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We show that the Strichartz L2w(L
2)-estimates for solutions to the (pseudo-)

differential equations

−Dxu=i“tu and `−Dx+1 u=i“tu

are equivalent. A necessary and sufficient condition for decay and regularity for
solutions to the equation

j(`−Dx ) u=i“tu

is given. © 2002 Elsevier Science (USA)
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1. PURPOSE

1.1. In this paper we generalise previous work (cf., e.g., Ben-Artzi and
Klainerman [3], Ben-Artzi and Nemirovsky [4], Kato and Yajima [8],
[19, 20]) on decay and regularity for oscillatory integrals.
Let u1 and u2 be functions on Rn+1. The tempered distribution f belongs
to the Sobolev space H s(Rn) if and only if the function tW (1+|t|2) s

|f̂(t)|2 is integrable on Rn. Here f̂ is the Fourier transform of f. Consider
the following two statements:
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Statement 1. Let −Dxu1=i“tu1, u1(x, 0)=f(x), x ¥ Rn, n \ 3. Then
there exists a number C independent of f such that

F
Rn

F
R
|u1(x, t)|2

dt dx
1+|x|2

[ C ||f||2H−1/2(Rn).

Statement 2. Let `−Dx+1 u2=i“tu2, u2(x, 0)=f(x), x ¥ Rn, n \ 3.
Then there exists a number C independent of f such that

F
Rn

F
R
|u2(x, t)|2

dt dx
1+|x|2

[ C ||f||2L2(Rn).

The estimates in these statements are examples of Strichartz estimates
with weights. Strichartz estimates have been treated in many papers during
recent years. See, e.g., Ben-Artzi and Devinatz [1, 2], Ben-Artzi and
Klainerman [3], Bourgain [5], Georgiev et al. [6], Ginibre and Velo [7],
Kato and Yajima [8], Keel and Tao [9], Klainerman and Machedon [11],
and Montgomery-Smith [12] and the references cited in these papers.
Suitable introductions to the subject may be found in Stein [15, Chapter
VIII, Sects. 5.16, 5.18, 5.19] and Strauss [17].

Theorem A [3, Corollary 2, p. 28; 8, (1.5), p. 482; 20, Theorem 2.2(a),
p. 385]. Statement 1 is true.

1.2. According to Ben-Artzi and Nemirovsky [4, Theorem 3A, p. 35]
Statement 2 also is true. The main purpose of this paper is to show that
Statements 1 and 2 are equivalent. See Example 4.1 with a=2 and
Example 4.2 with a1a2=1 and a1=2.

Theorem 1. Statements 1 and 2 are equivalent.

1.3. Let Bn denote the open unit ball of Rn. Statement 1 is sharp with
respect to both decay and regularity. This is the content of Theorems B
and C below.

Theorem B [20, Theorem 2.2(b), p. 385]. Assume that n \ 3 and that
there is a number C independent of f such that

F
Rn

F
R
|u1(x, t)|2

dt dx
(1+|x|)b

[ C ||f̂||2L2(Bn), supp f̂ ı Bn.

Then b \ 2.
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Theorem C (Sjögren and Sjölin [14, Theorem 4, p. 5]). Assume that
there is a number C independent of f such that

||u1 ||L2(Bn+1) [ C ||f||Hs(Rn).

Then s \ −1/2.

From the point of view of gain of regularity in the L2-sense the (pseudo-)
differential equation

`−Dx+1 u=i“tu

in Statement 2 is equivalent to the classical wave equation simply because
`|t|2+1 behaves like |t| as t goes to infinity. It is well known that there is
no gain of regularity in the L2-sense for solutions to the wave equation. See
also [21]. Hence Statement 2 is sharp with respect to regularity:

Theorem D. Assume that there is a number C independent of f such
that

||u2 ||L2(Bn+1) [ C ||f||Hs(Rn).

Then s \ 0.

Another purpose of this paper is to show that Statement 2 is sharp with
respect to decay. See Example 4.2 with a1a2=1 and a1=2.

Theorem 2. Assume that n \ 3 and that there is a number C independent
of f such that

F
Rn

F
R
|u2(x, t)|2

dt dx
(1+|x|)b

[ C ||f̂ ||2L2(Bn), supp f̂ ı Bn.

Then b \ 2.

2. NOTATION

2.1. Oscillatory integrals. For x and t in Rn we let xt=x1t1+·· ·+
xntn. If f is in the Schwartz class S(Rn) and if m is any essentially
bounded and measurable function on Rn×R+ we define

(Sjmf)[x](t)=
1
(2p)n

F
Rn
m(x, |t|) e i(xt−tj(|t|))f̂(t) dt. (1)

REGULARITY, DECAY, AND CONSTANTS 327



Here f̂ is the Fourier transform of f,

f̂(t)=F
Rn
e−ixtf(x) dx. (2)

If m=1 we write Sj instead of Sj1 . We will also need the modified operator
6Sj, gm defined by

(6Sj, gm f)[x](t)=g(|x|)
1/2 F

Rn
m(x, |t|) e i(xt−tj(|t|))g(|t|) f(t) dt, (3)

where we assume g and g to be positive measurable functions. Again, if
m=1 we write Sj, g6 instead of6Sj, g1 .
The conditions on j will be made precise in Theorem 4.1.

2.2. Bessel functions. For real numbers l > −1/2 we define the Bessel
function of order l by

Jl(r)=
rl

2lC(l+1/2) C(1/2)
F
1

−1
e irr(1−r2)l−1/2 dr. (4)

Here C is the gamma function.
Bessel functions of order n/2+k−1 are important when describing the
symmetry properties of the Fourier transform. See Theorem 5.2. We set

n(k)=
n
2
+k−1.

2.3. Auxiliary notation. By Bn we denote the open unit ball in Rn.
(B1 will be denoted by B.) We will use auxiliary functions q and k such that
q ¥ C.0 (R) is even,

q(R02B)=0, q(R) ı [0, 1] and q(B)=1

and k=1−q.
Unless otherwise explicitly stated all functions f are supposed to belong
toS(Rn).

3. SOME EXAMPLES AND PREVIOUS RESULTS

3.1. The expression

e i(xt−tj(|t|))f̂(t)
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solves for each fixed t the equation

j(|t|) u=i“tu.

Hence the expression

u(x, t)=(Sjf)[x](t)=
1
(2p)n

F
Rn
e i(xt−tj(|t|))f̂(t) dt (5)

solves the pseudo-differential equation

j(`−Dx ) u=i“tu

with initial data u(x, 0)=f(x). If j(r)=r2 then u given by (5) will be a
solution to the free time-dependent Schrödinger equation as in Statement 1.
If j(r)=`r2+1 then u given by (5) will instead be a solution to the free
time-dependent relativistic Schrödinger equation as in Statement 2.
If we use the modified operator 6Sj, gm then the estimates in Statements 1
and 2 can both be expressed as

||Sj, g6 f||L2(Rn+1) [ C ||f||L2(Rn)

with the same function g(x)=(1+|x|2)−1 but with different functions j
and g and with n \ 3. Here C is a number independent of f. In the case of
j(r)=r2 we have g(r)=(1+r2)1/4 (or equivalently g(r)=(1+r)1/2)
whereas in the case of j(r)=`r2+1 we have g(r)=1. What we among
other things aim to prove is that the estimates of both Statements 1 and 2
are equivalent to the estimate

sup 3(1+r2)1/2 F.
0
Jn(k)(rr)2

r dr
1+r2

: r > 0, k ¥ N4 <. (6)

which we consider for n \ 3. (N denotes the set of nonnegative integers.)
Estimate (6) can be verified (see [20, pp. 390–392]) in a straightforward
manner.
The estimates in Statement 1 and Theorem A both concern the case
n \ 3. For the case n=2 the condition b \ 2 has to be replaced by the
condition b > 2. This is due to the local asymptotics of the Bessel function
J0 and may be expressed as follows: the function

rW F
.

0
J0(rr)

r dr
1+rb

, 0 [ r [ 1 (7)

is bounded if and only if b > 2. See [20, Sect. 4.6, p. 392].
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3.2. Let us now consider the case j(|t|)=|t|a, a ] 2, a > 1, g(r)=
(1+r2)−s/2, g(r)=(1+rb)−1, and n \ 2. As in the case a=2 we can classify
the decay and regularity. We have the following theorems.

Theorem AŒ [19, Theorem 14.7(a) and 14.8(b)]. Assume that n \ a,
s \ (1−a)/2, and either b > a=n or b \ a ] n. Then there is a number C
independent of f such that

||6Sj, gm f||L2(Rn+1) [ C ||f||L2(Rn).

We aim to prove that the estimate in Theorem AŒ is equivalent to

sup 3r2−a(1+r2)−s F.
0
Jn(k)(rr)2

r dr
1+rb

: r > 0, k ¥ N4 <. (8)

under the stated assumptions. The estimates (6) and (7) are implied by (8),
an estimate which likewise can be verified (see [19, pp. 225–228]) in a
straightforward manner.

Theorem BŒ [19, Theorem 14.7(b) and 14.8(b)]. Assume that there is a
number C independent of f such that

||Sj, g6 f||L2(Rn+1) [ C ||f̂ ||L2(Bn), supp f̂ ı Bn.

Then either b > a=n or b \ a ] n.

Theorem CŒ. Assume that there is a number C independent of f such
that

||Sj, g6 f||L2(Bn+1) [ C ||f||L2(Rn).

Then s \ (1−a)/2.

A proof of Theorem CŒ together with related material [21] will appear
elsewhere.

4. MAIN RESULT AND EXAMPLES

Theorem 4.1. Let n \ 2. Assume that j is injective on R+ with range
W ı R and that jŒ is well defined on R+.

(a) Assume that

a=sup 3rg(r)2 jŒ(r)−1 F.
0
Jn(k)(rr)2 g(r) r dr : r > 0, k ¥ N4 <.. (9)
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Then

||6Sj, gm f||L2(Rn+1) [ (2p)
(n+1)/2 a1/2 ||m||L.(Rn, R+) ||f||L2(Rn);

i.e., the linear mapping 6Sj, gm can be extended to a bounded linear mapping
L2(Rn)Q L2(Rn+1) with norm at most

(2p) (n+1)/2 a1/2 ||m||L.(Rn, R+).

(b) Conversely, if the mapping Sj, g6 can be extended to a bounded linear
mapping L2(Rn)Q L2(Rn+1) then the norm of the extension is (2p) (n+1)/2 a1/2.

Example 4.1. For a > 1 set j(r)=ra, g(r)=(1+r2)−s/2, and g(r)=
(1+rb)−1. It is straightforward to show that (9) is equivalent to (8). That
(8) holds under the assumptions n \ a, s \ (1−a)/2 and either b > a=n or
b \ a ] n was shown in [19, pp. 225–228]. Conversely, if (9) holds then
also

sup 3rg(r)2 jŒ(r)−1 F.
0
Jn(k)(rr)2 g(r) r dr : 0 [ r [ 1, k ¥ N4 <.

which in our case reads

sup 3r2−a F.
0
Jn(k)(rr)2

r dr
1+rb

: 0 [ r [ 1, k ¥ N4 <. (10)

from which it follows that n \ a and either b > a=n or b \ a ] n.

This example is an illustration of Theorems AŒ and BŒ in Section 3.2 and
also of the following theorem:

Theorem. Let j(r)=ra and g=g=q. Assume that there is a number C
independent of f such that

||Sj, g6 f||L2(Rn+1) [ C ||f||L2(Rn).

Then n \ a.

This theorem should be compared with Vega [18, Theorem 3Œ, p. 878]
from which it follows that given j(r)=ra for any a > 1 and g=g=q there
is a number C independent of f such that

||Sj, g6 f||L2(Rn+1) [ C ||f||L2(Rn).

Cf. also the interesting example in Wang [23].
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Example 4.2. For a1 > 1 set j(r)=(ra1+1)a2, g(r)=(1+r2)−s/2, and
g(r)=(1+rb)−1. Again, it is straightforward to show that (9) is equivalent
to (8) with a replaced by a1 and s replaced by a1(a2−1)/2+s. Hence (9)
holds under the assumptions n \ a1, s \ (1−a1a2)/2, and either b > a1=n
or b \ a1 ] n (cf. Example 4.1). In particular, (9) holds if a1a2=1 and
a1=2 ] n. Thus we have proved Theorem 1 in Section 1.2.
Conversely, if (9) holds then as in Example 4.1 (10) holds with a replaced
by a1 from which it follows that n \ a1 and either b > a1=n or b \ a1 ] n.
We may now conclude that Theorem 2 in Section 1.3 holds by choosing
a1=2 and a2 ] 0.

Example 4.3. For a ] 0 set j(r)=ra, g(r)=r−s, and g(r)=r−b. Now
(9) is equivalent to

sup 3r2−a−2s F.
0
Jn(k)(rr)2 r1−b dr : 0 [ r <., k ¥ N4 <.

which in turn is equivalent to s=(b−a)/2 and 1 < b < n.
This example is an illustration of [22, Theorem 2.6, p. 157] (choose
q1=2 and c=0) and for a=b=2 of Simon [13, (3), p. 66].

Example 4.4. Set j(r)=r2, g(r)=r1/2, and g(r)=(1+r2)−1. Now (9)
is equivalent to

sup 3r F.
0
Jn(k)(rr)2

r dr
1+r2

: 0 [ r <., k ¥ N4 <. (11)

and for n \ 3 (11) clearly follows from (6). This example is an illustration
of Simon [13, (2), p. 66].

Example 4.5. For a > 1 set j(r)=ra, g(r)=k(r) r (a−1)/2, and g(r)=
(1+rb)−1. Now (9) is equivalent to

sup 3r F.
0
Jn(k)(rr)2

r dr
1+rb

: 1 [ r <., k ¥ N4 <.

which in turn is equivalent to b > 1.
This example is an illustration of [22, Theorem 2.14, p. 159].

Example 4.6. For a > 1 set j(r)=ra, g(r)=r (a−1)/2, and g=q. Now
(9) is equivalent to

sup 3r F.
0
Jn(k)(rr)2 q(r) r dr : 0 [ r <., k ¥ N4 <.. (12)

Equation (12) clearly follows from (11).
This example is an illustration of Kenig et al. [10, Theorem 4.1, p. 54].
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5. PREPARATION

5.1. Readers familiar with the classical preparatory results in [20, Sect. 3,
pp. 386–387] may skip reading this section and go directly to Section 6.

5.2. Notation. P will always denote a solid spherical harmonic (cf. Stein
and Weiss [16, pp. 140–141]) of nonnegative degree k such that ||P||L2(Sn−1)=1.
Let Hk(Rn) be the linear space of all finite linear combinations of
functions of the form

xW P(x) f0(|x|) |x|−n/2−k+1/2,

where f0 ¥ L2(R+) (cf. [16, p. 138]). Hk(Rn) is an infinite dimensional
Hilbert subspace of L2(Rn) (with the inherited inner product). It is
generated by a finite number of spherical harmonics with radial functions
as coefficients.

Theorem 5.1 [16, Lemma 2.18, p. 151]. The complete orthogonal
decomposition

L2(Rn)=Á Hk(Rn)

holds in the sense that

(a) each subspace Hk(Rn) is closed;
(b) Hk1 (R

n) is orthogonal to Hk2 (R
n) if k1 ] k2;

(c) every f can be written as a sum

f=C fk, fk ¥ Hk(Rn)

with convergence in L2(Rn).

Theorem 5.2 (cf. [16, Theorem 3.10, p. 158]). Let f(t)=P(t) f0(|t|).
Then

f̂(x)=(2p)n/2 i−k |x|−n(k) P(x) F
.

0
f0(r) Jn(k)(r |x|) rn/2+k dr.

Corollary 5.1. The tempered distribution mP defined by

mP(f)=F
S
n−1
f(xŒ) P(xŒ) ds(xŒ)

has Fourier transform mP5 given by

mP5 (t)=(2p)n/2 i−k |t|−n(k) P(t) Jn(k)(|t|).
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6. PROOF OF THE MAIN RESULT

6.1. Proof of part (a) in Theorem 4.1. The proof follows closely the
proof of [20, Theorem 2.1(a) and 2.2(a), p. 385].
For r ¥ W we define

fj, g6 [x](r)=fj, g6 (r)[x]=g(|x|)1/2 g(j−1(r)) j−1(r)n−1 (Dj−1)(r)

×F
S
n−1
e ij

−1(r) xtŒf(j−1(r) tŒ) ds(tŒ)

and by f̃(r)=0 for r ¨ W. Let us write m(x, r)=m[x](r). For fixed x
function m[x] is extended to R by m(r)=0 for r [ 0. The formula

(6Sj, gm f)[x](t)=F
R
e−itrm(x, j−1(r)) fj, g6 [x](r) dr (13)

follows by polar coordinates and change of variables in (3). It tells us that

(6Sj, gm f)[x] is obtained from f
j, g6 [x] via a Fourier multiplier transforma-

tion on L2(R) with norm (2p)1/2 ||m[x]||L.(R). We now have the estimate

||6Sj, gm f||L2(Rn+1) [ (2p)
1/2 ||m||L.(Rn×R+) ||f

j, g6 ||L2(Rn+1). (14)

Hence, to prove our statement it is sufficient to prove that

||fj, g6 ||L2(Rn+1) [ (2p)n/2 a1/2 ||f||L2(Rn). (15)

It is a consequence of orthogonality (cf. [20, Sect. 4.2.3, p. 389] and
Theorem 5.1) that it is sufficient to prove the estimate (15) for f ¥

(Hk 5S)(Rn). In turn, it is a consequence of orthogonality (cf. [20,
Sect. 4.2.4, pp. 389–390]) that it is sufficient to prove the estimate (15) for

f: tW P(t) f0(|t|) |t|−n/2−k+1/2, f0 ¥ C.0 (R+).

Straightforward computations using change of variables, Corollary 5.1,
and polar coordinates show that for such f

||fj, g6 ||2L2(Rn+1)=(2p)
n F
.

0

1rg(r)2 jŒ(r)−1 F.
0
Jn(k)(rr)2 g(r) r dr2 |f0(r)|2 dr

[ (2p)n a ||f0 ||
2
L2(R+)=(2p)

n a ||f||2L2(Rn). (16)

6.2. Proof of Part (b) in Theorem 4.1. If m=1 then equality will occur
in (14) with ||m||L.(Rn, R+)=1. Moreover, from (16) it is clear that the norm
of the bounded linear mapping fW fj, g6 is (2p)n/2 a1/2.
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