Regularity, Decay, and Best Constants for Dispersive Equations ${ }^{1}$

Björn G. Walther
Royal Institute of Technology, SE-100 44 Stockholm, Sweden; and Brown University, Providence, Rhode Island 02912-1917
E-mail: WALTHER@Math.KTH.SE
Communicated by Len Gross

Received December 2, 1999; accepted December 1, 2000

We show that the Strichartz $L_{w}^{2}\left(L^{2}\right)$-estimates for solutions to the (pseudo-)
View metadata, citation and similar papers at core.ac.uk
are equivalent. A necessary and sufficient condition for decay and regularity for solutions to the equation

$$
\varphi\left(\sqrt{-\Delta_{x}}\right) u=i \partial_{t} u
$$

is given. © 2002 Elsevier Science (USA)
Key Words: oscillatory integrals; dispersive equations; weighted and mixed norm inequalities; global smoothing and decay.

1. PURPOSE

1.1. In this paper we generalise previous work (cf., e.g., Ben-Artzi and Klainerman [3], Ben-Artzi and Nemirovsky [4], Kato and Yajima [8], $[19,20])$ on decay and regularity for oscillatory integrals.

Let u_{1} and u_{2} be functions on \mathbf{R}^{n+1}. The tempered distribution f belongs to the Sobolev space $H^{s}\left(\mathbf{R}^{n}\right)$ if and only if the function $\xi \mapsto\left(1+|\xi|^{2}\right)^{s}$ $|\hat{f}(\xi)|^{2}$ is integrable on \mathbf{R}^{n}. Here \hat{f} is the Fourier transform of f. Consider the following two statements:

[^0]Statement 1. Let $-\Delta_{x} u_{1}=i \partial_{t} u_{1}, u_{1}(x, 0)=f(x), x \in \mathbf{R}^{n}, n \geqslant 3$. Then there exists a number C independent of f such that

$$
\int_{\mathbf{R}^{n}} \int_{\mathbf{R}}\left|u_{1}(x, t)\right|^{2} \frac{d t d x}{1+|x|^{2}} \leqslant C\|f\|_{H^{-1 / 2}\left(\mathbf{R}^{n}\right)}^{2} .
$$

Statement 2. Let $\sqrt{-\Delta_{x}+1} u_{2}=i \partial_{t} u_{2}, u_{2}(x, 0)=f(x), x \in \mathbf{R}^{n}, n \geqslant 3$. Then there exists a number C independent of f such that

$$
\int_{\mathbf{R}^{n}} \int_{\mathbf{R}}\left|u_{2}(x, t)\right|^{2} \frac{d t d x}{1+|x|^{2}} \leqslant C\|f\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2} .
$$

The estimates in these statements are examples of Strichartz estimates with weights. Strichartz estimates have been treated in many papers during recent years. See, e.g., Ben-Artzi and Devinatz [1, 2], Ben-Artzi and Klainerman [3], Bourgain [5], Georgiev et al. [6], Ginibre and Velo [7], Kato and Yajima [8], Keel and Tao [9], Klainerman and Machedon [11], and Montgomery-Smith [12] and the references cited in these papers. Suitable introductions to the subject may be found in Stein [15, Chapter VIII, Sects. 5.16, 5.18, 5.19] and Strauss [17].

Theorem A [3, Corollary 2, p. 28; 8, (1.5), p. 482; 20, Theorem 2.2(a), p. 385]. Statement 1 is true.
1.2. According to Ben-Artzi and Nemirovsky [4, Theorem 3A, p. 35] Statement 2 also is true. The main purpose of this paper is to show that Statements 1 and 2 are equivalent. See Example 4.1 with $a=2$ and Example 4.2 with $a_{1} a_{2}=1$ and $a_{1}=2$.

Theorem 1. Statements 1 and 2 are equivalent.
1.3. Let B^{n} denote the open unit ball of \mathbf{R}^{n}. Statement 1 is sharp with respect to both decay and regularity. This is the content of Theorems B and C below.

Theorem B [20, Theorem 2.2(b), p. 385]. Assume that $n \geqslant 3$ and that there is a number C independent of f such that

$$
\int_{\mathbf{R}^{n}} \int_{\mathbf{R}}\left|u_{1}(x, t)\right|^{2} \frac{d t d x}{(1+|x|)^{b}} \leqslant C\|\hat{f}\|_{L^{2}\left(B^{n}\right)}^{2}, \quad \operatorname{supp} \hat{f} \subseteq B^{n} .
$$

Then $b \geqslant 2$.

Theorem C (Sjögren and Sjölin [14, Theorem 4, p. 5]). Assume that there is a number C independent of f such that

$$
\left\|u_{1}\right\|_{L^{2}\left(B^{n+1}\right)} \leqslant C\|f\|_{H^{s}\left(\mathbf{R}^{n}\right)} .
$$

Then $s \geqslant-1 / 2$.
From the point of view of gain of regularity in the L^{2}-sense the (pseudo-) differential equation

$$
\sqrt{-\Delta_{x}+1} u=i \partial_{t} u
$$

in Statement 2 is equivalent to the classical wave equation simply because $\sqrt{|\xi|^{2}+1}$ behaves like $|\xi|$ as ξ goes to infinity. It is well known that there is no gain of regularity in the L^{2}-sense for solutions to the wave equation. See also [21]. Hence Statement 2 is sharp with respect to regularity:

Theorem D. Assume that there is a number C independent of f such that

$$
\left\|u_{2}\right\|_{L^{2}\left(B^{n+1}\right)} \leqslant C\|f\|_{H^{s}\left(\mathbf{R}^{n}\right)} .
$$

Then $s \geqslant 0$.
Another purpose of this paper is to show that Statement 2 is sharp with respect to decay. See Example 4.2 with $a_{1} a_{2}=1$ and $a_{1}=2$.

Theorem 2. Assume that $n \geqslant 3$ and that there is a number C independent of f such that

$$
\int_{\mathbf{R}^{n}} \int_{\mathbf{R}}\left|u_{2}(x, t)\right|^{2} \frac{d t d x}{(1+|x|)^{b}} \leqslant C\|\hat{f}\|_{L^{2}\left(B^{n}\right)}^{2}, \quad \operatorname{supp} \hat{f} \subseteq B^{n} .
$$

Then $b \geqslant 2$.

2. NOTATION

2.1. Oscillatory integrals. For x and ξ in \mathbf{R}^{n} we let $x \xi=x_{1} \xi_{1}+\cdots+$ $x_{n} \xi_{n}$. If f is in the Schwartz class $\mathscr{S}\left(\mathbf{R}^{n}\right)$ and if m is any essentially bounded and measurable function on $\mathbf{R}^{n} \times \mathbf{R}_{+}$we define

$$
\begin{equation*}
\left(S_{m}^{\varphi} f\right)[x](t)=\frac{1}{(2 \pi)^{n}} \int_{\mathbf{R}^{n}} m(x,|\xi|) e^{i(x \xi \xi-t \varphi(|\xi|))} \hat{f}(\xi) d \xi . \tag{1}
\end{equation*}
$$

Here \hat{f} is the Fourier transform of f,

$$
\begin{equation*}
\hat{f}(\xi)=\int_{\mathbf{R}^{n}} e^{-i x \xi} f(x) d x \tag{2}
\end{equation*}
$$

If $m=1$ we write S^{φ} instead of S_{1}^{φ}. We will also need the modified operator $\widetilde{S_{m}^{\varphi, \eta}}$ defined by

$$
\begin{equation*}
\left(\widetilde{S_{m}^{\varphi, \eta}} f\right)[x](t)=g(|x|)^{1 / 2} \int_{\mathbf{R}^{n}} m(x,|\xi|) e^{i(x \xi-t \varphi(|\xi|))} \eta(|\xi|) f(\xi) d \xi \tag{3}
\end{equation*}
$$

where we assume g and η to be positive measurable functions. Again, if $m=1$ we write $\widetilde{S^{\varphi, \eta}}$ instead of $\widetilde{S_{1}^{\varphi, \eta}}$.

The conditions on φ will be made precise in Theorem 4.1.
2.2. Bessel functions. For real numbers $\lambda>-1 / 2$ we define the Bessel function of order λ by

$$
\begin{equation*}
J_{\lambda}(\rho)=\frac{\rho^{\lambda}}{2^{\lambda} \Gamma(\lambda+1 / 2) \Gamma(1 / 2)} \int_{-1}^{1} e^{i r \rho}\left(1-r^{2}\right)^{\lambda-1 / 2} d r \tag{4}
\end{equation*}
$$

Here Γ is the gamma function.
Bessel functions of order $n / 2+k-1$ are important when describing the symmetry properties of the Fourier transform. See Theorem 5.2. We set

$$
v(k)=\frac{n}{2}+k-1 .
$$

2.3. Auxiliary notation. By B^{n} we denote the open unit ball in \mathbf{R}^{n}. (B^{1} will be denoted by B.) We will use auxiliary functions χ and ψ such that $\chi \in \mathscr{C}_{0}^{\infty}(\mathbf{R})$ is even,

$$
\chi(\mathbf{R} \backslash 2 B)=0, \quad \chi(\mathbf{R}) \subseteq[0,1] \quad \text { and } \quad \chi(B)=1
$$

and $\psi=1-\chi$.
Unless otherwise explicitly stated all functions f are supposed to belong to $\mathscr{S}\left(\mathbf{R}^{n}\right)$.
3. SOME EXAMPLES AND PREVIOUS RESULTS
3.1. The expression

$$
e^{i(x \xi-t \varphi(\xi|\xi|))} \hat{f}(\xi)
$$

solves for each fixed ξ the equation

$$
\varphi(|\xi|) u=i \partial_{t} u
$$

Hence the expression

$$
\begin{equation*}
u(x, t)=\left(S^{\varphi} f\right)[x](t)=\frac{1}{(2 \pi)^{n}} \int_{\mathbf{R}^{n}} e^{i(x \xi \xi-t \varphi(\xi \xi))} \hat{f}(\xi) d \xi \tag{5}
\end{equation*}
$$

solves the pseudo-differential equation

$$
\varphi\left(\sqrt{-\Delta_{x}}\right) u=i \partial_{t} u
$$

with initial data $u(x, 0)=f(x)$. If $\varphi(\rho)=\rho^{2}$ then u given by (5) will be a solution to the free time-dependent Schrödinger equation as in Statement 1. If $\varphi(\rho)=\sqrt{\rho^{2}+1}$ then u given by (5) will instead be a solution to the free time-dependent relativistic Schrödinger equation as in Statement 2.

If we use the modified operator $\widetilde{S_{m}^{\varphi, \eta}}$ then the estimates in Statements 1 and 2 can both be expressed as

$$
\left\|\widetilde{\boldsymbol{S}^{\varphi, \eta}} f\right\|_{L^{2}\left(\mathbf{R}^{n+1}\right)} \leqslant C\|f\|_{L^{2}\left(\mathbf{R}^{n}\right)}
$$

with the same function $g(x)=\left(1+|x|^{2}\right)^{-1}$ but with different functions φ and η and with $n \geqslant 3$. Here C is a number independent of f. In the case of $\varphi(\rho)=\rho^{2}$ we have $\eta(\rho)=\left(1+\rho^{2}\right)^{1 / 4}$ (or equivalently $\left.\eta(\rho)=(1+\rho)^{1 / 2}\right)$ whereas in the case of $\varphi(\rho)=\sqrt{\rho^{2}+1}$ we have $\eta(\rho)=1$. What we among other things aim to prove is that the estimates of both Statements 1 and 2 are equivalent to the estimate

$$
\begin{equation*}
\sup \left\{\left(1+\rho^{2}\right)^{1 / 2} \int_{0}^{\infty} J_{v(k)}(r \rho)^{2} \frac{r d r}{1+r^{2}}: \rho>0, k \in \mathbf{N}\right\}<\infty \tag{6}
\end{equation*}
$$

which we consider for $n \geqslant 3$. (\mathbf{N} denotes the set of nonnegative integers.) Estimate (6) can be verified (see [20, pp. 390-392]) in a straightforward manner.

The estimates in Statement 1 and Theorem A both concern the case $n \geqslant 3$. For the case $n=2$ the condition $b \geqslant 2$ has to be replaced by the condition $b>2$. This is due to the local asymptotics of the Bessel function J_{0} and may be expressed as follows: the function

$$
\begin{equation*}
\rho \mapsto \int_{0}^{\infty} J_{0}(r \rho) \frac{r d r}{1+r^{b}}, \quad 0 \leqslant \rho \leqslant 1 \tag{7}
\end{equation*}
$$

is bounded if and only if $b>2$. See [20, Sect. 4.6, p. 392].
3.2. Let us now consider the case $\varphi(|\xi|)=|\xi|^{a}, a \neq 2, a>1, \eta(\rho)=$ $\left(1+\rho^{2}\right)^{-s / 2}, g(r)=\left(1+r^{b}\right)^{-1}$, and $n \geqslant 2$. As in the case $a=2$ we can classify the decay and regularity. We have the following theorems.

Theorem A' [19, Theorem 14.7(a) and 14.8(b)]. Assume that $n \geqslant a$, $s \geqslant(1-a) / 2$, and either $b>a=n$ or $b \geqslant a \neq n$. Then there is a number C independent of f such that

$$
\left\|\widetilde{S_{m}^{\varphi, \eta}} f\right\|_{L^{2}\left(\mathbf{R}^{n+1}\right)} \leqslant C\|f\|_{L^{2}\left(\mathbf{R}^{n}\right)}
$$

We aim to prove that the estimate in Theorem A^{\prime} is equivalent to

$$
\begin{equation*}
\sup \left\{\rho^{2-a}\left(1+\rho^{2}\right)^{-s} \int_{0}^{\infty} J_{v(k)}(r \rho)^{2} \frac{r d r}{1+r^{b}}: \rho>0, k \in \mathbf{N}\right\}<\infty \tag{8}
\end{equation*}
$$

under the stated assumptions. The estimates (6) and (7) are implied by (8), an estimate which likewise can be verified (see [19, pp. 225-228]) in a straightforward manner.

Theorem B' [19, Theorem 14.7(b) and 14.8(b)]. Assume that there is a number C independent of f such that

$$
\left\|\widetilde{S^{\varphi, \eta}} f\right\|_{L^{2}\left(\mathbf{R}^{n+1}\right)} \leqslant C\|\hat{f}\|_{L^{2}\left(B^{n}\right)}, \quad \operatorname{supp} \hat{f} \subseteq B^{n}
$$

Then either $b>a=n$ or $b \geqslant a \neq n$.
Theorem C^{\prime}. Assume that there is a number C independent of f such that

$$
\left\|\widetilde{\boldsymbol{S}^{\varphi, \eta}} f\right\|_{L^{2}\left(B^{n+1}\right)} \leqslant C\|f\|_{L^{2}\left(\mathbf{R}^{n}\right)} .
$$

Then $s \geqslant(1-a) / 2$.
A proof of Theorem C^{\prime} together with related material [21] will appear elsewhere.

4. MAIN RESULT AND EXAMPLES

Theorem 4.1. Let $n \geqslant 2$. Assume that φ is injective on \mathbf{R}_{+}with range $\Omega \subseteq \mathbf{R}$ and that φ^{\prime} is well defined on \mathbf{R}_{+}.
(a) Assume that

$$
\begin{equation*}
\alpha=\sup \left\{\rho \eta(\rho)^{2} \varphi^{\prime}(\rho)^{-1} \int_{0}^{\infty} J_{\nu(k)}(r \rho)^{2} g(r) r d r: \rho>0, k \in \mathbf{N}\right\}<\infty . \tag{9}
\end{equation*}
$$

Then

$$
\left\|\widetilde{S_{m}^{\varphi, \eta}} f\right\|_{L^{2}\left(\mathbf{R}^{n+1}\right)} \leqslant(2 \pi)^{(n+1) / 2} \alpha^{1 / 2}\|m\|_{L^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}_{+}\right)}\|f\|_{L^{2}\left(\mathbf{R}^{n}\right)} ;
$$

i.e., the linear mapping $\widetilde{S_{m}^{\varphi, \eta}}$ can be extended to a bounded linear mapping $L^{2}\left(\mathbf{R}^{n}\right) \rightarrow L^{2}\left(\mathbf{R}^{n+1}\right)$ with norm at most

$$
(2 \pi)^{(n+1) / 2} \alpha^{1 / 2}\|m\|_{L^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}_{+}\right)} .
$$

(b) Conversely, if the mapping $\widetilde{S^{\varphi, \eta}}$ can be extended to a bounded linear mapping $L^{2}\left(\mathbf{R}^{n}\right) \rightarrow L^{2}\left(\mathbf{R}^{n+1}\right)$ then the norm of the extension is $(2 \pi)^{(n+1) / 2} \alpha^{1 / 2}$.

Example 4.1. For $a>1$ set $\varphi(\rho)=\rho^{a}, \eta(\rho)=\left(1+\rho^{2}\right)^{-s / 2}$, and $g(r)=$ $\left(1+r^{b}\right)^{-1}$. It is straightforward to show that (9) is equivalent to (8). That (8) holds under the assumptions $n \geqslant a, s \geqslant(1-a) / 2$ and either $b>a=n$ or $b \geqslant a \neq n$ was shown in [19, pp. 225-228]. Conversely, if (9) holds then also

$$
\sup \left\{\rho \eta(\rho)^{2} \varphi^{\prime}(\rho)^{-1} \int_{0}^{\infty} J_{\nu(k)}(r \rho)^{2} g(r) r d r: 0 \leqslant \rho \leqslant 1, k \in \mathbf{N}\right\}<\infty
$$

which in our case reads

$$
\begin{equation*}
\sup \left\{\rho^{2-a} \int_{0}^{\infty} J_{\nu(k)}(r \rho)^{2} \frac{r d r}{1+r^{b}}: 0 \leqslant \rho \leqslant 1, k \in \mathbf{N}\right\}<\infty \tag{10}
\end{equation*}
$$

from which it follows that $n \geqslant a$ and either $b>a=n$ or $b \geqslant a \neq n$.
This example is an illustration of Theorems A^{\prime} and B^{\prime} in Section 3.2 and also of the following theorem:

Theorem. Let $\varphi(\rho)=\rho^{a}$ and $\eta=g=\chi$. Assume that there is a number C independent of f such that

$$
\left\|\widetilde{S^{\varphi, \eta}} f\right\|_{L^{2}\left(\mathbf{R}^{n+1}\right)} \leqslant C\|f\|_{L^{2}\left(\mathbf{R}^{n}\right)} .
$$

Then $n \geqslant a$.
This theorem should be compared with Vega [18, Theorem 3', p. 878] from which it follows that given $\varphi(\rho)=\rho^{a}$ for any $a>1$ and $\eta=g=\chi$ there is a number C independent of f such that

$$
\left\|\widetilde{S^{\varphi, \eta}} f\right\|_{L^{2}\left(\mathbf{R}^{n+1}\right)} \leqslant C\|f\|_{L^{2}\left(\mathbf{R}^{\eta}\right)}
$$

Cf. also the interesting example in Wang [23].

Example 4.2. For $a_{1}>1$ set $\varphi(\rho)=\left(\rho^{a_{1}}+1\right)^{a_{2}}, \eta(\rho)=\left(1+\rho^{2}\right)^{-s / 2}$, and $g(r)=\left(1+r^{b}\right)^{-1}$. Again, it is straightforward to show that (9) is equivalent to (8) with a replaced by a_{1} and s replaced by $a_{1}\left(a_{2}-1\right) / 2+s$. Hence (9) holds under the assumptions $n \geqslant a_{1}, s \geqslant\left(1-a_{1} a_{2}\right) / 2$, and either $b>a_{1}=n$ or $b \geqslant a_{1} \neq n$ (cf. Example 4.1). In particular, (9) holds if $a_{1} a_{2}=1$ and $a_{1}=2 \neq n$. Thus we have proved Theorem 1 in Section 1.2.

Conversely, if (9) holds then as in Example 4.1 (10) holds with a replaced by a_{1} from which it follows that $n \geqslant a_{1}$ and either $b>a_{1}=n$ or $b \geqslant a_{1} \neq n$. We may now conclude that Theorem 2 in Section 1.3 holds by choosing $a_{1}=2$ and $a_{2} \neq 0$.

Example 4.3. For $a \neq 0$ set $\varphi(\rho)=\rho^{a}, \eta(\rho)=\rho^{-s}$, and $g(r)=r^{-b}$. Now (9) is equivalent to

$$
\sup \left\{\rho^{2-a-2 s} \int_{0}^{\infty} J_{\nu(k)}(r \rho)^{2} r^{1-b} d r: 0 \leqslant \rho<\infty, k \in \mathbf{N}\right\}<\infty
$$

which in turn is equivalent to $s=(b-a) / 2$ and $1<b<n$.
This example is an illustration of [22, Theorem 2.6, p. 157] (choose $q_{1}=2$ and $\gamma=0$) and for $a=b=2$ of Simon [13, (3), p. 66].

Example 4.4. Set $\varphi(\rho)=\rho^{2}, \eta(\rho)=\rho^{1 / 2}$, and $g(r)=\left(1+r^{2}\right)^{-1}$. Now (9) is equivalent to

$$
\begin{equation*}
\sup \left\{\rho \int_{0}^{\infty} J_{v(k)}(r \rho)^{2} \frac{r d r}{1+r^{2}}: 0 \leqslant \rho<\infty, k \in \mathbf{N}\right\}<\infty \tag{11}
\end{equation*}
$$

and for $n \geqslant 3$ (11) clearly follows from (6). This example is an illustration of Simon [13, (2), p. 66].

Example 4.5. For $a>1$ set $\varphi(\rho)=\rho^{a}, \eta(\rho)=\psi(\rho) \rho^{(a-1) / 2}$, and $g(r)=$ $\left(1+r^{b}\right)^{-1}$. Now (9) is equivalent to

$$
\sup \left\{\rho \int_{0}^{\infty} J_{v(k)}(r \rho)^{2} \frac{r d r}{1+r^{b}}: 1 \leqslant \rho<\infty, k \in \mathbf{N}\right\}<\infty
$$

which in turn is equivalent to $b>1$.
This example is an illustration of [22, Theorem 2.14, p. 159].
Example 4.6. For $a>1$ set $\varphi(\rho)=\rho^{a}, \eta(\rho)=\rho^{(a-1) / 2}$, and $g=\chi$. Now (9) is equivalent to

$$
\begin{equation*}
\sup \left\{\rho \int_{0}^{\infty} J_{v(k)}(r \rho)^{2} \chi(r) r d r: 0 \leqslant \rho<\infty, k \in \mathbf{N}\right\}<\infty \tag{12}
\end{equation*}
$$

Equation (12) clearly follows from (11).
This example is an illustration of Kenig et al. [10, Theorem 4.1, p. 54].

5. PREPARATION

5.1. Readers familiar with the classical preparatory results in [20, Sect. 3, pp. 386-387] may skip reading this section and go directly to Section 6.
5.2. Notation. P will always denote a solid spherical harmonic (cf. Stein and Weiss [16, pp. 140-141]) of nonnegative degree k such that $\|P\|_{L^{2}\left(\Sigma^{n-1}\right)}=1$.

Let $\mathfrak{S}_{k}\left(\mathbf{R}^{n}\right)$ be the linear space of all finite linear combinations of functions of the form

$$
x \mapsto P(x) f_{0}(|x|)|x|^{-n / 2-k+1 / 2},
$$

where $f_{0} \in L^{2}\left(\mathbf{R}_{+}\right)$(cf. [16, p. 138]). $\mathfrak{H}_{k}\left(\mathbf{R}^{n}\right)$ is an infinite dimensional Hilbert subspace of $L^{2}\left(\mathbf{R}^{n}\right)$ (with the inherited inner product). It is generated by a finite number of spherical harmonics with radial functions as coefficients.

Theorem 5.1 [16, Lemma 2.18, p. 151]. The complete orthogonal decomposition

$$
L^{2}\left(\mathbf{R}^{n}\right)=\oplus \mathfrak{S}_{k}\left(\mathbf{R}^{n}\right)
$$

holds in the sense that
(a) each subspace $\mathfrak{W}_{k}\left(\mathbf{R}^{n}\right)$ is closed;
(b) $\mathfrak{G}_{k_{1}}\left(\mathbf{R}^{n}\right)$ is orthogonal to $\mathfrak{H}_{k_{2}}\left(\mathbf{R}^{n}\right)$ if $k_{1} \neq k_{2}$;
(c) every f can be written as a sum

$$
f=\sum f_{k}, \quad f_{k} \in \mathfrak{S}_{k}\left(\mathbf{R}^{n}\right)
$$

with convergence in $L^{2}\left(\mathbf{R}^{n}\right)$.
Theorem 5.2 (cf. [16, Theorem 3.10, p. 158]). Let $f(\xi)=P(\xi) f_{0}(|\xi|)$. Then

$$
\hat{f}(x)=(2 \pi)^{n / 2} i^{-k}|x|^{-v(k)} P(x) \int_{0}^{\infty} f_{0}(\rho) J_{v(k)}(\rho|x|) \rho^{n / 2+k} d \rho
$$

Corollary 5.1. The tempered distribution μ_{P} defined by

$$
\mu_{P}(f)=\int_{\Sigma^{n-1}} f\left(x^{\prime}\right) P\left(x^{\prime}\right) d \sigma\left(x^{\prime}\right)
$$

has Fourier transform $\widehat{\mu_{P}}$ given by

$$
\widehat{\mu_{P}}(\xi)=(2 \pi)^{n / 2} i^{-k}|\xi|^{-v(k)} P(\xi) J_{v(k)}(|\xi|)
$$

6. PROOF OF THE MAIN RESULT

6.1. Proof of part (a) in Theorem 4.1. The proof follows closely the proof of [20, Theorem 2.1(a) and 2.2(a), p. 385].

For $\rho \in \Omega$ we define

$$
\begin{aligned}
\widetilde{f^{\varphi, \eta}}[x](\rho)= & \widetilde{f^{\varphi, \eta}}(\rho)[x]=g(|x|)^{1 / 2} \eta\left(\varphi^{-1}(\rho)\right) \varphi^{-1}(\rho)^{n-1}\left(D \varphi^{-1}\right)(\rho) \\
& \times \int_{\Sigma^{n-1}} e^{i \varphi^{-1}(\rho) x \xi^{\prime}} f\left(\varphi^{-1}(\rho) \xi^{\prime}\right) d \sigma\left(\xi^{\prime}\right)
\end{aligned}
$$

and by $\tilde{f}(\rho)=0$ for $\rho \notin \Omega$. Let us write $m(x, \rho)=m[x](\rho)$. For fixed x function $m[x]$ is extended to \mathbf{R} by $m(\rho)=0$ for $\rho \leqslant 0$. The formula

$$
\begin{equation*}
\left(\widetilde{S_{m}^{\varphi, \eta}} f\right)[x](t)=\int_{\mathrm{R}} e^{-i t \rho} m\left(x, \varphi^{-1}(\rho)\right) \widetilde{f^{\varphi, \eta}}[x](\rho) d \rho \tag{13}
\end{equation*}
$$

follows by polar coordinates and change of variables in (3). It tells us that $\left(\widetilde{S_{m}^{\varphi, \eta}} f\right)[x]$ is obtained from $\widetilde{f^{\varphi, \eta}}[x]$ via a Fourier multiplier transformation on $L^{2}(\mathbf{R})$ with norm $(2 \pi)^{1 / 2}\|m[x]\|_{L^{\infty}(\mathbf{R})}$. We now have the estimate

$$
\begin{equation*}
\left\|\widetilde{S_{m}^{\varphi, \eta}} f\right\|_{L^{2}\left(\mathbf{R}^{n+1}\right)} \leqslant(2 \pi)^{1 / 2}\|m\|_{L^{\infty}\left(\mathbf{R}^{n} \times \mathbf{R}_{+}\right)}\left\|\widetilde{f^{\varphi, \eta}}\right\|_{L^{2}\left(\mathbf{R}^{n+1}\right)} \tag{14}
\end{equation*}
$$

Hence, to prove our statement it is sufficient to prove that

$$
\begin{equation*}
\left\|\widetilde{f^{\varphi, \eta}}\right\|_{L^{2}\left(\mathbf{R}^{n+1}\right)} \leqslant(2 \pi)^{n / 2} \alpha^{1 / 2}\|f\|_{L^{2}\left(\mathbf{R}^{n}\right)} . \tag{15}
\end{equation*}
$$

It is a consequence of orthogonality (cf. [20, Sect. 4.2.3, p. 389] and Theorem 5.1) that it is sufficient to prove the estimate (15) for $f \in$ $\left(\mathfrak{H}_{k} \cap \mathscr{S}\right)\left(\mathbf{R}^{n}\right)$. In turn, it is a consequence of orthogonality (cf. [20, Sect. 4.2.4, pp. 389-390]) that it is sufficient to prove the estimate (15) for

$$
f: \xi \mapsto P(\xi) f_{0}(|\xi|)|\xi|^{-n / 2-k+1 / 2}, \quad f_{0} \in \mathscr{C}_{0}^{\infty}\left(\mathbf{R}_{+}\right) .
$$

Straightforward computations using change of variables, Corollary 5.1, and polar coordinates show that for such f

$$
\begin{align*}
\left\|\widetilde{f^{\varphi, \eta}}\right\|_{L^{2}\left(\mathbf{R}^{n+1}\right)}^{2} & =(2 \pi)^{n} \int_{0}^{\infty}\left(\rho \eta(\rho)^{2} \varphi^{\prime}(\rho)^{-1} \int_{0}^{\infty} J_{v(k)}(\rho r)^{2} g(r) r d r\right)\left|f_{0}(\rho)\right|^{2} d \rho \\
& \leqslant(2 \pi)^{n} \alpha\left\|f_{0}\right\|_{L^{2}\left(\mathbf{R}_{+}\right)}^{2}=(2 \pi)^{n} \alpha\|f\|_{L^{2}\left(\mathbf{R}^{n}\right)}^{2} \tag{16}
\end{align*}
$$

6.2. Proof of Part (b) in Theorem 4.1. If $m=1$ then equality will occur in (14) with $\|m\|_{L^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}_{+}\right)}=1$. Moreover, from (16) it is clear that the norm of the bounded linear mapping $f \mapsto \widetilde{f^{\varphi, \eta}}$ is $(2 \pi)^{n / 2} \alpha^{1 / 2}$.

REFERENCES

1. M. Ben-Artzi and A. Devinatz, Local smoothing and convergence properties of Schrödinger type equations, J. Funct. Anal. 101 (1991), 231-254.
2. M. Ben-Artzi and A. Devinatz, Regularity and decay of solutions to the Stark evolution equation, J. Funct. Anal. 154 (1998), 501-512.
3. M. Ben-Artzi and S. Klainerman, Decay and regularity for the Schrödinger equation, J. Anal. Math. 58 (1992), 25-37.
4. M. Ben-Artzi and Nemirovsky, Remarks on relativistic Schrödinger operators and their extensions, Ann. Inst. H. Poincaré Phys. Théor. 67 (1997), 29-39.
5. J. Bourgain, Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Internat. Math. Res. Not. 1998 (1998), 253-283.
6. V. Georgiev, H. Lindblad, and C. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math. 119 (1997), 1291-1319.
7. J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), 50-68.
8. T. Kato and K. Yajima, Some examples of Smooth operators and the associated Smoothing effect, Rev. Math. Phys. 1 (1989), 481-496.
9. M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980.
10. C. E. Kenig, G. Ponce, and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69.
11. S. Klainerman and M. Machedon, Remark on Strichartz-type inequalities. With appendices by Jean Bourgain and Daniel Tataru, Internat. Math. Res. Not. 1996 (1996), 201-220.
12. S. Montgomery-Smith, Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations, Duke Math. J. 91 (1998), 393-408.
13. B. Simon, Best constants in some operator smoothness estimates, J. Funct. Anal. 107 (1992), 66-71.
14. P. Sjögren and P. Sjölin, Local regularity of solutions to time-dependent Schrödinger equations with smooth potentials, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), 3-12.
15. E. M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals," Princeton Mathematical Series, No. 43, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, 1993.
16. E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces," Princeton University Press, Princeton, NJ, 1971.
17. W. Strauss, "Nonlinear Wave Equations," CBMS Regional Conference Series in Mathematics, Vol. 73, Amer. Math. Soc., Providence, RI, 1989.
18. L. Vega, Schrödinger equations: Pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874-878.
19. B. G. Walther, Some $L^{p}\left(L^{\infty}\right)$ - and $L^{2}\left(L^{2}\right)$-estimates for oscillatory Fourier transforms, in "Analysis of Divergence, Orono, ME, 1997," Appl. Numer. Harmon. Anal., pp. 213-231, Birkhäuser Boston, Boston, MA, 1998.
20. B. G. Walther, A sharp weighted L^{2}-estimate for the solution to the time-dependent Schrödinger equation, Ark. Mat. 37 (1999), 381-393.
21. B. G. Walther, Sharpness results for L^{2}-smoothing of oscillatory integrals, Indiana Univ. Math. J. 50 (2001), 655-669.
22. B. G. Walther, Homogeneous estimates for oscillatory integrals, Acta Math. Univ. Comenianae (N.S.) 69 (2000), 151-171.
23. Si Lei Wang, On the weighted estimate of the solution associated with the Schrödinger equation, Proc. Amer. Math. Soc. 113 (1991), 87-92.

[^0]: ${ }^{1}$ The final draft of this paper was made during a visit to Brown University, Providence, RI, sponsored by Brown University and the Royal Institute of Technology (reference nos. 930-29898 and 930-316-99). We thank Professor Walter Craig and his colleagues at Brown University for stimulation and for providing good working conditions.

