Regularity, Decay, and Best Constants for Dispersive Equations¹

Björn G. Walther

Royal Institute of Technology, SE-100 44 Stockholm, Sweden; and Brown University, Providence, Rhode Island 02912-1917 E-mail: WALTHER@Math.KTH.SE

Communicated by Len Gross

Received December 2, 1999; accepted December 1, 2000

We show that the Strichartz $L^2_w(L^2)$ -estimates for solutions to the (pseudo-)

View metadata, citation and similar papers at core.ac.uk

are equivalent. A necessary and sufficient condition for decay and regularity for solutions to the equation

$$\varphi(\sqrt{-\Delta_x}) u = i\partial_t u$$

is given. © 2002 Elsevier Science (USA)

Key Words: oscillatory integrals; dispersive equations; weighted and mixed norm inequalities; global smoothing and decay.

1. PURPOSE

1.1. In this paper we generalise previous work (cf., e.g., Ben-Artzi and Klainerman [3], Ben-Artzi and Nemirovsky [4], Kato and Yajima [8], [19, 20]) on decay and regularity for oscillatory integrals.

Let u_1 and u_2 be functions on \mathbb{R}^{n+1} . The tempered distribution f belongs to the Sobolev space $H^s(\mathbb{R}^n)$ if and only if the function $\xi \mapsto (1+|\xi|^2)^s$ $|\hat{f}(\xi)|^2$ is integrable on \mathbb{R}^n . Here \hat{f} is the Fourier transform of f. Consider the following two statements:

¹ The final draft of this paper was made during a visit to Brown University, Providence, RI, sponsored by Brown University and the Royal Institute of Technology (reference nos. 930-298-98 and 930-316-99). We thank Professor *Walter Craig* and his colleagues at Brown University for stimulation and for providing good working conditions.

Statement 1. Let $-\Delta_x u_1 = i\partial_t u_1$, $u_1(x, 0) = f(x)$, $x \in \mathbb{R}^n$, $n \ge 3$. Then there exists a number C independent of f such that

$$\int_{\mathbf{R}^n} \int_{\mathbf{R}} |u_1(x,t)|^2 \frac{dt \, dx}{1+|x|^2} \leq C \, \|f\|_{H^{-1/2}(\mathbf{R}^n)}^2.$$

Statement 2. Let $\sqrt{-\Delta_x + 1} u_2 = i\partial_t u_2$, $u_2(x, 0) = f(x)$, $x \in \mathbb{R}^n$, $n \ge 3$. Then there exists a number C independent of f such that

$$\int_{\mathbf{R}^n} \int_{\mathbf{R}} |u_2(x,t)|^2 \frac{dt \, dx}{1+|x|^2} \leq C \, \|f\|_{L^2(\mathbf{R}^n)}^2.$$

The estimates in these statements are examples of Strichartz estimates with weights. Strichartz estimates have been treated in many papers during recent years. See, e.g., Ben-Artzi and Devinatz [1, 2], Ben-Artzi and Klainerman [3], Bourgain [5], Georgiev *et al.* [6], Ginibre and Velo [7], Kato and Yajima [8], Keel and Tao [9], Klainerman and Machedon [11], and Montgomery-Smith [12] and the references cited in these papers. Suitable introductions to the subject may be found in Stein [15, Chapter VIII, Sects. 5.16, 5.18, 5.19] and Strauss [17].

THEOREM A [3, Corollary 2, p. 28; 8, (1.5), p. 482; 20, Theorem 2.2(a), p. 385]. Statement 1 is true.

1.2. According to Ben-Artzi and Nemirovsky [4, Theorem 3A, p. 35] Statement 2 also is true. The main purpose of this paper is to show that Statements 1 and 2 are equivalent. See Example 4.1 with a = 2 and Example 4.2 with $a_1a_2 = 1$ and $a_1 = 2$.

THEOREM 1. Statements 1 and 2 are equivalent.

1.3. Let B^n denote the open unit ball of \mathbb{R}^n . Statement 1 is sharp with respect to both decay and regularity. This is the content of Theorems B and C below.

THEOREM B [20, Theorem 2.2(b), p. 385]. Assume that $n \ge 3$ and that there is a number C independent of f such that

$$\int_{\mathbf{R}^n} \int_{\mathbf{R}} |u_1(x,t)|^2 \frac{dt \, dx}{(1+|x|)^b} \leq C \, \|\hat{f}\|_{L^2(B^n)}^2, \qquad \text{supp } \hat{f} \subseteq B^n$$

Then $b \ge 2$.

THEOREM C (Sjögren and Sjölin [14, Theorem 4, p. 5]). Assume that there is a number C independent of f such that

$$||u_1||_{L^2(B^{n+1})} \leq C ||f||_{H^s(\mathbf{R}^n)}.$$

Then $s \ge -1/2$.

From the point of view of gain of regularity in the L^2 -sense the (pseudo-) differential equation

$$\sqrt{-\Delta_x + 1} \, u = i\partial_t u$$

in Statement 2 is equivalent to the classical wave equation simply because $\sqrt{|\xi|^2+1}$ behaves like $|\xi|$ as ξ goes to infinity. It is well known that there is no gain of regularity in the L^2 -sense for solutions to the wave equation. See also [21]. Hence Statement 2 is sharp with respect to regularity:

THEOREM D. Assume that there is a number C independent of f such that

$$||u_2||_{L^2(B^{n+1})} \leq C ||f||_{H^s(\mathbf{R}^n)}.$$

Then $s \ge 0$.

Another purpose of this paper is to show that Statement 2 is sharp with respect to decay. See Example 4.2 with $a_1a_2 = 1$ and $a_1 = 2$.

THEOREM 2. Assume that $n \ge 3$ and that there is a number C independent of f such that

$$\int_{\mathbf{R}^n} \int_{\mathbf{R}} |u_2(x,t)|^2 \frac{dt \, dx}{(1+|x|)^b} \leq C \, \|\hat{f}\|_{L^2(B^n)}^2, \qquad \text{supp } \hat{f} \subseteq B^n$$

Then $b \ge 2$.

2. NOTATION

2.1. Oscillatory integrals. For x and ξ in \mathbb{R}^n we let $x\xi = x_1\xi_1 + \cdots + x_n\xi_n$. If f is in the Schwartz class $\mathscr{S}(\mathbb{R}^n)$ and if m is any essentially bounded and measurable function on $\mathbb{R}^n \times \mathbb{R}_+$ we define

$$(S_m^{\varphi} f)[x](t) = \frac{1}{(2\pi)^n} \int_{\mathbf{R}^n} m(x, |\xi|) e^{i(x\xi - t\varphi(|\xi|))} \hat{f}(\xi) d\xi.$$
(1)

Here \hat{f} is the Fourier transform of f,

$$\hat{f}(\xi) = \int_{\mathbf{R}^n} e^{-ix\xi} f(x) \, dx. \tag{2}$$

If m = 1 we write S^{φ} instead of S_1^{φ} . We will also need the modified operator $\widetilde{S_m^{\varphi,\eta}}$ defined by

$$(\widetilde{S_m^{\varphi,\eta}}f)[x](t) = g(|x|)^{1/2} \int_{\mathbb{R}^n} m(x, |\xi|) \, e^{i(x\xi - t\varphi(|\xi|))} \eta(|\xi|) \, f(\xi) \, d\xi, \qquad (3)$$

where we assume g and η to be positive measurable functions. Again, if m = 1 we write $\widetilde{S^{\varphi, \eta}}$ instead of $\widetilde{S_1^{\varphi, \eta}}$.

The conditions on φ will be made precise in Theorem 4.1.

2.2. Bessel functions. For real numbers $\lambda > -1/2$ we define the Bessel function of order λ by

$$J_{\lambda}(\rho) = \frac{\rho^{\lambda}}{2^{\lambda} \Gamma(\lambda + 1/2) \Gamma(1/2)} \int_{-1}^{1} e^{ir\rho} (1 - r^2)^{\lambda - 1/2} dr.$$
(4)

Here Γ is the gamma function.

Bessel functions of order n/2+k-1 are important when describing the symmetry properties of the Fourier transform. See Theorem 5.2. We set

$$v(k) = \frac{n}{2} + k - 1.$$

2.3. Auxiliary notation. By B^n we denote the open unit ball in \mathbb{R}^n . $(B^1 \text{ will be denoted by } B)$ We will use auxiliary functions χ and ψ such that $\chi \in \mathscr{C}_0^{\infty}(\mathbb{R})$ is even,

$$\chi(\mathbf{R} \setminus 2B) = 0, \quad \chi(\mathbf{R}) \subseteq [0, 1] \quad \text{and} \quad \chi(B) = 1$$

and $\psi = 1 - \chi$.

Unless otherwise explicitly stated all functions f are supposed to belong to $\mathscr{G}(\mathbf{R}^n)$.

3. SOME EXAMPLES AND PREVIOUS RESULTS

3.1. The expression

$$e^{i(x\xi-t\varphi(|\xi|))}\hat{f}(\xi)$$

solves for each fixed ξ the equation

$$\varphi(|\xi|) \ u = i\partial_t u.$$

Hence the expression

$$u(x,t) = (S^{\varphi}f)[x](t) = \frac{1}{(2\pi)^n} \int_{\mathbf{R}^n} e^{i(x\xi - t\varphi(|\xi|))} \hat{f}(\xi) \, d\xi \tag{5}$$

solves the pseudo-differential equation

$$\varphi(\sqrt{-\Delta_x}) u = i\partial_t u$$

with initial data u(x, 0) = f(x). If $\varphi(\rho) = \rho^2$ then *u* given by (5) will be a solution to the free time-dependent Schrödinger equation as in Statement 1. If $\varphi(\rho) = \sqrt{\rho^2 + 1}$ then *u* given by (5) will instead be a solution to the free time-dependent relativistic Schrödinger equation as in Statement 2.

If we use the modified operator $\widetilde{S_m^{\varphi,\eta}}$ then the estimates in Statements 1 and 2 can both be expressed as

$$\|S^{\varphi,\eta}f\|_{L^2(\mathbf{R}^{n+1})} \leq C \|f\|_{L^2(\mathbf{R}^n)}$$

with the same function $g(x) = (1+|x|^2)^{-1}$ but with different functions φ and η and with $n \ge 3$. Here C is a number independent of f. In the case of $\varphi(\rho) = \rho^2$ we have $\eta(\rho) = (1+\rho^2)^{1/4}$ (or equivalently $\eta(\rho) = (1+\rho)^{1/2}$) whereas in the case of $\varphi(\rho) = \sqrt{\rho^2 + 1}$ we have $\eta(\rho) = 1$. What we among other things aim to prove is that the estimates of both Statements 1 and 2 are equivalent to the estimate

$$\sup\left\{ (1+\rho^2)^{1/2} \int_0^\infty J_{\nu(k)}(r\rho)^2 \frac{r \, dr}{1+r^2} : \rho > 0, \, k \in \mathbf{N} \right\} < \infty \tag{6}$$

which we consider for $n \ge 3$. (N denotes the set of nonnegative integers.) Estimate (6) can be verified (see [20, pp. 390–392]) in a straightforward manner.

The estimates in Statement 1 and Theorem A both concern the case $n \ge 3$. For the case n = 2 the condition $b \ge 2$ has to be replaced by the condition b > 2. This is due to the *local* asymptotics of the Bessel function J_0 and may be expressed as follows: *the function*

$$\rho \mapsto \int_0^\infty J_0(r\rho) \, \frac{r \, dr}{1+r^b}, \qquad 0 \leqslant \rho \leqslant 1 \tag{7}$$

is bounded if and only if b > 2. See [20, Sect. 4.6, p. 392].

3.2. Let us now consider the case $\varphi(|\xi|) = |\xi|^a$, $a \neq 2$, a > 1, $\eta(\rho) = (1+\rho^2)^{-s/2}$, $g(r) = (1+r^b)^{-1}$, and $n \ge 2$. As in the case a = 2 we can classify the decay and regularity. We have the following theorems.

THEOREM A' [19, Theorem 14.7(a) and 14.8(b)]. Assume that $n \ge a$, $s \ge (1-a)/2$, and either b > a = n or $b \ge a \ne n$. Then there is a number C independent of f such that

$$\|S_m^{\varphi,\eta}f\|_{L^2(\mathbf{R}^{n+1})} \leq C \|f\|_{L^2(\mathbf{R}^n)}.$$

We aim to prove that the estimate in Theorem A' is equivalent to

$$\sup\left\{\rho^{2-a}(1+\rho^2)^{-s}\int_0^\infty J_{\nu(k)}(r\rho)^2 \frac{r\,dr}{1+r^b}: \rho > 0, \, k \in \mathbf{N}\right\} < \infty$$
(8)

under the stated assumptions. The estimates (6) and (7) are implied by (8), an estimate which likewise can be verified (see [19, pp. 225–228]) in a straightforward manner.

THEOREM B' [19, Theorem 14.7(b) and 14.8(b)]. Assume that there is a number C independent of f such that

$$\|\overline{S^{\varphi,\eta}}f\|_{L^2(\mathbf{R}^{n+1})} \leqslant C \|\widehat{f}\|_{L^2(B^n)}, \qquad \operatorname{supp} \widehat{f} \subseteq B^n.$$

Then either b > a = n or $b \ge a \ne n$.

THEOREM C'. Assume that there is a number C independent of f such that

$$\|S^{\varphi,\eta}f\|_{L^{2}(B^{n+1})} \leq C \|f\|_{L^{2}(\mathbb{R}^{n})}.$$

Then $s \ge (1-a)/2$.

A proof of Theorem C' together with related material [21] will appear elsewhere.

4. MAIN RESULT AND EXAMPLES

THEOREM 4.1. Let $n \ge 2$. Assume that φ is injective on \mathbf{R}_+ with range $\Omega \subseteq \mathbf{R}$ and that φ' is well defined on \mathbf{R}_+ .

(a) Assume that

$$\alpha = \sup\left\{\rho\eta(\rho)^2 \,\varphi'(\rho)^{-1} \int_0^\infty J_{\nu(k)}(r\rho)^2 \,g(r) \,r \,dr: \rho > 0, \, k \in \mathbb{N}\right\} < \infty.$$
(9)

Then

$$\|S_m^{\phi,\eta}f\|_{L^2(\mathbf{R}^{n+1})} \leq (2\pi)^{(n+1)/2} \,\alpha^{1/2} \,\|m\|_{L^{\infty}(\mathbf{R}^n,\,\mathbf{R}_+)} \,\|f\|_{L^2(\mathbf{R}^n)};$$

i.e., the linear mapping $\overline{S_m^{\varphi,\eta}}$ can be extended to a bounded linear mapping $L^2(\mathbf{R}^n) \to L^2(\mathbf{R}^{n+1})$ with norm at most

$$(2\pi)^{(n+1)/2} \alpha^{1/2} \|m\|_{L^{\infty}(\mathbf{R}^{n},\mathbf{R}_{+})}$$

(b) Conversely, if the mapping $\widetilde{S^{\varphi,\eta}}$ can be extended to a bounded linear mapping $L^2(\mathbf{R}^n) \to L^2(\mathbf{R}^{n+1})$ then the norm of the extension is $(2\pi)^{(n+1)/2} \alpha^{1/2}$.

EXAMPLE 4.1. For a > 1 set $\varphi(\rho) = \rho^a$, $\eta(\rho) = (1+\rho^2)^{-s/2}$, and $g(r) = (1+r^b)^{-1}$. It is straightforward to show that (9) is equivalent to (8). That (8) holds under the assumptions $n \ge a$, $s \ge (1-a)/2$ and either b > a = n or $b \ge a \ne n$ was shown in [19, pp. 225–228]. Conversely, if (9) holds then also

$$\sup\left\{\rho\eta(\rho)^2\,\varphi'(\rho)^{-1}\int_0^\infty J_{\nu(k)}(r\rho)^2\,g(r)\,r\,dr: 0\leqslant\rho\leqslant 1,\,k\in\mathbf{N}\right\}<\infty$$

which in our case reads

$$\sup\left\{\rho^{2-a}\int_0^\infty J_{\nu(k)}(r\rho)^2 \frac{r\,dr}{1+r^b} : 0 \le \rho \le 1, k \in \mathbf{N}\right\} < \infty \tag{10}$$

from which it follows that $n \ge a$ and either b > a = n or $b \ge a \ne n$.

This example is an illustration of Theorems A' and B' in Section 3.2 and also of the following theorem:

THEOREM. Let $\varphi(\rho) = \rho^a$ and $\eta = g = \chi$. Assume that there is a number C independent of f such that

$$\|\overline{S}^{\varphi,\eta}f\|_{L^2(\mathbf{R}^{n+1})} \leqslant C \|f\|_{L^2(\mathbf{R}^n)}.$$

Then $n \ge a$.

This theorem should be compared with Vega [18, Theorem 3', p. 878] from which it follows that given $\varphi(\rho) = \rho^a$ for any a > 1 and $\eta = g = \chi$ there is a number *C* independent of *f* such that

$$\|\widetilde{S^{\varphi,\eta}}f\|_{L^2(\mathbf{R}^{n+1})} \leq C \|f\|_{L^2(\mathbf{R}^n)}.$$

Cf. also the interesting example in Wang [23].

EXAMPLE 4.2. For $a_1 > 1$ set $\varphi(\rho) = (\rho^{a_1} + 1)^{a_2}$, $\eta(\rho) = (1 + \rho^2)^{-s/2}$, and $g(r) = (1 + r^b)^{-1}$. Again, it is straightforward to show that (9) is equivalent to (8) with *a* replaced by a_1 and *s* replaced by $a_1(a_2 - 1)/2 + s$. Hence (9) holds under the assumptions $n \ge a_1$, $s \ge (1 - a_1a_2)/2$, and either $b > a_1 = n$ or $b \ge a_1 \ne n$ (cf. Example 4.1). In particular, (9) holds if $a_1a_2 = 1$ and $a_1 = 2 \ne n$. Thus we have proved Theorem 1 in Section 1.2.

Conversely, if (9) holds then as in Example 4.1 (10) holds with a replaced by a_1 from which it follows that $n \ge a_1$ and either $b > a_1 = n$ or $b \ge a_1 \ne n$. We may now conclude that Theorem 2 in Section 1.3 holds by choosing $a_1 = 2$ and $a_2 \ne 0$.

EXAMPLE 4.3. For $a \neq 0$ set $\varphi(\rho) = \rho^{a}$, $\eta(\rho) = \rho^{-s}$, and $g(r) = r^{-b}$. Now (9) is equivalent to

$$\sup\left\{\rho^{2-a-2s}\int_0^\infty J_{\nu(k)}(r\rho)^2 r^{1-b} dr: 0 \le \rho < \infty, k \in \mathbf{N}\right\} < \infty$$

which in turn is equivalent to s = (b-a)/2 and 1 < b < n.

This example is an illustration of [22, Theorem 2.6, p. 157] (choose $q_1 = 2$ and $\gamma = 0$) and for a = b = 2 of Simon [13, (3), p. 66].

EXAMPLE 4.4. Set $\varphi(\rho) = \rho^2$, $\eta(\rho) = \rho^{1/2}$, and $g(r) = (1+r^2)^{-1}$. Now (9) is equivalent to

$$\sup\left\{\rho\int_{0}^{\infty}J_{\nu(k)}(r\rho)^{2}\frac{r\,dr}{1+r^{2}}:0\leqslant\rho<\infty,\,k\in\mathbb{N}\right\}<\infty\tag{11}$$

and for $n \ge 3$ (11) clearly follows from (6). This example is an illustration of Simon [13, (2), p. 66].

EXAMPLE 4.5. For a > 1 set $\varphi(\rho) = \rho^a$, $\eta(\rho) = \psi(\rho) \rho^{(a-1)/2}$, and $g(r) = (1+r^b)^{-1}$. Now (9) is equivalent to

$$\sup\left\{\rho\int_0^\infty J_{\nu(k)}(r\rho)^2 \frac{r\,dr}{1+r^b} \colon 1 \leqslant \rho < \infty, \, k \in \mathbf{N}\right\} < \infty$$

which in turn is equivalent to b > 1.

This example is an illustration of [22, Theorem 2.14, p. 159].

EXAMPLE 4.6. For a > 1 set $\varphi(\rho) = \rho^a$, $\eta(\rho) = \rho^{(a-1)/2}$, and $g = \chi$. Now (9) is equivalent to

$$\sup\left\{\rho\int_{0}^{\infty}J_{\nu(k)}(r\rho)^{2}\chi(r)\,r\,dr:0\leqslant\rho<\infty,\,k\in\mathbb{N}\right\}<\infty.$$
(12)

Equation (12) clearly follows from (11).

This example is an illustration of Kenig et al. [10, Theorem 4.1, p. 54].

5. PREPARATION

5.1. Readers familiar with the classical preparatory results in [20, Sect. 3, pp. 386–387] may skip reading this section and go directly to Section 6.

5.2. Notation. P will always denote a solid spherical harmonic (cf. Stein and Weiss [16, pp. 140–141]) of nonnegative degree k such that $||P||_{L^2(\Sigma^{n-1})} = 1$. Let $\mathfrak{H}_k(\mathbf{R}^n)$ be the linear space of all finite linear combinations of

functions of the form

$$x \mapsto P(x) f_0(|x|) |x|^{-n/2-k+1/2},$$

where $f_0 \in L^2(\mathbf{R}_+)$ (cf. [16, p. 138]). $\mathfrak{H}_k(\mathbf{R}^n)$ is an infinite dimensional Hilbert subspace of $L^2(\mathbf{R}^n)$ (with the inherited inner product). It is generated by a *finite* number of spherical harmonics with radial functions as coefficients.

THEOREM 5.1 [16, Lemma 2.18, p. 151]. The complete orthogonal decomposition

$$L^2(\mathbf{R}^n) = \bigoplus \mathfrak{H}_k(\mathbf{R}^n)$$

holds in the sense that

- (a) each subspace $\mathfrak{H}_k(\mathbf{R}^n)$ is closed;
- (b) $\mathfrak{H}_{k_1}(\mathbf{R}^n)$ is orthogonal to $\mathfrak{H}_{k_2}(\mathbf{R}^n)$ if $k_1 \neq k_2$;
- (c) every f can be written as a sum

$$f = \sum f_k, \qquad f_k \in \mathfrak{H}_k(\mathbf{R}^n)$$

with convergence in $L^2(\mathbf{R}^n)$.

THEOREM 5.2 (cf. [16, Theorem 3.10, p. 158]). Let $f(\xi) = P(\xi) f_0(|\xi|)$. Then

$$\hat{f}(x) = (2\pi)^{n/2} i^{-k} |x|^{-\nu(k)} P(x) \int_0^\infty f_0(\rho) J_{\nu(k)}(\rho |x|) \rho^{n/2+k} d\rho$$

COROLLARY 5.1. The tempered distribution μ_P defined by

$$\mu_P(f) = \int_{\Sigma^{n-1}} f(x') P(x') \, d\sigma(x')$$

has Fourier transform $\widehat{\mu_P}$ given by

$$\widehat{\mu_P}(\xi) = (2\pi)^{n/2} i^{-k} |\xi|^{-\nu(k)} P(\xi) J_{\nu(k)}(|\xi|).$$

6. PROOF OF THE MAIN RESULT

6.1. Proof of part (a) in Theorem 4.1. The proof follows closely the proof of [20, Theorem 2.1(a) and 2.2(a), p. 385]. For $\rho \in \Omega$ we define

$$\widetilde{f^{\varphi,\eta}}[x](\rho) = \widetilde{f^{\varphi,\eta}}(\rho)[x] = g(|x|)^{1/2} \eta(\varphi^{-1}(\rho)) \varphi^{-1}(\rho)^{n-1} (D\varphi^{-1})(\rho)$$
$$\times \int_{\Sigma^{n-1}} e^{i\varphi^{-1}(\rho) x\xi'} f(\varphi^{-1}(\rho) \xi') d\sigma(\xi')$$

and by $\tilde{f}(\rho) = 0$ for $\rho \notin \Omega$. Let us write $m(x, \rho) = m[x](\rho)$. For fixed x function m[x] is extended to **R** by $m(\rho) = 0$ for $\rho \leq 0$. The formula

$$(\widetilde{S_m^{\varphi,\eta}}f)[x](t) = \int_{\mathbb{R}} e^{-it\rho} m(x,\varphi^{-1}(\rho)) \widetilde{f^{\varphi,\eta}}[x](\rho) \, d\rho \tag{13}$$

follows by polar coordinates and change of variables in (3). It tells us that $(\widetilde{S_m^{\varphi,\eta}}f)[x]$ is obtained from $\widetilde{f^{\varphi,\eta}}[x]$ via a Fourier multiplier transformation on $L^2(\mathbf{R})$ with norm $(2\pi)^{1/2} ||m[x]||_{L^{\infty}(\mathbf{R})}$. We now have the estimate

$$\|\widetilde{S_{m}^{\varphi,\eta}}f\|_{L^{2}(\mathbf{R}^{n+1})} \leq (2\pi)^{1/2} \|m\|_{L^{\infty}(\mathbf{R}^{n}\times\mathbf{R}_{+})} \|\widetilde{f^{\varphi,\eta}}\|_{L^{2}(\mathbf{R}^{n+1})}.$$
 (14)

Hence, to prove our statement it is sufficient to prove that

$$\|f^{\varphi,\eta}\|_{L^{2}(\mathbf{R}^{n+1})} \leq (2\pi)^{n/2} \alpha^{1/2} \|f\|_{L^{2}(\mathbf{R}^{n})}.$$
(15)

It is a consequence of orthogonality (cf. [20, Sect. 4.2.3, p. 389] and Theorem 5.1) that it is sufficient to prove the estimate (15) for $f \in (\mathfrak{H}_k \cap \mathscr{S})(\mathbb{R}^n)$. In turn, it is a consequence of orthogonality (cf. [20, Sect. 4.2.4, pp. 389–390]) that it is sufficient to prove the estimate (15) for

$$f: \xi \mapsto P(\xi) f_0(|\xi|) |\xi|^{-n/2-k+1/2}, \qquad f_0 \in \mathscr{C}_0^\infty(\mathbf{R}_+).$$

Straightforward computations using change of variables, Corollary 5.1, and polar coordinates show that for such f

$$\|\widetilde{f^{\varphi,\eta}}\|_{L^{2}(\mathbf{R}^{n+1})}^{2} = (2\pi)^{n} \int_{0}^{\infty} \left(\rho\eta(\rho)^{2} \varphi'(\rho)^{-1} \int_{0}^{\infty} J_{\nu(k)}(\rho r)^{2} g(r) r \, dr\right) |f_{0}(\rho)|^{2} \, d\rho$$

$$\leq (2\pi)^{n} \alpha \, \|f_{0}\|_{L^{2}(\mathbf{R}_{+})}^{2} = (2\pi)^{n} \alpha \, \|f\|_{L^{2}(\mathbf{R}^{n})}^{2}.$$
(16)

6.2. Proof of Part (b) in Theorem 4.1. If m = 1 then equality will occur in (14) with $||m||_{L^{\infty}(\mathbb{R}^{n}, \mathbb{R}_{+})} = 1$. Moreover, from (16) it is clear that the norm of the bounded linear mapping $f \mapsto \widetilde{f^{\varphi, \eta}}$ is $(2\pi)^{n/2} \alpha^{1/2}$.

REFERENCES

- 1. M. Ben-Artzi and A. Devinatz, Local smoothing and convergence properties of Schrödinger type equations, J. Funct. Anal. 101 (1991), 231–254.
- M. Ben-Artzi and A. Devinatz, Regularity and decay of solutions to the Stark evolution equation, J. Funct. Anal. 154 (1998), 501–512.
- M. Ben-Artzi and S. Klainerman, Decay and regularity for the Schrödinger equation, J. Anal. Math. 58 (1992), 25–37.
- M. Ben-Artzi and Nemirovsky, Remarks on relativistic Schrödinger operators and their extensions, Ann. Inst. H. Poincaré Phys. Théor. 67 (1997), 29–39.
- 5. J. Bourgain, Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, *Internat. Math. Res. Not.* **1998** (1998), 253–283.
- V. Georgiev, H. Lindblad, and C. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, *Amer. J. Math.* 119 (1997), 1291–1319.
- J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), 50-68.
- T. Kato and K. Yajima, Some examples of Smooth operators and the associated Smoothing effect, *Rev. Math. Phys.* 1 (1989), 481–496.
- 9. M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980.
- 10. C. E. Kenig, G. Ponce, and L. Vega, Oscillatory integrals and regularity of dispersive equations, *Indiana Univ. Math. J.* 40 (1991), 33-69.
- S. Klainerman and M. Machedon, Remark on Strichartz-type inequalities. With appendices by Jean Bourgain and Daniel Tataru, *Internat. Math. Res. Not.* 1996 (1996), 201–220.
- S. Montgomery-Smith, Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations, *Duke Math. J.* 91 (1998), 393–408.
- B. Simon, Best constants in some operator smoothness estimates, J. Funct. Anal. 107 (1992), 66–71.
- 14. P. Sjögren and P. Sjölin, Local regularity of solutions to time-dependent Schrödinger equations with smooth potentials, *Ann. Acad. Sci. Fenn. Ser. A I Math.* 16 (1991), 3–12.
- E. M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals," Princeton Mathematical Series, No. 43, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, 1993.
- E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces," Princeton University Press, Princeton, NJ, 1971.
- W. Strauss, "Nonlinear Wave Equations," CBMS Regional Conference Series in Mathematics, Vol. 73, Amer. Math. Soc., Providence, RI, 1989.
- L. Vega, Schrödinger equations: Pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874–878.
- B. G. Walther, Some L^p(L[∞])- and L²(L²)-estimates for oscillatory Fourier transforms, in "Analysis of Divergence, Orono, ME, 1997," Appl. Numer. Harmon. Anal., pp. 213–231, Birkhäuser Boston, Boston, MA, 1998.
- B. G. Walther, A sharp weighted L²-estimate for the solution to the time-dependent Schrödinger equation, Ark. Mat. 37 (1999), 381–393.
- B. G. Walther, Sharpness results for L²-smoothing of oscillatory integrals, Indiana Univ. Math. J. 50 (2001), 655–669.
- B. G. Walther, Homogeneous estimates for oscillatory integrals, Acta Math. Univ. Comenianae (N.S.) 69 (2000), 151–171.
- Si Lei Wang, On the weighted estimate of the solution associated with the Schrödinger equation, Proc. Amer. Math. Soc. 113 (1991), 87–92.