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Abstract Silicon carbide nanotubes possess outstanding properties which enable them to have many
applications. The buckling behaviour of silicon carbide nanotubes have been studied here. To do this, a 3D
finite element method, known as space frame model has been proposed. Molecular mechanics are linked
to density functional theory to derive the properties of this finite element method. It has been shown that
the critical buckling force will diminish with increasing aspect ratio. Also, it is represented that increasing
the aspect ratio will result in reducing the effect of boundary conditions.
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1. Introduction

The outstanding properties of SiC including physical, chem-
ical, and thermal properties enable it to be employed in high
temperature, high frequency, and harsh environments [1].
There have been wide interests in nanostructures of SiC in-
cluding nanotubes, nanowires and nanorods. The properties of
these nanostructures are different from the bulk SiC [2]. There
are some differences between silicon and carbon, for exam-
ple, Si has lower electronegativity, weaker bonds (except when
bonded to very electronegative atoms), kinetically more reac-
tive, larger atomic radius, etc. These differences lead to differ-
ences in the properties of silicon compared with carbon [3].

Sun et al. [4] were the first ones who synthesized the silicon
carbide nanotubes (SiCNTs) via the reaction of SiO with the
multi-walled carbon nanotubes (MWCNTs). After the reaction,
half of the carbon atoms of nanotubes were replaced by Si
atoms. The interlayer distances of the resulting multi-walled
silicon carbide nanotube (MWSiCNTs) were significantly larger
than those of CNTs. It has been shown that there are two

∗ Corresponding author. Tel.: +98 1425244411; fax: +98 1425244422.
E-mail addresses: s_rouhi@iaul.ac.ir (R. Ansari), r_ansari@guilan.ac.ir

(S. Rouhi), mirnezhad.mm@gmail.com (M. Aryayi), mahdiaryayi@gmail.com
(M. Mirnezhad).
Peer review under responsibility of Sharif University of Technology.

1026-3098© 2012 Sharif University of Technology. Production and hosting by Els

doi:10.1016/j.scient.2012.10.004
arrangements for SiC nanotubes. In type 1, the Si and C atoms
are placed in alternating arrangement while each carbon atom
has been bonded to three Si atoms and vice versa; however, in
type 2 there are two Si and one C atoms are bonded to each C
atom and vice versa. Ab initio studies on the stability of SiCNTs
show that the nanotubes with the arrangement of type 1 are
more stable than the other one [5].

Several theoretical methods have been employed to study
the behaviour of nanotubes which can be categorized as atom-
istic and continuum mechanics approaches. The atomistic ap-
proaches can be classified as classical molecular dynamics
(MD) [6,7], tight-binding molecular dynamics [8] and Den-
sity Functional Theory (DFT) [9]. The continuum mechanics
approaches which are based on the principles of structural
mechanics are classified as Bernoulli–Euler/Timoshenko beam
models [10–12], shell models [13–15], and space frame mod-
els [16–21]. Employing the MD simulation method, Moon
et al. [22] calculated the Young’s modulus of SiC nanotubes.
Bamieir et al. [23] used the ab initio method to study the elastic
and electronic properties of SiC nanotubes. They also computed
the strain energy and Young’s modulus of nanotubes with dif-
ferent geometries.

Setoodeh et al. [24] utilized the MD simulation method to
study the buckling behaviour of perfect and defective SiCNTs.
They have represented that the effective Young’s modulus of
SiCNTs is weakly affected by the tube chirality and the tube
diameter. They have also showed that the buckling forces of
perfect nanotubes are more sensitive to temperature variation
than defective nanotubes. Using the MD simulation combining
with Tersoff potentials, Pan and Si [25] studied the response
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of single crystalline SiC nanotubes under tensile strain. They
have indicated that at a constantwall-thickness, themechanical
properties are approximately independent of diameter of SiC
nanotubes while the effect of wall-thickness on the mechanical
properties is more important.

The atomistic methods, quantum mechanics and molecular
dynamics, are very accurate, but they are very time consuming
especially for large nanotubes. On the contrary, continuum
models are computationally efficient and can be used for
modeling large-sized systems at the nanometer scale. Thus,
the need for developing a model including simultaneously the
accuracy of the first category and the computational efficiency
of the second category for mechanical analysis of nanotubes is
greatly felt.

Herein, a 3D finite element model, known as space frame
model, is developed to describe the buckling behavior of
single-walled silicon carbide nanotubes (SWSiCNTs). Such a
model relies on some information on the force constants
of elements which are not available in the literature. These
force constants are obtained here through equating the energy
terms of molecular mechanics and quantum mechanics. Based
on electronic structure of molecules calculations, quantum
mechanics represents an accurate model. But, in spite of its
accuracy, it is computationally expensive and time consuming
even with exerting the simplifications. In molecular mechanics
which is based on the Born–Oppenheimer approximation, the
motion of electrons is ignored and system energy is described
as a function of nucleus position. It is expected that this
assumption, despite increasing the speed of solution, decreases
the accuracy. So in the present paper, the molecular mechanics
would be used combined with DFT to obtain the properties of
the space frame model.

2. Molecular mechanics modeling

Inmolecularmechanics, the total potential energy can be ex-
pressed as combination of several energies due to bounded in-
teractions or bounded and non-bounded interactions [26–29].

Et = Uρ + Uω + Uτ + Uvdw + Ues, (1)

in which Uρ,Uθ ,Uω and Uτ are energies associated with
bond stretching, bond angle variation, bond inversion, and
bond torsion, respectively; Uvdw and Ues are also associated
with van der Waals and electrostatic interactions, respectively.
Depending on material and loading conditions, these energy
terms can be described by different energy functions. For
SWNTs, it is expected that themain part of the potential energy
system consists of Uρ,Uθ and Uω , and Uvdw can be neglected.
Since Hook’s law has been proved to be accurate and efficient
in small deformations cases [28], it is used to describe the
interaction between atoms in the system. Therefore, Eq. (1) can
be rewritten as the following:

Et =

 1
2
Kρ (∆r)2 +

 1
2
Cθ (∆θ)2 +

 1
2
Cω (∆φ)2 , (2)

in which, as it has been represented in Figure 1., ∆r, ∆θ and
∆φ are the bond elongation, bond angle variance and change of
space between two atoms, respectively. The force constants of
Kρ, Cθ and Cω which are respectively relevant to the stretching
energy due to bond stretching, bond angle variation and bond
inversion can be determined theoretically or experimentally.
The average inversion angle φ can be computed as:

φ =
1
3

(β1 + β2 + β3) . (3)
The angles β1, β2 and β3 have been shown in Figure 2. As it can
be seen in Figure 3, each atom in a nanotube has three bond
lengths and three bond angles, so Eq. (2) can be rewritten in
more specific form as the following:
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In addition, constant factor of 1
2 in the first term of Eq. (4)

indicates that the bond stretching energy is considered only
once. The axial force of F associated with the chiral SWNTs
can be decomposed into two components. The first one, fp, is
perpendicular to the bond r3 and the other one, fa is along
the bond r3 (see Figure 4). In the following, the geometrical
relations of these two forces are expressed:

fp = F cos
π

6
− Θ


, (5)

fp = F sin
π

6
− Θ


, (6)

in which the chiral angle Θ is computed as:

Θ = arccos


2n + m

2
√
n2 + nm + m2


. (7)

The considered coordinate system consists of two perpendic-
ular axes; the first one is along the bond r3 and the other one
is perpendicular to it. This is because the length of the nan-
otube, which is considered infinite, consists of a repeatable cell.
This cell is analyzed here. The force equilibrium equation can be
written with respect to Figure 5 as:

fp sin


θ3

2


− fa cos


θ3

2


= Kρdr1. (8)

Also, the moment equilibrium leads to:

fp cos
α

2

  r1
2


= Cθdθ3 + Cθdθ2 cos (Ψ ) , (9)

where Cθdθ3 is rotationmoment due to the bond angle variation
in plane, r1 − r2, and Cθdθ2 cos (Ψ ) is rotation moment induced
by dθ3 in plane, r1 − r3. Via a protracted operation, Young’s
modulus and Poisson’s ratio are attained as follows [30]:

Y =
1

2πRt

 (n + m) Kρr1

sin


π
3 + Θ


sin


θ3
2


λAKρ r21

Cθ tan2


θ3
2

 + 1

 , (10)

v = −

cos


θ3
2

 
1 −

λAKρ r21
Cθ



1 + cos


θ3
2


λAKρ r21

Cθ tan2


θ3
2

 + 1
 . (11)

The concept of surface Young’s modulus is introduced here
to keep away from defining the effective thickness. Surface
Young’s modulus can be defined as:
Ys = Yt

=
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Figure 1: Different bonds structure of a SiC cell corresponding to each energy
term.

Figure 2: The components of average inversion angle φ.

Figure 3: Different bonds and angles associated with an atom in nanotube
structure.

3. Calculation of force constants

3.1. Mechanical properties of SiC using DFT

Based on the calculations of strain energy in the harmonic
deformation range, elastic constants of SiC are computed here.
By combining DFT [31,32] with Generalized Gradient Approx-
imation (GGA) and Perdew–Burke–Ernzerhof (PBE) [33,34],
these calculationswould be performed. TheQuantum–Espresso
coding [35] is used to do all the above calculations.
Figure 4: A (4, 2) chiral single-walled SiCNT subjected to axial load.

Figure 5: Schematic of a chiral single-walled SiCNT. (a) The hexagonal units,
and (b) force distribution in bonds r1 and r2 .

It has been reported that by increasing the dimension of the
hexagonal unit cell, the results do not change substantially [36].
Therefore, the present work considers the smallest size of the
unit cell formore simplicity [37]. Integration of Brillouin zone is
accomplishedwith 20∗20∗1Monkhorst and Pack k-pointmesh.
The SiC has a two-dimensional hexagonal unit cell, in which
all atoms lie in the same plane. In this structure, the lattice
constant and the bond length are computed, respectively, as
t = 3.093 Ang and d = 1.786 Ang.

3.2. Young’s modulus and Poisson’s ratio

Due to the uncertainty in defining the thickness of nan-
otubes, surface Young’s modulus is used here [36]:

Ys =


1
A0


×


∂2Es
∂ε2


, (13)

in which A0 represents the surface area in equilibrium, and Es
denotes the strain energy which can be computed using the
following relation:

Es = ET (ε) − ET (ε = 0) , (14)

in which ET (ε) is the total energy in the longitudinal strain ε
and ET (ε = 0) represents the total energy at zero longitudinal
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Figure 6: Variation of the strain energy Es with strain for grapheme.

strain. Moreover, the longitudinal strain can be formulated
as ε =

∆t
t , where t denotes the lattice constant. Poisson’s

ratio is defined as the ratio of transverse strain to longitudinal
strain [36]:

v = −
εtrans

εaxial
. (15)

As illustrated in Figure 6, the interval of −0.02 < ε < 0.02
can be considered as the harmonic area and after which a
nonharmonic area will come in which higher order terms of the
strain energy equation could not be neglected. Poisson’s ratio
and surface Young’smodulus are obtained as 0.29 and 171 N/m,
respectively.

The flexural rigidity is dependent on the strain energy of a
2D plane on its curvature in a desired direction:

D =
∂2Ef
∂K 2

, (16)

in which K (= 1/R) is the only curvature term of a single-
layered structure which is not neglected [38,39] and Ef is the
strain energy per atomwhich canbedefinedusing the following
expression:

Ef = En − Esh, (17)

where En and Esh are the strain energy per atomof a fully relaxed
rolled BN sheet and the strain energy per atom of a BN sheet,
respectively. Figure 7 shows a representation of variation of
Ef with respect to curvature. The strain energy relevant to the
fully relaxed rolled SiC sheet with several radii is depicted as
a quadratic approximate of bending energy and the flexural
modulus is achieved utilizing DFT. The value of the flexural
modulus computed is equal to 0.4407 ev(1.825 ev Ang/atom).
Also, it should be mentioned that this value is independent
of the rolling chirality. This means that these materials are
isotropic.

3.3. Force constants

By substituting the values of θ3 = θ2 = 2π/3 and
n → ∞ into the Eqs. (11) and (12), the following relations are
obtained [40]:

Ys =
8
√
3Kρ

Kρ r21
Cθ

+ 18
, (18)
Figure 7: Strain energy relative to fully relaxed rolled planar SiC with varying
radius plotted versus a quadratic approximation of the bending curvature with
the flexural modulus predicted by the DFT.

v =

Kρ r21
Cθ

− 6
Kρ r21
Cθ

+ 18
. (19)

Substituting the values obtained for Young’s modulus and
Poisson’s ratio into the above equations, the force coefficients
are obtained as Kρ = 417.156 nN/nm and Cθ = 0.842 nN · nm.
Cω can be calculated by using the relation of Cω = 24D [41], so
Cω = 1.505 nN · nm.

4. Atomistic finite element modeling

Based on the analogy between graphene structures and
macroscopic frame structures, a kind of finite element method,
named as space frame model, is proposed in which bonds are
simulated by beam elements. The elastic properties of beam
elements can be computed as [16,17,20,21]:

d = 4


Cθ

Kρ

, E =
K 2

ρ L

4πCθ

, G =
K 2

ρCωL

8πC2
θ

, (20)

where d, E and G are diameter, Young’s modulus and shear
modulus of beams, and L is the beam lengthwhich is considered
as bond length. Here, the bond length has been obtained as
L = 0.1786 nm. By placing the computed force constants and
length into Eq. (20), the elastic properties can be obtained as
d = 1.7971 Ang, E = 2.9372 × 10−8 N/Ang2 and G =

2.6256 × 10−8 N/Ang2.

5. Results

Based on the above modeling procedure, the ANSYS com-
mercial FE code was used to analyze the buckling behavior of
SWSiCNTs. The axial force was applied uniformly at the nodes
placed at one end. The geometry of nanotubes can be defined
by the radius and length of it. The critical buckling forcewas ob-
tained for different geometries. Table 1 shows the selected radii.
The aspect ratio, length over radius, was chosen to be between 1
and 20. Also, the analysis was carried out for different boundary
conditions including both ends clamped, both ends simply sup-
ported and clamped-free that simply named as clamed, simply
supported and clamped-free boundary conditions.
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(a) Simply supported. (b) Clamped.

(c) Clamped-free.

Figure 8: Critical compressive forces of (a) simply supported, (b) clamped and (c) clamped-free nanotubes of radii R = 4.26376 Ang (armchair) and R = 4.43103 Ang
(zigzag) versus nanotube aspect ratio.
(a) Simply supported. (b) Clamped.

(c) Clamped-free.

Figure 9: Critical compressive forces of (a) simply supported, (b) clamped and (c) clamped-free nanotubes of radii R = 8.52752 Ang (armchair) and R = 8.36972 Ang
(zigzag) versus nanotube aspect ratio.
The critical compressive force of armchair and zigzag
nanotubes are drawn in Figures 8 and 9. From these figures, it
can be seen that the critical buckling force will diminish with
increasing aspect ratio. The slopes of curves are higher at first,
but then they will reduce. It means that for long nanotubes,
the sensitivity of SWCNTs to length will reduce. Also, it can
be seen that the zigzag nanotubes are more stable than the
armchair ones, when L/R is smaller than 4 (Figure 8) or 2
(Figure 9). The difference diminishes for long nanotubes so
that increasing aspect ratio will lead to decreasing the effect of
atomic structure. Comparing the graphs for two different radii
reveals that at the same aspect ratios, the nanotubeswith larger
radii will buckle at smaller loads.

The effect of boundary conditions is represented in Figure 10.
It can be seen that the critical buckling forces of nanotubes
are the highest for clamped and the smallest for clamped-free
boundary conditions. Also, it has been shown that the effect of
boundary conditions will reduce for long nanotubes.
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Table 1: Selected radii for nanotubes.

Armchair

Chirality (5, 5) (10, 10)
Radius (Ang) 4.26376 8.52752

Zigzag

Chirality (9, 0) (17, 0)
Radius (Ang) 4.43103 8.36972

Figure 10: Critical compressive forces of an armchair nanotube with radius
R = 4.26376 Ang versus nanotube aspect ratio under different boundary
conditions.

6. Concluding remarks

The buckling behavior of SWSiCNTs has been analyzed here.
To do this, a 3D finite element method model was developed in
which bonds of graphene structures are modeled by beam and
elements. To compute the properties of these beam elements,
some force constants should be obtained. A combination of
molecular mechanics and DFT was used to compute these
force constants and by using them, the elastic properties of
beam elements were derived. Having modeled the SWSiCNTs
in this way, the critical compressive force of nanotubes was
obtained for different geometries and boundary conditions. It
was observed that by increasing the length of nanotubes, the
critical compressive forces of nanotube will decrease. Also,
it was shown that at a same side length, nanotubes with
smaller radii are more stable. Having compared the critical
compressive force for different boundary conditions, itwas seen
that increasing the aspect ratio will result in reducing the effect
of boundary conditions.
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