Extensive immune-mediated hippocampal damage in mice surviving infection with neuroadapted Sindbis virus

Takashi Kimura and Diane E. Griffin

W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA

Received 25 July 2002; returned to author for revision 4 December 2002; accepted 16 December 2002

Abstract

Viral infections of the central nervous system and immune responses to these infections cause a variety of neurological diseases. Infection of weanling mice with Sindbis virus causes acute nonfatal encephalomyelitis followed by clearance of infectious virus, but persistence of viral RNA. Infection with a neuroadapted strain of Sindbis virus (NSV) causes fatal encephalomyelitis, but passive transfer of immune serum after infection protects from fatal disease and infectious virus is cleared. To determine whether persistent NSV RNA is associated with neurological damage, we examined the brains of recovered mice and found progressive loss of the hippocampal gyrus, adjacent white matter, and deep cerebral cortex associated with mononuclear cell infiltration. Mice deficient in CD4+ T cells showed less tissue loss, while mice lacking CD8+ T cells showed lesions comparable to those in immunocompetent mice. Mice deficient in both CD4+ and CD8+ T cells developed severe tissue loss similar to immunocompetent mice and this was associated with extensive infiltration of macrophages. The number of CD4+ cells and macrophage/microglial cells, but not CD8+ cells, infiltrating the hippocampal gyrus was correlated with the number of terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling positive pyramidal neurons. These results suggest that CD4+ T cells can promote progressive neuronal death and tissue injury, despite clearance of infectious virus.

© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Encephalitis; Immunity; Central nervous system; Hydrocephalus; Alphavirus

Introduction

Sindbis virus (SV), an alphavirus in the family Togaviridae, infects neurons and causes acute encephalomyelitis in mice. Infection with the prototype AR339 strain of SV causes fatal disease in suckling mice, but not in weanling mice (Taylor et al., 1955; Griffin, 1976; Johnson et al., 1972). Antiviral antibody and interferon-γ play important roles in the clearance of infectious virus from the central nervous system (CNS) of SV-infected weanling mice (Levine et al., 1991; Binder and Griffin, 2001). However, viral RNA and B cells secreting antibody to SV are present in the brains of recovered mice for at least a year after infection (Levine and Griffin, 1992; Tyor et al., 1992), suggesting that virus persists in neurons that survive infection and that some viral proteins may continue to be synthesized long after the resolution of acute encephalitis.

Neuroadapted Sindbis virus (NSV) is a neurovirulent strain of SV that elicits severe, often fatal, encephalomyelitis in adult mice. NSV targets the same neurons as SV but replicates more efficiently, leading to higher viral titers and more widespread infection. Six- to eight-week-old C57BL/6 (B6) mice are highly susceptible to NSV-induced encephalomyelitis and die within 10 days after infection, but a small number of mice infected at older ages survive (Tucker et al., 1996; Kimura and Griffin, 2000). A number of observations suggest that host factors contribute to NSV-induced neuronal death and fatal encephalitis. For instance, BALB/c mice are relatively resistant to fatal disease (Thach et al., 2000).
and in susceptible B6 mice both infected and uninfected neurons die in regions of virus replication (Nargi-Aizenman et al., unpublished observations). A role for the immune response in fatal disease is suggested by the decrease in mortality observed in mice deficient in either β2-microglobulin or IFN-γ (Kimura and Griffin, 2000; Wesselingh et al., 1994; Rowell and Griffin, 2002). Therefore, NSV infection may damage the CNS both directly by inducing death of infected cells and indirectly as a result of the host immune response to viral proteins.

The process of indirect damage may be prolonged and more severe in mice that do not succumb during the acute phase of infection and may be linked to the persistence of viral RNA in the CNS. For example, immune-mediated demyelination occurs in genetically susceptible mice that survive the acute encephalitic phase of infection with Thiel- ler’s murine encephalitis virus or mouse hepatitis virus (Weiner, 1973; Lipton, 1975; Lipton and Dal Canto, 1976). Delayed neuronal damage and tissue loss have been described in animals surviving the acute phase of Semliki Forest, western equine encephalitis, and Borna disease virus infections (Seamer et al., 1971; Zlotnick et al., 1972; Bilzer and Stitz, 1994) and understanding this process could be important for understanding progressive or late neurological disease associated with prior viral infections.

To elucidate the outcome of long-term nonfatal NSV infection, we analyzed the pathologic changes in the brains of 11- to 12-week-old mice surviving acute infection and 6-week-old mice rescued from acute fatal encephalitis by passive transfer of primary immune serum after infection (Griffin and Johnson, 1977; Hirsch et al., 1979; Stanley et al., 1986). These mice had continued damage in the region of the hippocampus after clearance of infectious virus and this was associated with the infiltration of CD4 T cells and macrophages.

Results

NSV infection of highly susceptible B6 mice usually results in fatal encephalomyelitis (Thach et al., 2000), but older animals occasionally survive. To identify long-term pathologic changes associated with NSV infection, surviving mice were examined 60 days after infection (Fig. 1). Surprisingly, these mice had marked destruction of the CA1 and CA2 regions of the hippocampus with extensive loss of brain tissue in the surrounding region creating an intraparenchymal cavity that connected with the ventricular system. The pathogenetic process leading to this outcome was difficult to study since only a small and unpredictable number of mice survived the acute disease. Since passive transfer of immune serum 24-48 h after infection protects BALB/c mice from fatal NSV-induced encephalomyelitis (Stanley et al., 1986; Griffin and Johnson, 1977), we explored the possibility that this experimental system could be used to examine the long-term pathologic consequences of survival from infection with a virulent neuronotropic virus.

To determine whether primary immune serum was sufficient to protect more susceptible B6 mice from fatal NSV encephalitis, B6 mice and immunodeficient B6 mice lacking the recombinase-activating gene 1 (RAG-KO mice) were infected with NSV. There was 100% mortality by day 10 in both B6 and RAG-KO mice infected with NSV (data not shown), but passive transfer of NSV immune serum 24 h after infection protected the majority of mice from fatal encephalitis (Table 1). Mice that survived remained asymptomatic for at least 30 days. Surviving RAG-KO mice developed hindlimb paralysis by 2 months after infection, but B6 mice showed no evidence of neurological disease.

Virus clearance and reappearance after immune serum treatment

The amount of virus in the brains of B6 and RAG-KO mice increased rapidly after infection, with greater than 10^7.5 PFU/g brain present by the time of serum transfer on day 1 (Fig. 2). Maximum virus growth was achieved by day 3 and no difference in peak viral titer was detected between B6 and RAG-KO mice. Infectious virus was rapidly cleared from brains and became undetectable by day 10 in B6 mice and by day 13 in RAG-KO mice treated with immune serum. Infectious virus was again detectable in the brains of RAG-KO mice beginning on day 16 and synthesis of infectious virus reached a plateau by day 25, indicating that virus-infected cells were not eliminated by passive transfer of immune serum. Immunocompetent B6 mice had no reappearance of infectious virus.

In RAG-KO mice, both the enzyme immunoassay (EIA) and the neutralizing antibody titers decreased simultaneously and became undetectable by day 62 as passively transferrred antibody decayed (Fig. 3). Neutralizing antibody in B6 mice also decreased after day 16, while antibody measured by EIA continued to increase.

Pathologic changes in the brains of immunocompetent B6 mouse and immunodeficient RAG-KO mice

Because primary immune serum effectively protected mice from fatal NSV infection, we anticipated that few pathologic changes would be present in the brains of these mice. However, coronal and midline sagittal sections of brains from B6 mice revealed gross distension of the lateral ventricles as early as 13 days following infection. Ventricular dilation was usually bilateral, although sometimes it was asymmetric. The third and fourth ventricles were normal in size and the amount of cerebrospinal fluid in the subarachnoid space was not excessive. Hydrocephalic changes progressed rapidly, reached an advanced degree by 3 weeks after infection, and were then stable. No mice developed macrocephaly.

To understand the pathologic changes more precisely, we
performed histopathological analysis on two or three mice each day at 1, 3, 7, 10, 13, 16, 20, 25, 30, and 62 days after infection. Mice autopsied at each time point showed similar histological findings and the disease process appeared to follow a rigid time course. The most prominent histological changes were the loss of the CA1 and CA2 regions of the hippocampal gyrus (Figs. 4A and B). Histopathological changes were initially observed in the CA1 pyramidal layer.

At 3 days after infection, the majority of pyramidal neurons in the CA1 region showed prominent swelling of nuclei (Fig. 4D) compared with pyramidal neurons of uninfected mice (Fig. 4C). Cytoplasmic swelling was occasionally seen. White matter adjacent to the hippocampus (alveus and tapetum) was slightly edematous and minute hemorrhages were frequently observed. From days 7 to 13, many pyramidal neurons in CA1 and CA2 developed shrunken, eosinophilic cytoplasm and pycnotic or fragmented nuclei (Figs. 4E and F). A small number of dead neurons was also noted in CA3 on days 13 and 16. The number of dead neurons present decreased after day 16 with the loss of hippocampal tissue.

Increased cellularity of CA1, CA2, and the adjacent white matter indicative of an inflammatory response was first detectable at day 7 (Fig. 4E), reached a maximum on day 10 to day 13 (Figs. 4F and G), and then gradually decreased. The first signs of malacic changes were seen at day 10 with infiltration of activated foamy macrophages. Breakdown of CA1, CA2, adjacent white matter, and deep cortex progressed rapidly, and cavitation was observed by day 13 (Fig. 4G) and completed by day 20 (Figs. 4B and K). The resulting large cavities connected to the lateral ventricles, became fluid-filled, and appeared as hydrocephalus. The cavitation did not progress further and cavities eventually were lined with ependymal cells (Fig. 4H). Mild astrocytosis was present around the cavities and rarefaction was present in the basal zone of the cerebral cortex. Malacic changes also occurred at the junction of the corpus callosum (genu and truncus) and fornix superior, resulting in communication between the right and left lateral ventricles.

Since hydrocephalus is most frequently caused by obstruction of the flow of cerebrospinal fluid, the ventricular system was analyzed. A focal denuding of ependymal cells lining the lateral ventricular surface was observed from day 3 to day 10. The ependymal lining was repaired by day 13 and a proliferation of subependymal glia was associated with sites of ependymal damage. Ependymal cells lining the third ventricle and aqueduct were not affected. By histological analysis, neither the aqueduct of Sylvius nor the foramina of Monro was occluded.

In addition to the lesions described above, glial nodules and perivascular mononuclear cell infiltration were observed by day 7 in the cerebral cortex and thalamus and remained until last examined at day 62. Uninfected control mice intracerebrally inoculated with HBSS and then intraperitoneally inoculated with immune sera did not develop pathologic changes (Figs. 4A and C).

RAG-KO mice, infected with NSV and rescued by immune serum, showed reappearance of infectious virus by

![Fig. 1. Pathologic changes in the brains of mice surviving NSV infection. Coronal sections of an infected (A) and uninfected (B) C57BL/6 mouse. Hematoxylin and eosin stain. Eleven-week-old mice were infected intracerebrally with 1000 PFU of NSV. Two months later brains of mice that survived acute encephalitis were examined. In NSV-infected mice (A) the CA1 pyramidal layer (asterisk in B) and surrounding parenchymal tissue were lost and the lateral ventricle was markedly dilated. Magnification: ×18.](image)

![Fig. 5. Characterization of TUNEL-positive cells. Double staining of NSV (brown) and TUNEL (dark blue) in the brains of B6 mice (A, B, C, E, H, and I) and RAG-KO mice (D and F) rescued from fatal NSV infection by passive transfer of immune serum. (G) Double staining of F4/80 Ag (brown) and TUNEL (dark blue) in a B6 mouse. Virus Ag distribution at 3 days (A) and 16 days (B) after infection. At 7 days after infection, infected pyramidal cells showed TUNEL-positivity in B6 mice (C) and RAG-KO mice (D). On day 13, many TUNEL-positive cells were observed in the pyramidal layer of B6 mice (E) but not in RAG-KO mice (F). At 7 days (C) and 16 days (H) after infection, TUNEL-positive pyramidal neurons in B6 mice showed immunoreactivity for NSV. A majority of TUNEL-positive neurons in B6 mice on day 13 (E) and day 16 (I) did not show NSV immunoreactivity. (G) Infiltrating activated macrophage/microglial cells (arrows) and TUNEL-positive pyramidal neurons on day 13. Magnification: A, ×17; B, ×16; C, D, E, and F, ×110; G, ×330; H and I, ×778.](image)
Fig. 2. Replication of NSV in the brains of immunocompetent and RAG-KO B6 mice. Mice infected intracerebrally with 1000 PFU NSV were treated intraperitoneally with 0.2 ml of NSV immune serum (IS) 24 h after infection. Bars represent one standard deviation.

Virus distribution and colocalization with TUNEL-positive cells

To determine whether dying neurons were infected with NSV, brains were stained for both virus antigen and DNA fragmentation. Three days after infection virus was present in the CA1 region of the hippocampus, adjacent white matter, and deep cortex and a majority of pyramidal neurons was positive for viral antigen (Fig. 5A). In CA1, viral antigen was present in the neuropil as well as in the cytoplasm of pyramidal neurons. Viral antigen was also detected in the cytoplasm of glial cells in white matter adjacent to the hippocampus and corpus callosum. Foci of infected neurons were scattered throughout the cerebral cortex, basal ganglia, thalamus, and brain stem. Clearance of viral antigen was apparent by day 7 and was more rapid from the cerebral cortex and thalamus than from the hippocampus (Fig. 5B). Viral antigen was still detected in the CA1 neuropil on day 20. In RAG-KO mice, a few antigen-positive neurons were detected in cerebral cortex, thalamus, and basal ganglia on day 30 and day 62 (data not shown).

Infected neurons had no TUNEL reactivity at day 3 (Fig. 5A). By 7 days after infection TUNEL-positive neurons were present in the pyramidal layer in both RAG-KO and B6 mice (Figs. 5C and D) and most were also positive for viral antigen (Fig. 5H). TUNEL-reactivity of infected neurons was similar in B6 mice and RAG-KO mice at day 10 (Figs. 5C and D), but differences were present later (Figs. 5E and F). In B6 mice, many TUNEL-positive cells were observed in the CA1 and CA2 pyramidal layers 13-16 days after infection when the number of viral antigen-positive cells was markedly decreased (Fig. 5E), and a majority of the TUNEL-positive cells were negative for viral antigen (Fig. 5I). In RAG-KO mice there were fewer TUNEL-positive cells in the pyramidal layer 13-16 days after infection than at earlier times (Figs. 5D and F). The numbers of TUNEL-positive cells in both B6 mice and RAG-KO mice decreased rapidly after day 16. In RAG-KO mice the few antigen-positive neurons scattered in cerebral gray matter from day 20 to 62 were not TUNEL-positive.

A possible source of apoptotic cells observed in the pyramidal layers was infiltrating mononuclear cells. These cells were excluded from analysis by a variety of criteria. The few apoptotic lymphocytes present within the pyramidal layer and could be excluded from the count by their shape and small size compared to neurons. SV does not replicate in mononuclear cells in vivo or in vitro (Griffin and Johnson, 1973; Johnson, 1965) so lymphocytes will not be positive for both TUNEL and SV antigen. Double labeling for TUNEL-positive nuclei and F4/80 antigen (Fig. 5G) revealed that less than 5% of TUNEL-positive cells within the pyramidal layer were macrophage/microglia, indicating that the majority of TUNEL-positive cells were pyramidal neurons.

Virus antigen and TUNEL-positive cells were not detected at any time point in the brains of control mice intra-cerebrally inoculated with HBSS and then given immune serum.

Differences in the severity of hippocampal lesions between strains of immunodeficient mice

To identify the component of cellular immunity involved in the development of hydrocephalus, mice that genetically lack CD4 (CD4-KO), CD8 (CD8-KO), and IFN-γ (IFG-KO) were infected with NSV and treated with NSV immune...
serum 24 h later. Since the loss of hippocampal tissue leads to cavitation, we compared the severity of hippocampal loss of these selectively immunodeficient mice with that of immunocompetent B6 mice at day 20 when hydrocephalus was fully developed (Table 1). The extent of hippocampal loss is reflected in the thickness of the CA1 region and this measurement was used to grade and score the degree of hippocampal damage (Fig. 4I, no significant lesion; Fig. 4J, mild lesion; Fig. 4K, severe lesion). No surviving CD4-KO mice developed severe hippocampal lesions, while 71% of immunocompetent B6 mice (P<0.01), 50% of CD8-KO, 50% of IFG-KO mice, and 33% of RAG-KO mice developed severe lesions.

Effect of T cell depletion on the death of hippocampal pyramidal neurons

Since mononuclear cell infiltration was closely associated with hippocampal loss and the development of cavitation (Fig. 4), we analyzed the relationship between the number of infiltrating mononuclear cells and the TUNEL-positive cells in the hippocampal gyrus. Mice were selectively depleted of T cells by inoculation with anti-CD4 monoclonal antibody (MAb), anti-CD8 MAb, or normal rat serum. No surviving anti-CD4 MAb-treated mice developed severe hippocampal lesions, while 80% of anti-CD8 MAb-treated mice and 83% of normal rat serum-treated mice developed severe lesions (P<0.05) (Table 2). One-third of the mice treated with both anti-CD4 and anti-CD8 MAbs showed severe lesions.

Fewer F4/80-positive (macrophage/microglial) cells were present 13 days after infection in mice treated with anti-CD4 MAbs than in untreated mice (P<0.02) (Fig. 6A). Few CD4-positive cells were detected in mice treated with anti-CD4 MAb (Fig. 6B), and these cells resembled ramified microglia morphologically. No CD8-positive cells were detected in mice treated with anti-CD8 MAb (Fig. 6C). More TUNEL-positive cells were observed in untreated mice than mice treated with anti-CD4 MAb on day 13 (P<0.05) but not on day 10 (Fig. 6D). Differences between mice treated with anti-CD8 MAb, anti-CD4 MAb, and the mixture of anti-CD4 and anti-CD8 MAbs were not significant.

Discussion

Mice surviving NSV infection developed hydrocephalic changes over the course of 3 weeks as a result of progressive loss of tissue from the hippocampal gyrus, adjacent white matter, and deep cerebral cortex despite the clearance

Table 2

Treatment	No. of survivors/total	No. of mice with the histological grades of hippocampal lesion	P<
Normal rat serum	6/6	NSL^a 1	Mild^b 2
Anti-CD4	4/6	0	2
Anti-CD8	5/6	0	1
Anti-CD4 + Anti-CD8	6/6	2	2

^a No significant lesions in hippocampus.

^b Thinning and focal loss of pyramidal cell layer.

^c Extensive loss of pyramidal cell layer.

^d Fisher’s exact test comparing severe lesions to normal rat serum control; NS = not significant.
of infectious virus within 10 days after infection. Progressive histopathologic changes were observed when death from acute fatal encephalomyelitis was prevented by passive transfer of immune serum after CNS infection had been established. Mice lacking CD4 T cells had hippocampal damage that was less extensive and had fewer macrophages infiltrating areas of virus-infected cells. The data suggest the possibility that CD4+ T cells responding to viral antigen in the CNS promote the recruitment and activation of macrophages that contribute to progressive regional neuronal death and tissue injury despite clearance of infectious virus.

Hydrocephalus is a relatively unusual outcome of viral encephalitis, but CNS infection with a variety of viruses, such as herpes simplex (Hayashi et al., 1986; Schinazi and Yao, 1995), measles (Haspel and Rapp, 1975), mumps (Johnson et al., 1967), Ross River (Mims et al., 1973), Sendai (Kristensson et al., 1984), and Theiler’s murine encephalitis (Tsunoda et al., 1997) viruses occasionally induces hydrocephalus in rodents. In all of these viral infections hydrocephalus results from abnormalities in cerebrospinal fluid flow associated with inflammation at sites of ependymal or meningeal infection that may lead to aqueductal stenosis and macrocephaly. The pathogenesis of hydrocephalus in NSV-infected mice was a consequence of massive tissue destruction resulting in dilatation of the lateral ventricles and “ex vacuo” hydrocephalus.

The CA1 region of the hippocampus was particularly vulnerable to NSV infection and progressive tissue destruction. The hippocampus is a target for other viral infections, such as Borna disease virus (Hirano et al., 1983) and rabies virus (Jackson and Rossiter, 1997) and is particularly prone to neurodegenerative damage in many experimental systems of neuronal injury. In measles virus encephalitis in BALB/c mice hippocampal pyramidal cell damage in the CA1 and CA3 regions is secondary to excitotoxic injury associated with infection of cortical neurons (Love et al., 1986; Andersson et al., 1993), while in NSV encephalitis in C570L/6 mice direct infection is involved. NSV infects a wide variety of neurons in the cortex and brainstem as well as the hippocampus, but extensive progressive damage was limited to the hippocampus and adjacent areas of the cortex and corpus callosum.

Early in NSV infection, the hippocampal gyrus, adjacent white matter, and deep cerebral cortex were extensively infected and NSV-positive pyramidal neurons showed TUNEL reactivity. Infection was controlled and infectious virus was cleared prior to progressive damage, but viral antigen persisted. Limited virus replication may contribute to ongoing neurodegeneration through mechanisms related to decreased neuronal Na+/K+ ATPase activity or local release of excitotoxic amino acids (Lees and Leong, 1996; Lees et al., 1990; Nargi-Aizenman and Griffin, 2001; Nargi-Aizenman et al., unpublished observations). SV directly affects the function of Na+/K+ ATPase in infected cells.
and Grif

and dying neurons may release glutamate (Nargi-Aizenman (Ulug et al., 1984; Garry et al., 1979; Despres et al., 1995)

36

hydrocephalic mice did not show gross neurological de
cord motor neurons in the ventral horn were free of virus at
contrast to hippocampal pyramidal neurons, large spinal
lomyelitis (Jackson et al., 1987), while this was observed
transferred immune sera did not show hindlimb paralysis, a

This study also showed that extensive loss of hippocam-
pal pyramidal cells is unrelated to mortality. Mice receiving
transferred immune sera did not show hindlimb paralysis, a
characteristic neurological sign of NSV-induced encephalomyelitis (Jackson et al., 1987), while this was observed after reappearance of infectious virus in RAG-KO mice. In contrast to hippocampal pyramidal neurons, large spinal
cord motor neurons in the ventral horn were free of virus at
the time of immune serum transfer, which probably pre-
vented spread of virus infection to the spinal cord. Although
hydrophic mice did not show gross neurological defi-
cits, higher neurological functions such as learning and
memory are likely to have been affected. Passive transfer of
immune serum offers protection from fatal acute disease,
but also increases the likelihood of delayed or chronic
neurological disease. For instance, subacute encephalitis
can be established in mice infected with measles virus that
have received passively transferred antibody, a process pos-
tulated to be related to the development of the human
progressive neurological disease subacute sclerosing panen-
cephalitis (Rammohan et al., 1981). Mice receiving immune
serum after peripheral inoculation of Semliki Forest virus
develop a delayed onset of encephalitis (Seamer et al., 1971).
Passive transfer of antibody may contribute to dis-
 ease by affecting the induction of the primary antiviral
immune response in poorly understood ways.

Virus antigen remained in the neuropil of the hippocam-
pal gyrus up to day 20. These findings suggest that viral
clearance from the processes of pyramidal cells may be
slower than from their cell bodies. An alternative explana-
tion is that virus antigen-containing processes remained for
a time after the death of the neuron. Mononuclear cell
infiltration persisted after clearance of infectious virus, sug-
gesting that virus antigen continues to attract and retain
mononuclear cells.

Many TUNEL-positive pyramidal neurons observed af-
ter the clearance of infectious virus from brain were virus
antigen-negative. This phase of neuronal cell death ap-
peared to be immune-mediated because virus antigen-neg-
ative, TUNEL-positive neurons were rare in RAG-KO and
CD4-depleted mice. Although neuronal death was tempo-
 rally related to the infiltration of CD4+ T cells and macro-
phages, dead neurons were not always in immediate contact
with mononuclear cells. This suggests that cell death may be
carous by a soluble factor produced by CD4+ T cells or
macrophages rather than by direct contact with these mono-
nuclear cells.

The numbers of macrophage/microglia cells infiltrating
the hippocampal gyrus were significantly greater in immu-
nocompetent mice than mice lacking CD4+ T cells. CD4+ T
cells may play an important role in recruitment of mono-
nuclear cells into the region and in the development of
hydrocephalic changes. The role of macrophages in tissue
injury may be more important than the role of CD4 T cells
because some mice lacking CD4 and CD8 T cells developed
macrophage infiltration and severe hippocampal loss. This
finding also suggests a protective role for CD8 T cells in
tissue injury.

Activated macrophages and microglia can produce a
number of factors toxic to neurons including glutamate and
other excitotoxins (Giulian et al., 1993, 1996; Wood, 1995;
Lees, 1993; Flavin et al., 1997) and cytokines, such as
tumor necrosis factor and interleukin-1β (Fine et al., 1997).
CD4+ T cells are implicated in inducing damage; however,
IFN-γ does not appear to be directly important because
IFG-KO mice also developed severe hippocampal loss.
In addition to glutamate and cytokines, macrophage/microglia
can produce a variety of other neurotoxic factors (Mercurio
and Shaw, 1988; Flavin et al., 1997; Giulian et al., 1996)
and cause delayed neuronal loss in ischemic and traumatic
CNS lesions (Giulian et al., 1993; Lees, 1993; Wood, 1995).
Reactive microglia and macrophages may also contribute to
CNS damage during and after acute viral encephalomyelitis.

Materials and methods

Virus and mice

NSV (Griffin and Johnson, 1977) used in this study was
harvested from infected BHK-21 cells. Mice homozygous
for a targeted disruption of the CD4 gene (C57BL/6-Cd4tm1Mak), the
CD8α gene (C57BL/6-Cd8atm1Mak), the
interferon-γ gene (C57BL/6-Ifngtm1Ts), the recombination
activating gene-1 (C57BL/6-Rag1tm1Mom), and syngeneic
C57BL/6J mice were purchased from the Jackson Labora-
tory (Bar Harbor, ME). All studies were approved by the
Animal Care and Use Committee of the Johns Hopkins
University.

Infection of mice, serum transfer, and tissue processing

For production of anti NSV serum, female B6 mice, 6-8
weeks old, were inoculated subcutaneously with 2 × 10^5
PFU NSV in 30 μl HBSS distributed between the hind feet.
Blood was collected 2 weeks after immunization by cardiac puncture under anesthesia, and sera from 20 to 50 mice were pooled. Pooled sera had a neutralizing titer of 1:6400 as measured by the 50% plaque reduction test.

For infection, 6-week-old female mice under anesthesia were inoculated intracerebrally with 1000 PFU of NSV in 30 μl HBSS. Some mice were given 0.2 ml of immune serum intraperitoneally 24 h after infection. At various times after infection, groups of three to six mice were anesthetized and perfused with PBS. For virus titration, brains were quickly removed and frozen in liquid nitrogen. For histology, mice were further perfused with 0.5% periodate-lysine-paraformaldehyde (Gendelman et al., 1983; McLean and Nakane, 1974) or 4% paraformaldehyde. Periodate-lysine-paraformaldehyde-fixed tissue was placed in 0.5 M sucrose overnight at 4 °C. For histology, mice were fixed tissue was embedded in paraffin.

Virus titration

Brains were thawed and 33% homogenates were prepared with PBS as a diluent. Virus content in each homogenate was determined by plaque formation of serial 10-fold dilutions on BHK-21 cells. The geometric mean of data obtained from the tissues of two to three mice was determined for each time point.

Antibody measurement

Sera were collected by cardiac puncture under anesthesia and pooled from groups of four mice. Anti-SV binding antibody was measured by EIA (Stanley et al., 1985). Data are expressed as the highest dilution giving a value two times the background optical density observed with normal mouse serum. Neutralizing antibody was measured by the 50% plaque reduction test in BHK-21 cells.

Immunohistochemistry

Immunohistochemistry was performed using the avidin-biotinylated enzyme-complex method (Hsu et al., 1981) with modifications. Frozen tissues were embedded in Tissue-Tek O.C.T. compound (Sakura Finetek U.S.A., Torrance, CA) and cryosectioned. Sections were treated with 0.03% H2O2 in PBS for 5 min to block endogenous peroxidase activity, further blocked with the avidin–biotin blocking kit (Zymed). Sections were incubated with 40 μl of labeling mixture consisting of 200 mM potassium cacodylate, 25 mM Tris–HCl pH 6.6, 0.25 mg/ml BSA, 2 mM cobalt chloride, 1 μM biotin-16-dUTP (Boehringer Mannheim, Indianapolis, IN), and 0.125 unit/μl terminal transferase (Boehringer Mannheim) at 37°C for 1 h. The reaction was terminated by incubation in 2× SSC at room temperature for 15 min. After washing with PBS, sections were blocked in 2% bovine serum albumin for 10 min, and VECTASTAIN ABC-AP kit (Vector) was used for detection of incorporated biotin. Alkaline phosphatase conjugated avidin–biotin complexes were visualized with a solution containing 4-nitroblue tetrazolium chloride (Boehringer Mannheim), X-phosphate (Boehringer Mannheim), and levamisole (Vector) according to the manufacturer’s protocol. For simultaneous detection of TUNEL reactivity and SV antigen, sections were then stained for virus, counterstained, dehydrated, and mounted as described above.

TUNEL-positive cells within the pyramidal cell layer were counted under a ×40 objective. Coronal sections just posterior to the attachment of the pituitary were analyzed. Twenty areas of the pyramidal cell layer were selected at random from the entire CA1 and CA2 regions of each section and counted. Values from the brains of four to six mice were averaged for each time point. To minimize the possibility of counting apoptotic mononuclear cells, the small numbers of TUNEL-positive cells with lymphocyte morphology were disregarded in the analysis.
References

