Growth factor related genes which show tissue specific expression patterns are summarized in the scheme.
*lobe-specific expression.
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molecules produced in the mesenchyme in response to androgens
and AR that regulate epithelial development, including cell prolifer-
ation, survival and cytodifferentitaion. In contrast, AR function with-
in epithelia was to regulate androgen-dependent secretory proteins
expression and secretion. This suggests that the epithelial AR is required
for physiological functions of epithelial cells in the male reproductive
tract [22].

Growth factors have been identified as paracrine mediators of
epithelial-mesenchymal interactions during the development of a vari-
ety of organs. Analysis of male sex accessory organs treated with growth
factors or their inhibitors demonstrated possible roles for growth
factors, such as Insulin-like growth factors (IGF), platelet-derived
growth factor (PDGF), nerve growth factor (NGF), epidermal growth
factor (EGF), TGF, FGF and others (Fig. 1, [18,23,24]). Some members
of the FGF family show mesenchyme restricted expression with recipro-
cal expression of specific receptors in epithelia (Fig. 1) [25,26]. Addition
of FGF7, FGF10, or their inhibitors promoted or inhibited the growth of
the ventral prostate and SV respectively, indicating that FGFs may be re-
quired for growth [27,28]. Deletion of Fgf10 by gene knockout (KO) re-
sulted in a loss of prostate and SV development, and cyst formation in
epididymis [29]. Although Fgf10 mRNA increased in response to testos-
terone in vitro [30], it did not appear to be regulated by androgens
in vivo [28,31]. EGF is another candidate for a mesenchymally produced
paracrine growth factor [32-35]. Treatment with Anti-EGF serum led to
a disintegration of the WD even in the presence of androgen, and EGF
was able to increase anogenital distance (AGD) and to induce epididy-
mal formation in female embryos [32]. EGF expression is not induced
by androgen in vivo, similar to the lack of regulation of FGFs. Knockout
mouse studies on Bone morphogenetic protein (BMP) and SHH signal-
ing also showed the defects in the prostate epithelial cell growth and
differentiation indicating them as mediating factor of epithelial-
mesenchymal interaction [36-38]. Inhibin-beta A, a subunit of both
activin and inhibin, was demonstrated as a mesenchyme-specific gene,
acts with testosterone to facilitate epididymal coiling by stimulating epi-
thelial proliferation [39]. Overall, the initial regulations of these gene ex-
pressions do not appear to be dependent on the androgen. Other studies
have identified Pleiotrophin as expressed in a mesenchyme specific pat-
tern and have shown effects of Pleiotriphin upon both mesenchymal and
epithelial growth [40].

In summary, androgens primarily act via AR in mesenchymal tissue
and regulate epithelial growth and ductal morphogenesis, perhaps
through secreted factors. In general, all of the molecules that appear to
be expressed in mesenchyme and which show partial response to AR
appear to show modest enrichment in male versus female tissues
which challenges their proposed function in male specific development.
Furthermore, gene profiling studies to identify AR target transcripts
have not detected those molecules suggested to be androgen regulated.
Recent efforts to understand possible AR-mediated mechanisms are
being investigated using comprehensive gene profiling methods in the
developing male reproductive tissues (described below).

4. Tissue and cell specific ablation of AR

Mouse models with various tissue- or cell-specific AR KO have been
developed recently (reviewed in [41,42]). Most of these used the Cre-
loxP gene recombination system, which attenuated AR expression in spe-
cific cells during development or under different physiological contexts.
Although human and mouse male reproductive tracts often differ in
their anatomy, such mutant mice are valuable models to understand
the AR function in vivo.

4.1. The function of mesenchymally expressed AR: the prostate and
seminal vesicle

Mesenchymal cell specific AR KO have been reported in prostate and
SV. Smooth muscle myosin heavy chain (SMMHC)-Cre was used to

establish smooth muscle AR KO in prostate and SV [43,44]. Smooth mus-
cle cells are the major stromal component of adult male reproductive
tract. Prostate and SV weight were reduced with various histological
abnormalities such as hyperplasia and impaired epithelial cell functions
in such models. These studies also suggested that mesenchymal AR limits
the epithelial proliferative responses to exogenous estrogen, possibly by
attenuating the production of growth factors [45]. In the prostate, AR
gene deletion also induces inflammation, fibrosis, and reduced expression
of epithelial, smooth muscle, and stem cell markers. Yu et al. developed
two types of prostate stromal AR KO mouse models; fibroblast-specific
protein 1 and smooth muscle 22« promoter driven Cre-mediated AR
KO (FSP-AR KO, SM-AR KO) mice [46,47]. FSP1 driven AR deletion is
prominently observed in the ventral prostate (VP). On the other hand,
the AR is maximally reduced in the anterior prostate (AP) in the SM-AR
KO model. Comparison of these models revealed different roles for AR.
Epithelial cells in both models showed decreased cell proliferation. In ad-
dition, FSP-AR KO VP showed cuboidal and flattened epithelial cells,
whereas SM-AR KO AP showed fewer epithelial luminal infoldings. Male
FSP-AR/SM-AR double KO mice showed reduced prostate size with im-
paired branching and partial loss of the infolded glandular structure [48].
Epithelial cell proliferation was reduced and luminal epithelial cell death
was increased in the double AR KO mouse than that in the FSP-AR KO
or SM-AR KO. The molecular pathways of epithelial development were
mediated, at least in part, by stromal growth factors. In FSP-AR KO
mouse prostate, IGF1, FGF7, FGF10 and Hepatocyte growth factor (HGF)
were decreased, whereas in the SM-AR KO model, only IGF1 expression
was decreased. These alterations of growth factors might contribute to
the altered prostate epithelial structures and reduced epithelial prolifera-
tion [46,47]. Altogether, stromal AR has been confirmed as a positive reg-
ulator of epithelial cell proliferation and survival, and these effects may be
mediated by stromally expressed growth factors.

4.2. The function of epithelially expressed AR: the epididymis and prostate

Tissue recombination experiments indicated that epithelially
expressed AR was important for epithelial function in regard to secretory
protein expression. These studies have been extended using an
epithelial-specific AR KO mouse, and characterization of effects in the ep-
ididymis and prostate. In the epididymis, where AR expression is highly
abundant, AR regulates the secretion of seminal fluid proteins in the
epithelia. Male embryos of WD epithelium-specific AR KO mice were
generated using activating enhancer-binding protein 2-alpha promoter-
driven Cre (AP2c-Cre) [49]. In this epididymal epithelia-specific AR KO
mouse, almost complete AR deletion was observed throughout the WD.
In the absence of epithelial AR, the WD formed a highly coiled structure
consistent with the previous results showing the importance of mesen-
chymal AR for the WD morphogenesis. However, postnatal analysis re-
vealed that principal and basal cell differentiation was specifically
perturbed in epithelia-specific AR KO mice. A conditional mutant with a
mosaic pattern of AR loss demonstrated cell-autonomously disrupted
expression of p63 — a regulator of basal cell differentiation. This shows
the potential of AR regulation of p63 in epididymis in contrast to other
epithelial structures such as skin. Other epididymal epithelia-specific AR
KO models using ribonuclease 10 promoter-driven Cre, forkhead box
G1 promoter-driven Cre and probasin-Cre have been also reported
[50-52]. Most of these mice show AR deletion in the postnatal principal
cells of the epididymal epithelia, but not in basal and other cell types. In
these models, epithelial hypoplasia was observed in the caput region of
the epididymis indicating that the epithelial AR in the epididymal princi-
pal cell is required for proper development and function of the proximal
epididymis.

Probasin-Cre has been used for AR ablation in prostate epithelia
[53-55]. These mutant mice showed increased apoptosis in epithelial
luminal cells and increased proliferation in epithelial basal cells
resulting in impaired epithelial infoldings. A basal cell-specific AR KO
was generated by crossing cytokeratin 5-Cre mice with AR floxed mice
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[56]. Although AR expression is low in basal cells, it plays a suppressive
role for their proliferation and induced differentiation into luminal epi-
thelial cells.

Intriguingly, epithelial AR ablation in reproductive organs showed
stromal thickening [51,52] or hypoplasia [54,55]. These data suggest
that epithelial AR also played an important role in the maturation of
male reproductive tract stroma. It is well established that epithelia reg-
ulate stromal differentiation in various organ, and these studies indicate
that AR action in epithelia contributes to the stromal architecture. Using
gene expression analysis of epithelial AR KO prostate, TGF-31 has been
suggested to play an important role as an epithelial regulator of stromal
differentiation [55]. In summary, AR in epithelia regulates epithelial cell
differentiation as well as stromal differentiation.

5. The development of external genitalia

Important insight into AR action has been gained from the study of
the effects of AR upon the development of male sex accessory organs
such as prostate, SV and epididymis. Further insight may result from
the study of androgen action upon the external genitalia as these are
an androgen target organ with a unique structure and developmental
program. In addition, the external genitalia are the most common
site of human birth defects, and impaired urethral closure in males
(hypospadias) is the most common among them. It has been speculated
that defects in androgen action contribute to hypospadias. Elucidation of
the mechanism of androgen actions in external genitalia development
will provide new insight into the pathogenic mechanisms of such disease
and is clinically relevant to pediatrics and urology. Here, the background
of the external genitalia masculinization and recent progress of the re-
search are summarized.

genital tubercle

urogenital sinus

/
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5.1. Role of androgen signaling during genital tubercle masculinization

External genitalia are morphologically diverse among animals with
internal fertilization. These different morphologies are important for
efficient copulation and successful reproduction. There is considerable
crosstalk between growth factor signaling and androgen signaling
during external genitalia development. Growth factor functions in
epithelial-mesenchymal interactions have been well characterized
during genital tubercle (GT) development using genetically modified
mouse models (reviewed in [57,58]).

The GT is the main anlage for external genitalia and it undergoes
masculinization in response to androgens which is well characterized
morphologically in the mouse. Male GT masculinization involves the
formation of a tubular urethra with well-developed prepuce, and the
condensation of a bilaterally segmented prospective corporal body
(Fig.2).In contrast to the male, female GTs do not form a tubular urethra
with an unclosed prepuce at the lower (ventral) midline of the GT. Male
specific GT differentiation occurs at E16.5 in mice and 12 weeks in
humans [59].

Sexually dimorphic expression of AR is observed in GT mesenchyme
adjacent to the urethra (bilateral mesenchyme shown in Fig. 2) at E15.5
in the case of mouse embryos [60]. In human, AR expression is observed
in male fetuses between 12 and 14 weeks of gestation. However, com-
parative analysis of the early phase of human male and female embryos
is required to address the initiation and dimorphic expression of AR ex-
pression [61,62]. During later stages of GT development in both mouse
and human, there is expression of AR in the lateral and upper GT mesen-
chyme in both sexes in a non-dimorphic pattern. Consequently, differ-
ent tissue lineages are expected to emerge from these subdivisions of
the GT mesenchyme including the corporal tissues, prepuce and
penile bones in case of mice. The temporal- and region-dependent AR
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Fig. 2. A schematic diagram of sexual differentiation of external genitalia. In the mouse, the first morphological differences between the male and female GT are evident from E16.5. The
fusion of the urethral folds in the ventral midline leads to the formation of the urethral groove, which subsequently becomes the mature urethra (human). This fold is prominent in the
male GT after E16.5 (mouse). The canalization of the urethral plate proceeds proximo-distally in the male GT. Genes expressed in the mesenchyme and epithelia are shown. The bilateral
mesenchyme is the ventral (lower) side of embryonic GT mesenchyme adjacent to the endodermal epithelia which develops to the urethra (mouse).
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gene expression may enable the mesenchyme to regulate the differenti-
ation of various tissues.

Tissue recombination experiments demonstrated the inductive
effects of the epithelium on mesenchymal growth and differentiation
of GTs [63,64]. In a recent conditional AR KO mice study, the epithelial
or mesenchymal specific functions of AR were genetically examined
during GT development [60]. AR was highly expressed in the mesen-
chyme adjacent to the urethral plate epithelium (UPE). Mesenchymal
AR KO male GT showed female type development, smaller in size with
defective urethral fusion and preputial closure, while the GTs of the
epithelium-specific AR KO male mice were morphologically indistin-
guishable from those of the control males. Such studies demonstrate
that the proper mesenchymal AR expression is necessary for GT mascu-
linization [60,64]. This also confirms the general paradigm that AR func-
tion in masculinization of reproductive tissues requires paracrine
signaling from the mesenchyme to the epithelium.

An important element of androgen action relates to the timing of
androgen production and local metabolism of androgens such as
conversion to more potent derivatives. The interstitial cells in the testis
differentiate into Leydig cells between E12.5 and E13.5 in mouse and
synthesize testosterone [65]. A recent study demonstrated that the
production of testosterone is not only dependent on the Leydig cell
but also the cells within the seminiferous tubule [66]. Testosterone
produced in the testis is converted into more potent androgen,
5a-dihydrotestosterone (DHT) in target tissues. DHT possesses a higher
binding affinity for the AR, and is more potent in inducing AR signaling
than testosterone [67,68]. The conversion of testosterone to DHT is main-
ly catalysed by the enzyme 5a-reductase 2, which is encoded by the
SRD5A2 gene. SRD5A2 expression is observed in GT mesenchyme [69].
Comparison of patients with CAIS and SRD5A2 deficiency provides impor-
tant clinical implications for understanding of testosterone and DHT func-
tions. Patients with CAIS show a similar phenotype to the AR KO mouse,
and males exhibit female external genitalia at birth demonstrating that
androgen is essential to induce male sexual characteristics [70]. Patients
with SRD5A2 deficiency, display a small penis that resembles an enlarged
clitoris, labioscrotal fusion, and urogenital sinus in which there are two
separate urethral and vaginal openings [71]. This indicates that testoster-
one is not sufficient for complete masculinization of the external genitalia
during fetal life as well as male sexual maturation during puberty. There
is likely a different requirement of androgen among different target or-
gans or tissues. External genitalia and the prostate require DHT for proper
masculinization while testosterone is sufficient to establish a functional
epididymis and descended testes. This suggests that investigation into
the regulation of SRD expression and early distribution of fetal androgen
(testosterone) is required. Thus, to understand AR action in GT mesen-
chyme will require characterization of several factors including ligand
production, distribution and local activation, as well as investigation of
AR transcriptional targets.

5.2. Role of growth factors for early phase and androgen dependent
GT formation

Wnt/p-catenin signaling has been identified as playing fundamental
roles in the early phase of GT formation. Canonical Wnt/3-catenin activity
is detected during cloaca formation. There are interactions between ca-
nonical Wnt/B-catenin signaling and HH and FGF signaling [72,73].
Wnt/p-catenin activity is also detected in late stages of androgen de-
pendent GT formation at E15 of mouse embryos. Its sexually dimorphic
activity is detected in the bilateral mesenchyme as higher in males
than females. Augmentation of 3-catenin in mesenchyme of female
mice induced some characteristics of GT masculinization, such as a
well-developed prepuce [60]. These observations suggest that elevated
Wnt/B-catenin signaling activity may contribute to GT masculinization.
Furthermore, Dkk2 and Sfrp1, Wnt signaling inhibitors, display augment-
ed expression in the bilateral mesenchyme of female mouse GT [60].
Mesenchymal AR KO male mice display an increased level of Dkk2

expression in the mesenchyme adjacent to the urethral tube.
These data indicate that some Wnt inhibitors may be in part of an-
drogen signaling. Alternatively, these Wnt inhibitors may be con-
sidered as “markers” for female type of GT mesenchyme. Future
analysis will involve generating conditional mutant models for
functional analysis of such Wnt inhibitors. Analysis of the regula-
tion of such inhibitor gene expression will be also necessary. The
expression of Wnt inhibitors in female GT mesenchyme and their
repression by androgens in males are an attractive hypothesis to
explore to further elucidate the mechanisms involved in GT sexual
dimorphism.

In vitro studies indicate Wnt/p-catenin signaling can interact with
several other pathways, and cooperation of 3-catenin and AR has been
suggested. Nuclear localization of both AR and [3-catenin is initiated by
the exposure to androgen [74,75]. On the other hand, previous reports
using prostate cell lines suggested that ligand-activated AR can inhibit
Wnt/B-catenin signaling through the active-recruitment of 3-catenin
by AR leading to a loss of p-catenin mediated transcription [75,76].
These observations suggest the tissue sensitivity for Wnt/B-catenin
signaling may differ depending on the cell and developmental context.
Further investigation of the developing GT may identify context depen-
dent signaling that leads to dimorphic patterning.

FGF signaling has been shown to regulate the initial androgen inde-
pendent phase of GT development. Regulation of GT outgrowth and its
initial lower (ventral) GT development involves signal crosstalk between
FGF, HH, and BMP signaling [77-79]. In addition, FGF signaling may be in-
volved in late-stage androgen dependent GT morphogenesis. FGF signal-
ing has also been correlated with hypospadias-like phenotypes [80,31].
Fgfr2-11Ib is expressed in the urethral epithelium while Fgf10 is expressed
in the GT bilateral mesenchyme [78] (Fig. 2). Fgfr2-IlIb KO mouse embry-
os exhibited severe hypospadias with disorganized urethral plate epithe-
lium and decreased cell proliferation [80,81]. Despite the relatively
strong phenotypes of null mutant of Fgf10 and Fgfr2 genes, these
genes were found as “moderately” mutated in some human cases
of hypospadias [82]. However, initial analysis of sexually dimorphic
gene expression did not reveal FGF signaling as differentially
expressed between males and females [83]. A recent study revealed
that Spry genes, which have been identified as FGF signaling inhibi-
tors [84,85], regulate various elements of organogenesis. Double KO
of Spry1 and Spry2 effects upon urethra formation [86]. In addition to
affecting the early phase of GT outgrowth, the double KO mice
show some sex-dependent phenotypes in hormone dependent GT
differentiation. Further mechanistic analyses of FGF signaling and
its regulators will determine which elements are hormone depen-
dent or independent.

HH signaling has been identified as one of the critical early regula-
tors of GT development. Shh is expressed in the endodermal urethral ep-
ithelia while its signal effector, Gli2, is expressed in the bilateral GT
mesenchyme [77,87]. Introduction of a null mutation in Shh led to GT
agenesis [78]. Shh knockdown experiments in organ culture system
showed a reduction of Fgf10 expression indicating their crosstalk [78].
In addition, late-staged Shh functional analyses have been recently per-
formed using conditional mutants of Shh. It was shown that SHH signal-
ing may also be involved in modulating androgen dependent (late
stage) GT development [87].

EphB2 (Ephrin receptor B2) expression is temporally and spatially
different between male and female GT [88]. The expression of EphB2
in male is detected in the proximal GT extending to the urethral plate.
This pattern can be ectopically induced by DHT treatment in female
[88], suggesting that the regulation of EphB2 gene by AR needs to be fur-
ther investigated. EphrinB2 mutants also exhibit severe hypospadias
with a reduced anogenital distance (AGD), an open perineum [89].
The musculoskeletal system is sensitive to the action of androgen as
documented in the effects of androgen exposure on muscle mass [90].
Thus, AGD and perineum muscle formation are also effective indicators
of masculinization [91].
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Growth factors are involved in the development of the male internal
reproductive tissue as well as the hormone dependent and independent
growth of the GT. Identification of mechanisms of androgen and AR
signaling in these systems will determine if similar or different target
molecules are effectors of androgen action in different male reproduc-
tive tissues. This can be addressed by gene profiling methods to define
AR regulated transcripts, and subsequent analysis of their distribution
and functions.

5.3. Novel GT masculinization regulator candidates showing sexually
dimorphic expression

In addition to well-known growth factor related genes, recent
molecular analyses identified several other types of regulators
expressed prior to GT morphological dimorphism, such as MAFB,
CYP1B1 and FKBP51 [83]. Cyp1b1 expression is higher in the male as
compared to female. CYP1B1, one of the cytochrome P450 enzymes
and a possible target of aryl hydrocarbon receptor (AhR), can
metabolize testosterone [83,92]. AhR mediates teratogenic responses
in embryos and hypospadias may be one of the results of exposure to
a teratogenic agent [93,94]. There is controversy regarding possible in-
crease of hypospadias in some polluted residential regions. Potentially,
there may be crosstalk between AhR and androgen signaling, regulating
CYP1B1 expression in male GT. Fkbp51 expression is higher in male GT
compared to female [83]. FKBP51 is a chaperone for steroid receptors,
and interacts with AR in a prostate cancer cell line [95]. Its forced ex-
pression stimulates AR-mediated transcription in prostate cancer cells.
Similarly, Fkbp52 KO mice exhibit varied phenotypes reminiscent of
AR mutations with hypospadias, ambiguous genitalia, undescended
testis [96]. MAFB is a basic leucine zipper (bZIP) transcription factor
that plays an important role in hindbrain and otic development [97].
The possibility of its sex dependent expression and function in GT devel-
opment merits investigation. Whether such factors also function in late-
staged hormone dependent GT dimorphisms will require investigation.
Recent GFP knock-in mouse strains that label bilateral mesenchyme may
allow isolation of purified mesenchymal cells to enable gene profiling or
analysis of distinct mesenchymal subsets (Suzuki et al. unpublished).
Thus, GT may offer unique research advantages as it displays morpholog-
ical dimorphism from the common GT early anlage which diverges into
male and female GT patterns. Analysis of dimorphic GT development
and patterning is an area of research that has only recently started.
Molecular analysis of the mechanisms of GT formation involves several
interdisciplinary research fields including molecular genetics, mouse mu-
tant analysis, androgen-mediated hormonal control of gene regulation,
cellular and tissue morphogenesis. Comparison of GT organogenesis
with other hormone dependent tissues will help to define common
mechanisms involved in hormonal patterning of reproductive tissue.

6. Molecular regulation of AR functions: comprehensive expres-
sion analysis and genome-wide mapping of androgen receptor
binding sites

Analyses utilizing tissue recombination or tissue specific AR KO
mouse have revealed the importance of epithelial-mesenchymal
signalling and identified some of the molecules involved in male
specific organ development. However, these analyses lack comprehen-
sive information on AR downstream signaling pathways such as growth
factors, and has not fully identified the molecular mechanisms that con-
nect these growth factors and AR. Recent advances in comprehensive
methods targetting the whole-genome for the identification of AR targets
or cofactors have enabled new approaches to understanding AR actions.
Applying these methods in vivo will reveal the developmental context-
dependent AR downstream gene networks.

To understand the downstream gene networks of androgen signaling
during sexual differentiation, comprehensive gene expression analyses
using microarray or next generation sequencing have been performed

with developing epididymis, prostate and GT [83,98-103]. These have
correlated poorly with the candidates such as FGF ligands and BMP
ligands as androgen-regulated genes [98,100]. More intriguingly, these
analyses revealed that most of the gene expression regulated by androgen
is tissue-, cell- and stage-specific involved in several biological pathways.
For example, castration and/or DHT injection induces gene expression
changes in the epididymis and prostate [99,103]. Such up- or down-
regulated gene profiles are poorly identical with the profiles between
caput, corpus, and cauda of the epididymis, and ventral, dorsal and lateral
prostate. Thus, the presence of developmental and environmental context
dependent transcriptional regulation by androgen has been suggested.
Additionally, it may be that the complexity of these tissues is too high in
order for a common AR signature to be deconvoluted from such different
tissue types.

Recent techniques to identify genomic binding sites of transcription
factors have been developed that include chromatin immunoprecipita-
tion followed by hybridization of the immunoprecipitated DNA pool to a
tiling array (ChIP-chip) or end sequencing of immunoprecipitated DNA
fragments (ChIP-seq). In vivo global mapping of AR binding sites in nor-
mal androgen target tissue was initially reported in the epididymis
[104]. These results showed that most AR binding regions harbored con-
sensus androgen response elements (ARE) combined with multiple
binding motifs of other transcription factors. Further analyses suggested
that tissue specific collaborating transcription factors are required to
guide AR to the appropriate chromosomal location; Foxal in prostate;
Hnf4a in kidney; AP-2« in epididymis [105]. Such collaborating factors
enable AR to achieve its tissue or stage specific functions. Elucidation of
these genome-wide mappings of AR binding site and collaborating factors
in vivo would provide more understanding for context-dependency of
androgen signaling.

Genome wide analysis of AR binding sites also shed light on non-
coding RNA as a target of AR. Previous reports demonstrated that AR
binding sites were also associated with 63 microRNAs (miRNAs), in-
cluding miR-29a [104]. These miRNAs are also targets of AR transcrip-
tion in prostate development and cancer [98,106]. It is known that
miRNAs are involved in a variety of cellular processes and organ devel-
opment regulating large number of genes. They are initially produced as
longer precursors that are processed by the RNaselll enzyme Dicer1 to
become fully functional. Conditional KO of Dicer1 in the two most prox-
imal segments of the mouse epididymis resulted in de-differentiation of
the epididymal epithelia with reduction of AR expression [107]. Thus,
miRNAs are suggested to modulate the androgen signaling in male
reproductive tract development. Conversely, AR expression was sup-
pressed by miR-29a in mouse epididymis [108]. Further analyses
based on such genome wide information will enhance our understanding
of the gene networks regulated by androgens during male reproductive
tract development.

7. Conclusion and future prospects

Recent development of tissue-specific AR KO mouse models has
revealed several cellular functions of AR during male reproductive
tract masculinization. In addition, there is a growing literature regarding
AR targets and signaling in specific organs and tissue compartments.
Androgen action during sexually dimorphic development of the repro-
ductive tissues is one of the most promising paradigms for understanding
the key mechanisms controlled by steroid receptor signaling.
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