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Abstract 

DNA is the building block of life, which contains encoded genetic instructions for building living organisms. Because of the fact 
that proteins are constructed in accordance with the genetic instructions encoded in DNAs, errors in RNA synthesis and 
translation into proteins can cause genetic disorders. Therefore, understanding and recognizing genetic sequences is one step 
towards the treatment of these genetic disorders. Since the discovery of DNA, there has been a growing interest in the problem of 
genetic sequence recognition, motivated by its enormous potential to cure a wide range of genetic disorders. The completion of 
the human genome project in the last decade has generated a strong demand in computational analysis techniques in order to fully 
exploit the acquired human genome database. This paper describes a state-of-the-art machine learning based approach called 
averaged one-dependence estimators with subsumption resolution to tackle the problem of recognizing an important class of 
genetic sequences known as eukaryotic splice junctions.  To lower the computational complexity and to increase the 
generalization capability of the system, we employ a genetic algorithm to select relevant nucleotides that are directly responsible 
for splice-junction recognition. We carried out experiments on a dataset extracted from the biological literature. This proposed 
system has achieved an accuracy of 96.68% in classifying splice-junction genetic sequences.  The experimental results 
demonstrate the efficacy of our framework and encourage us to apply the framework on other types of genetic sequences. 
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1. Introduction 

The nucleus of a human cell contains 46 chromosomes, each of which comprises a single linear molecule of 
deoxyribonucleic acid (DNA), which is intimately complexed with proteins in the form of chromatin1. DNA is the 
building block of life, which contains encoded genetic instructions for living organisms. Figure 1 depicts the process 
of RNA synthesis and protein translation. A DNA is transcribed to become a precursor mRNA, which is then spliced 
to become an mRNA, which is in turn translated to become a protein. Because of the fact that proteins are 
constructed in accordance with the genetic instructions encoded in DNAs, errors in RNA synthesis and translation 
into proteins can cause genetic disorders. Therefore, understanding and recognizing genetic sequences is one step 
towards the treatment of these genetic disorders2-4. Since the discovery of the DNA, there has been a growing 
interest in the problem of genetic sequence recognition, motivated by its enormous potential to cure a wide range of 
genetic diseases. The completion of the human genome project in the last decade has generated a strong demand in 
computational analysis techniques in order to fully exploit the acquired human genome database. 

In this paper, we tackle the problem of recognizing an important class of genetic sequences known as eukaryotic 
splice junctions. Splice junctions are the points on a DNA sequence at which redundant DNA segments are removed 
during the process of protein creation5. As shown in Figure 1, a precursor mRNA contains exons and introns. During 
splicing, introns get spliced out while extrons get reunited6-8. This paper presents a classification system that can 
recognize splice junctions. In other words, for any given sequence of nucleotides, the system predicts whether the 
sequence belongs to an exon-intron (EI) boundary, intron-exon (IE) boundary, or neither of them. When split genes 
were discovered, the nucleotide sequences at the boundaries between introns and extrons were initially thought to be 
haphazard. However, soon after the discovery of split genes, researchers have started noticing patterns in the 
boundaries9. Therefore, pattern recognition and machine learning techniques can be utilized to recognize splice 
junctions. There have been some attempts to classify splice junctions using machine learning techniques. For 
example, Noordewier et al.10 proposed a hybrid symbolic and connectionist approach called knowledge-based 
artificial neural network (KBANN) to recognize splice junctions. Essentially, KBANN utilizes a prior knowledge 
based hierarchically-structured rules and pattern recognition-based heuristics to recognize patterns. Chan et al.11 
developed a dependency graph model to fully capture the intrinsic interdependency between base positions in a 
splice site. Rätsch et al.12. came up with a novel SVM kernel to predict genetic sequences. Most of the existing 
approaches require prior knowledge bases. This paper describes a state-of-the-art machine learning based approach 
called averaged one-dependence estimators with subsumption resolution to tackle the problem of recognizing 
eukaryotic splice junctions without any prior knowledge. 

 
Fig. 1. RNA synthesis and translation into protein. 
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2. Eukaryotic splice-junction genetic sequence recognition

The goal of eukaryotic splice-junction genetic sequence classification is to predict- , given a sequence of DNA,
whether the sequence belongs to an intron/exon (IE) boundary, exon/intron (EI) boundary, or neither of them (N).
We propose a two-layered framework which consists of nucleotide selection and junction classification as shown in
Figure 2. The complexity of any machine learning classifier depends upon the dimensionality of the input data13. 

14. In
the case of eukaryotic splice-junction genetic sequence classification, not all the nucleotides in a genetic sequence-
might be responsible for discriminating between IE and EI. Therefore, we employ a nucleotide selection process to 
select relevant nucleotides from a given genetic sequence in an unsupervised manner. Section 2.1 describes the
process of nucleotide selection. After selecting relevant nucleotides, we perform splice-junction classification us- ing 
the averaged one-dependence estimators with subsumption resolution (AODEsr).  Section 2.2 describes the process
of classification.

Fig. 2. High-level flow diagram of eukaryotic splice-junction genetic sequence classification framework.-

2.1. Genetic algorithm-based nucleotide selection

The complexity of any machine learning classifier depends upon the dimensionality of the input data13. 
Generally, the lower the complexity of a classifier, the more robust it is. Moreover, classifiers with low complexity
have less variance, which means that they vary less depending on the particulars of a sample, including noise,
outliers, etc. 13. In the case of splice-junction genetic sequence classification, not all the nucleotides in a genetic-
sequence might be responsible for discriminating between IE and EI. Therefore, we need to have a nucleotide
selection method that chooses a subset of relevant nucleotides that can discriminate between IE and IE, while
pruning the rest of the nucleotides in the input genetic sequence. 

We are interested in finding the best subset of the set of nucleotides that can sufficiently discriminate splice
junctions. Ideally, we have to choose the best subset that contains the least number of nucleotides that most
contribute to the classification accuracy, while discarding the rest of the nucleotides. There are 2n possible subsets
that can arise from an n-nucleotide long genetic sequence. In essence, we have to choose the best subset out of 2n

possible subsets. Because performing an exhaustive sequential search over all possible subsets is computationally
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expensive, we need to employ heuristics to find a reasonably good subset that can sufficiently discriminate splice
junctions. There are generally two common techniques: forward selection and backward selection13. In forward 
selection, we start with an empty subset and add a nucleotide (that increases the classification accuracy the most) in
each iteration until any further addition of a nucleotide does not increase the classification accuracy. In backward
selection, we start with the full set of nucleotides and remove a nucleotide (that increases the classification accuracy
the most) in each iteration until any further removal of a nucleotide does not increase the classification accuracy. 
There are also other types of heuristics such as scatter search15, variable neighborhood search16, and correlation-
based feature selection17. 

We employ a nucleotide subset selection technique based on the genetic algorithm (GA) because the GA can
work with multiple local optima and noisy or stochastic objective function unlike other search techniques. Figure 3
illustrates the operation of the GA-based nucleotide subset selection. A subset of nucleotides is encoded as an n-bit 
binary chromosome. A group of random chromosomes form an initial population. A fitness function then evaluates
each chromosome in the population and produces a fitness score which represents an approximate accuracy that the
corresponding subset of nucleotides would produce in actual splice-junction classification. Certain chromosomes in -
the population are chosen for reproduction in accordance with their fitness scores. Crossover and mutation
operations are then performed for certain chromosomes in the population in accordance with the pre-defined cross-
over probability and mutation probability values. Offspring are then generated and the whole procedure is repeated
over and over again. Over thousands of generations, reasonably good subsets of nucleotides are left in the
population.  The chromosome in the final population with the largest fitness score is chosen as the final winner. This
chromosome is decoded to obtain the final subset of nucleotides. The selected nucleotides are carried forward to
classification.

Fig. 3. Genetic algorithm-based nucleotide selection.

NNNNNewewewew pppppoooooooolllll fofofofof cccchhrhrhrhromomomomososososomomomomeseseses

EEvEvEvEv lalalalaluauauauattetetete fffffitititititnenenenessssssss vvvv lalalalalueueueuessss

PPoPoPoPo lolololol oooofffff hchchchchrorororomomomomososososomemememessss

Initial population

Rank according to
fitness score

Crossover & mutation



40   Zaw Zaw Htike and Shoon Lei Win  /  Procedia Computer Science   23  ( 2013 )  36 – 43 

 

2.2. Classification 

Naive Bayes (NB), which is fundamentally built on the strong independence assumption, is a very popular 
classifier in machine learning due to its simplicity, efficiency and efficacy18-21.  There have been numerous 
applications of NB and variants thereof. The conventional NB algorithm uses the following formula for 
classification22: 
                                                    
  (1) 

 
NB performs fairly accurate classification. The only limitation to its classification accuracy is the accuracy of the 

process of estimation of the base conditional probabilities. One clear drawback is its strong independence 
assumption which assumes that attributes are independent of each other in a dataset. In the field of genetic sequence 
classification, NB assumes that nucleotides are independent of each other in a genetic sequence despite the fact that 
there are apparent dependencies among individual nucleotides. Because of this fundamental limitation of NB, 
researchers have proposed various techniques such as one-dependence estimators (ODEs)23 and super parent one-
dependence estimators (SPODEs)24 to ease the attribute independence assumption. In fact, these approaches 
alleviate the independence assumption at the expense of computational complexity and a new set of assumptions. 
Webb18 proposed a semi-naive approach called averaged one-dependence estimators (AODEs) in order to weaken 
the attribute independence assumption by averaging all of a constrained class of classifiers without introduction of 
new assumptions. The AODE has been shown to outperform other Bayesian classifiers with substantially improved 
computational efficiency18. The AODE essentially achieves very high classification accuracy by averaging several 
semi-naive Bayes models that have slightly weaker independence assumptions than a pure NB. The AODE 
algorithm is effective, efficient and offers highly accurate classification. The AODE algorithm uses the following 
formula for classification22: 

 
 

 (2) 

 
Semi-naive Bayesian classifiers attempt to preserve the numerous strengths of NB while reducing error by 

relaxing the attribute independence assumption22. Backwards sequential elimination (BSE) is a wrapper technique 
for attribute elimination that has proved to be effective at this task. Zheng et al.22 proposed a new approach called 
lazy estimation (LE), which eliminated highly related attribute values at classification time without the 
computational overheads that are intrinsic in classic wrapper techniques. Their experimental results show that LE 
significantly reduces bias and error without excessive computational overheads. In the context of the AODE 
algorithm, LE has a significant advantage over BSE in both computational efficiency and error. This novel 
derivative of the AODE is called the averaged one-dependence estimators with subsumption resolution (AODEsr). 
In essence, the AODEsr enhances the AODE with a subsumption resolution by detecting specializations among 
attribute values at classification time and by eliminating the generalization attribute value22. Because the AODEsr 
has a very weak independence assumption, it is very suitable for classification of genetic sequences. Therefore, we 
employ an AODEsr classifier to recognize genetic sequences. 
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3. Experiments 

We tested our proposed system using a dataset extracted from the biological literature10. The dataset contains 
3190 samples, where roughly 25% of the samples belong to IE, 25% of the samples belong to EI and the rest of the 
samples are labeled as N and they belong to neither IE nor EI. Each sample contains a 60 nucleotide-long DNA 
sequence and a label of the category (IE, EI, or N) to which the sample belongs. The samples were obtained by 
taking the documented "split" genes from all primate gene entries in Genbank release 64.1 that were described as 
complete10. This procedure resulted in 751 examples of IE and 745 examples of EI. Negative samples were derived 
from similarly-sized windows, which did not cross an intron/exon boundary, sampled at random from these 
sequences10.  We perform the GA-based nucleotide selection process on this dataset. We used the following 
parameters for the GA algorithm: crossover probability = 0.6, maximum number of generations = 20,000, mutation 
probability = 0.033, and population size = 20. The following 22 nucleotides came out as winners and were then 
selected as discriminating nucleotides: 6th, 9th, 12th, 14th, 16th, 17th, 18th, 19th, 20th , 21st, 23rd, 24th, 25th, 28th, 29th, 30th, 
31st, 32nd, 33rd, 34th, 35th, and 55th (counting from left to right).  

We carried out a 10-fold stratified cross validation where the dataset was partitioned into 10 equal-sized sub-
datasets. Out of the 10 sub-datasets, a single sub-dataset was retained as the validation data for testing the model, 
and the remaining 9 sub-datasets were used as training data. The whole cross-validation process was then repeated 9 
more times such that each of the 10 sub-datasets got used exactly once as the validation data. The results were then 
averaged over all the 10 trials. We used a critical value of 10, frequency limit of 3, an M-estimate weight value of 
0.5 for the AODEsr model.  

Table 1 lists the summary of the 10-fold stratified cross-validation results. The system correctly classified a total 
of 3084 instances out of 3190 instances with an accuracy rate of 96.68% and an error rate of 3.32%. Kappa 
coefficient, which measures inter-rater agreement of predicted values with the true values over all the trials of the 
10-fold cross-validation, was found to be 0.9462. It means that the individual predictions are quite consistent in 
multiple trials and that the proposed system is robust. MAE and RMSE were found to be 0.137 and 0.137 
respectively, which were small. RAE and RRSE were found to be significantly large. However, the RAE and RRSE 
metrics are not very meaningful in the task of classification. Table 2 displays the detailed results by output class. 
One thing interesting to note is that both true positive (TP) rate and false positive (FP) rate for EI are higher than 
those for IE. This implie
confirmed by a lower precision score for EI. 

 

Table 1. 10-fold cross-validation results summary. 

Metric Value 

Correctly classified instances 3084            (96.6771 %) 

Incorrectly classified instances 106              (3.3229 %) 

Kappa coefficient 0.9462 

Mean absolute error (MAE) 0.0354 

Root mean squared error (RMSE) 0.137  

Relative absolute error (RAE) 8.6279 % 

Root relative squared error (RRSE) 30.2526 % 

Total number of instances 3190      
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Table 2. Detailed results by output class. 

Class TP Rate FP Rate Precision Recall F-Score ROC Area 

EI 0.971 0.017 0.947 0.971 0.959 0.995 

IE 0.958 0.016 0.951 0.958 0.955 0.994 

N 0.969 0.017 0.984 0.969 0.976 0.994 

 
Table 3 compares the accuracy of the proposed system with other machine learning models. The proposed 

system, an AODEsr classifier with a GA-based nucleotide selection process produced an average error rate of 
3.32%. To find out the significance of the GA-based nucleotide selection process, we used an AODEsr classifier 
without a nucleotide selection process to predict all the samples from the same dataset. The AODEsr classifier alone 
produced an error rate of 3.47%. It implies that the GA-based nucleotide selection process does improve the overall 
accuracy of the system, albeit not rather significantly. It also implies that 22 out of 60 nucleotides are enough to 
discriminate splice junctions. The accuracy rate of the proposed eukaryotic splice-junction classification system 
using the AODEsr classifier with the GA-based nucleotide selection process seems to be higher than those of other 
classification systems.  

 

Table 3. Accuracy benchmark. 

Technique Avg. Error Rate (%) 

AODEsr with GA-based nucleotide selection 3.32 

AODEsr without GA-based nucleotide selection 3.47 

JRIP 5.61 

J48 tree 5.64 

SMO 6.58 

KBANN  6.88 

BACKPROP 7.26 

PEBLS 7.53 

ID3 11.1 

COBWEB 12.1 

PERCEPTRON 12.6 

k-NN 17.95 

Decision table 21.19 

4. Conclusion 

Understanding and recognizing genetic sequences is one step towards the treatment of a wide range of genetic 
disorders. We have presented a machine learning based approach to recognize nucleotide sequences. Conventional 
naïve Bayes classifiers cannot accurately recognize nucleotide sequences because of their unrealistic assumption 
that forbids dependencies among individual nucleotides. We employ a state-of-the-art machine learning approach 
called the averaged-on dependence estimator with subsumption resolution (AODEsr) to tackle the problem of 
recognizing an important class of genetic sequences known as eukaryotic splice junctions. Given a sequence of 
nucleotides, the system predicts whether the sequence is part of an extron-intron junction (EI), intron-extron (IE) 
junction, or neither one of them (N). To lower the computational complexity and to increase the generalization 
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capability of the system, we employ a genetic algorithm to select relevant nucleotides that are directly responsible 
for splice-junction recognition. We found 22 nucleotides that were responsible for splice-junction recognition. We 
have carried out experiments on a dataset extracted from the biological literature. This proposed system has 
achieved an accuracy of 96.68% in classifying splice-junction genetic sequences.  The accuracy rate of the proposed 
system was found to be higher than those of other machine learning classifiers. The experimental results 
demonstrate the efficacy of our framework. As future work, we would like to extend this framework to recognize 
other types of genetic sequences, DNA sequence motifs, and structural motifs in proteins.  
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