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Abstract

We consider the semileptonic and nonleptonicDs decay modes to final states withη andη′. We use QCD sum rules to
determine theDs → η form factorf η

+, and a generalized factorization ansatz to compute nonleptonic decays. We propose a
parameterization of possible OZI suppressed contributions producing theη′ in the final state, compatible with current data;
such a scheme can be further constrained improving the precision of the measurement of theDs decay rates, as expected by the
ongoing experiments.

1. Introduction

The exclusiveDs decays to final states contain-
ing η and η′ represent nearly 30% of the total de-
cay rate of theDs meson. Therefore,Ds could be a
suitable system where to gather information on im-
portant aspects of theη–η′ phenomenology, namely
the long-standing issue of theη–η′ mixing. More-
over, Ds can be used to further investigate some
unsettled aspects of nonleptonic heavy meson de-
cays, such as the anomalously largeη′ production ob-
served in several heavy meson decay channels. Ex-
amples areB− → K−η′ andD0 → �K0η′, the mea-
sured decay rates of which are substantially larger than
what can be expected by naive theoretical calcula-
tions.

The current experimental situation concerning the
Ds transitions toη andη′ is summarized in Table 1
[1], mainly using the results obtained by the CLEO
Collaboration in the past few years [2].

E-mail address: fulvia.defazio@ba.infu.it (F. De Fazio).

The experimental results are expected to be im-
proved in the near future, since the analysis of the
Ds system is an important item of the experimen-
tal program of the current hadron facilities, as well
as of the e+e− machines running at theΥ (4S)
peak.

The results in Table 1 have inspired several con-
siderations. First, it has been proposed that informa-
tion on theη–η′ mixing could be obtained just con-
sidering the semileptonic decay modes. As a matter
of fact, writing the hadronic matrix element govern-
ing the transitionD+

s → η�+ν in terms of form fac-
tors:

〈η(p′)|s̄γµc|Ds(p)〉
(1)= f

η
+
(
q2)(p + p′)µ + f

η
−
(
q2)qµ

(q = p − p′) and a similar expression forD+
s →

η′�+ν, the ratioB(D+
s → η′�+ν)/B(D+

s → η�+ν)
could be used to access theη–η′ mixing angle through

the ratios of the form factorsf η′
± (q2)/f

η
±(q2) which

are related to theη–η′ mixing scheme [3,4]. In par-
ticular, information could be gathered on the mixing
scheme in the flavour basis [5,6], which consists in
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Table 1
Experimental rates and branching fractions of semileptonic and
nonleptonicDs decays to final states containingη andη′

Decay mode Γ (10−15 GeV) B(10−2)

D+
s → η�+ν 34.5±9.3 2.6±0.7

D+
s → η′�+ν 11.8±4.5 0.89±0.34

D+
s → ηπ+ 22.6±6.7 1.7±0.5

D+
s → ηρ+ 143.3±41.2 10.8±3.1

D+
s → η′π+ 51.8±13.3 3.9±1.0

D+
s → η′ρ+ 134.0±37.3 10.1±2.8

writing theη andη′ states as combinations of|ηq〉 =
1√
2
|ūu+ d̄d〉 and|ηs〉 = |s̄s〉:

|η〉 = cosφq |ηq〉 − sinφs |ηs〉,
(2)|η′〉 = sinφq |ηq〉 + cosφs |ηs〉.

It has been shown [5] that in this scheme a single angle
is essentially required, since|φs −φq |/(φs +φq) 1,
a result confirmed by a QCD sum rule calculation [7].
Therefore, one can safely assumeφs � φq � φ; the
most recent estimates ofφ give values close to 40◦ [6,
8]. In the flavour scheme, the semileptonic form fac-
tors relative toD+

s → η�+ν andD+
s → η′�+ν satisfy

the relation

(3)
|f η′

± (q2)|
|f η

±(q2)| = cotφ,

so that the possibility of a direct comparison with the
results forφ obtained from the analyses of other chan-
nels involvingη–η′ particles could be envisaged. The
situation is particularly simple in the case of semilep-
tonicD+

s decays to positrons or antimuons, where es-

sentially only the form factorsf η(η′)
+ (q2) are involved.

However, in order to pursue this program, one has to
neglect possible contributions to the semileptonic de-
cay amplitude from diagrams whereη andη′ are pro-
duced through gluon emission; we shall consider this
problem below.

As for nonleptonic decays, naive factorization, us-
ing the semileptonicDs → η and Ds → η′ form
factors and the Wilson coefficients relevant for the
transitions in Table 1, does not allow to predict all
the branching fractions ofD+

s → η(′)π+ andD+
s →

η(′)ρ+ [9]. The same conclusion is obtained by ana-

lyzing the various decay channels in terms of transi-
tion amplitudes related bySU(3)F symmetry to anal-
ogous amplitudes forD decays [10], or accounting
for some effects of the inelastic final state rescatter-
ing [11]. In particular, the prediction for the rate of the
decay modeD+

s → η′ρ+ is lower than the experimen-
tal measurement by more than a factor of two. This
is disappointing: in Cabibbo favoured hadronicDs de-
cays the final state contains a single isospin mode, thus
ruling out possible interference effects due to the elas-
tic final state interactions; moreover, the conservation
of G-parity does not allow to include inelastic effects
of intermediate states consisting of ordinary mesons
in theD+

s → η′ρ+ mode [12]. Therefore, a different
mechanism must be invoked to explain the enhanced
η′ production. It has been suggested that the enhance-
ment could be due to OZI suppressed diagrams with
theη′ produced by gluons and thecs̄ pair annihilating
to a chargedW [3]. This mechanism would not affect
substantially theη production, since the coupling of
the gluons toη is estimated to be smaller than the cou-
pling to η′ [13]. However, a mechanism of this type,
violating the OZI rule, could also affect the semilep-
tonicD+

s → η′�+ν transition, spoiling the possibility
of using the relation (3) to gather information on the
angleφ from the semileptonic decay rates. Moreover,
these effects could be also present in other systems,
namely inD decays, although in such cases the anni-
hilation amplitudes are Cabibbo suppressed.

The effects of the gluon production of theη and
η′, although plausible, are not included in ordinary
analyses since they are difficult to take into account
in a quantitative way. Nevertheless, their investigation
is of particular relevance, and we shall try to perform
it in a phenomenological way.

In this Letter, we compute the form factorf η
+(q2)

relative toD+
s → η�+ν, showing that the result is in

agreement with the experimental measurement in Ta-
ble 1. On the other hand, assuming the standard value
of theη–η′ mixing angle together with the naive fac-
torization, other results in Table 1 are not reproduced.
Therefore, we adopt a generalized factorization ansatz,
fitting the relevant parameters from the experiment;
moreover, we assume that the effect of the process pro-
ducing theη′ through the annihilation of thecs̄ pair
numerically modifies theDs → η′ form factors. This
enables us to investigate whether the experimental re-
sults can be reproduced by this assumption and how
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the reduction of the experimental uncertainty can be
used to test various consequences of our ansatz.

2. QCD sum rule calculation of f
η
+(q2)

Let us first compute the form factorf η
+(q2) using

a nonperturbative method, such as the QCD sum
rule technique [14]. We adopt the usual strategy of
considering a three-point function:

Πµν

(
p2,p′2, q2) = i2

∫
d4x d4y e−ip·y eip′·x

× 〈0T [
J
η

5 (x)Jµ(0)J
Ds

5 (y)
]|0〉

(4)=Π+Pµ +Π−qµ,
with J

η

5 = s̄iγ5s the pseudoscalar quark density prob-
ing the strangeness content of theη, Jµ = s̄γµc the
weak current inducing thec → s transition, andJDs

5 =
c̄iγ5s a quark current having theDs quantum num-
bers. The momentaP andq are defined asP = p+p′
andq = p − p′, respectively. For the invariant func-
tion Π+(p2,p′2, q2) a double dispersion relation in
the variablesp2, p′2 can be written down:

Π+
(
p2,p′2, q2)

(5)= 1

π2

∫
ds1

∫
ds2

ρ(s1, s2, q
2)

(s1 − p2)(s2 − p′2)
,

where possible subtraction terms have been omitted.
The spectral functionρ(s1, s2, q2) contains, for low
values ofs1 ands2, a doubleδ-function corresponding
to the transitionDs → η. Isolating such a contribution,
and neglecting possible subtraction terms which we
discuss later on, we can write:

Π+
(
p2,p′2, q2)

= Af
η
+(q2)

(M2
Ds

− p2)(M2
η −p′2)

fDsM
2
Ds

ms +mc

(6)+ 1

π2

∞∫
s0
1

ds1

∞∫
s0
2

ds2
ρhad(s1, s2, q

2)

(s1 − p2)(s2 − p′2)

In (6) we have assumed that the contribution of higher
resonances and continuum of states starts from the
effective thresholdss0

1 ands0
2. The hadronic parameter

A represents the matrix element:

(7)〈0|J η
5 |η(p′)〉 =A

while the projection of theJDs

5 current on theDs state
is given by the matrix element

(8)〈0|JDs

5 |Ds(p)〉 = fDsM
2
Ds

ms +mc

.

The correlator (4) can be computed in QCD for large
Euclidean values ofp2 andp′2 by an Operator Product
Expansion, expanding the T-product in (4) as a sum of
a perturbative contribution and non perturbative terms,
proportional to vacuum expectation values of quark
and gluon gauge invariant operators of increasing di-
mension, the vacuum condensates. In practice, only
the first few condensates numerically contribute, the
most important ones being the dimension 3〈s̄s〉 and
dimension 5〈s̄gσGs〉 condensates. The QCD expres-
sion forΠ+ reads:

Π+
(
p2,p′2, q2)

= 1

π2

∞∫
(mc+ms)2

ds1

∞∫
4m2

s

ds2
ρpert(s1, s2, q

2)

(s1 − p2)(s2 − p′2)

(9)+Π
(D=3)
+ 〈s̄s〉 +Π

(D=5)
+ 〈s̄gσGs〉 + · · · .

Invoking quark–hadron duality, i.e., assuming that the
hadronic and the perturbative QCD spectral densities
give the same result when integrated above the thresh-
oldss0

1 ands0
2, we get the sum rule:

AfDsM
2
Ds

ms +mc

f
η
+(q2)

(M2
η − p′2)(M2

Ds
− p2)

(10)

= 1

4π2

∫
D

ds1ds2
ρ

pert
+ (s1, s2, q

2)

(s1 − p2)(s2 − p′2)

+Π
(D=3)
+ 〈s̄s〉 +Π

(D=5)
+ 〈s̄gσGs〉 + · · ·

with

ρ
pert
+

(
s1, s2, q

2)

(11)

= 3

4
√
(s1 + s2 − q2)2 − 4s1s2

×
[
s1 −m2

c +m2
s + s2 + 2ms(mc −ms)

+ 2s2
(s1 + s2 − q2)(2s1 −m2

c +m2
s )

(s1 + s2 − q2)2 − 4s1s2

− (s1 + s2 − q2)2(s1 −m2
c +m2

s + s2)

(s1 + s2 − q2)2 − 4s1s2

]
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and

(12)

Π
(D=3)
+ = −1

2

{
mc

rr ′ + (mc +ms)

[
m2

s

2rr ′2 + mcms

r2r ′

− m2
s (m

2
c +m2

s − q2)

2r2r ′2

+m2
s

(
m2

s

rr ′3 + m2
c

r3r ′

)]}
,

(13)

Π
(D=5)
+ = 1

24

[
6m2

s (mc +ms)

rr ′3 + 6m2
c(mc +ms)

r3r ′

+ 2(mc +ms)

r2r ′2

× (2m2
c + 2m2

s − 2q2 −mcms)

r2r ′2

+ 12mc

r2r ′ + 12ms

rr ′2

]
.

The variablesr andr ′ are defined asr = p2 −m2
c and

r ′ = p′ −m2
s . The domainD is bounded by the curves

s±
2 = [2m2

s (s1 + q2)+∆(m2
c −m2

s − q2)]
2m2

c

(14)

± 1

2m2
c

[(
2m2

s

(
s1 + q2) +∆

(
m2

c −m2
s − q2))2

− 4m2
cm

2
s

(
s1 − q2)2

]1/2
,

where∆= s1 −m2
c +m2

s , and by the liness2 = s0
2 and

s1 = s0
1. Eq. (10) can be improved by applying to both

its sides a Borel transform, defined as follows:

B
[
F

(
Q2)]

= lim
Q2→∞, n→∞, Q2/n=M2

1

(n− 1)!
(−Q2)n

(15)×
(

d

dQ2

)n

F
(
Q2),

whereF is a generic function ofQ2. The application
of such a procedure to the sum rule amounts to
exploiting the relation:

(16)B
[

1

(s +Q2)n

]
= exp(−s/M2)

(M2)n (n− 1)! ,

with M2 a Borel parameter. The operation, applied in-
dependently to the variables−p2 and−p′2, improves
the convergence of the series in the OPE in the r.h.s. of

Eq. (9) by factorials inn, and, for suitably chosen val-
ues of the Borel parameters, enhances the contribution
of the low-lying states in the hadronic representation
of the correlatorΠ+. Moreover, since the Borel trans-
form of a polynomial vanishes, the procedure allows
to get rid of subtraction terms in the dispersion rela-
tions, which are polynomials inp2 or p′2. Therefore,
a final sum rule can be worked out, keeping only the
contribution of the lowest-dimensional condensates:

AfDsM
2
Ds

ms +mc

f
η
+
(
q2)e−M2

Ds
/M2

1e−M2
η/M

2
2

= 1

4π2

∫
D

ds1ds2ρ
pert
+

(
s1, s2, q

2)e−s1/M
2
1e−s2/M

2
2

− e−m2
c/M

2
1e−m2

s /M
2
2
〈s̄s〉

2

×
{
mc + (mc +ms)

[
− m2

s

2M2
2

− mcms

2M2
1

− m2
s (m

2
c +m2

s − q2)

2M2
1M

2
2

+ m2
s

2

(
m2

s

M4
2

+ m2
c

M4
1

)]}

+ e−m2
c/M

2
1e−m2

s /M
2
2
〈s̄gσGs〉

8

(17)

×
[
m2

s (mc +ms)

M4
2

+ m2
c(mc +ms)

M4
1

+ 2(mc +ms)(2m2
c + 2m2

s − 2q2 −mcms)

3M2
1M

2
2

− 4mc

M2
1

− 4ms

M2
2

]
.

In the numerical analysis of (17) we used standard
values of the condensates:〈s̄s〉 = 0.8〈q̄q〉 with 〈q̄q〉 =
(−0.23 GeV)3, and 〈s̄gσGs〉 = m2

0〈s̄s〉 with m2
0 =

0.8 GeV2. The charm and strange quark masses were
fixed to the valuesmc = 1.4 GeV [15] andms =
140 MeV [15,16]. As for theDs decay constant, we
usedfDs = 225 MeV [15], while for the parameter
A we adopted the two-point QCD sum rule result
A = 0.115 GeV2 [7]. The obtained sum rule shows
stability to the variation of the Borel parameter in the
region 2.5 GeV2 � M2

1 � 3.5 GeV2 and 1.6 GeV2 �
M2

2 � 2.4 GeV2, with the thresholdss0
1 ands0

2 in the
rangess0

1 = 5.9–6.1 GeV2 and s0
2 = 0.9–1.1 GeV2,
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Fig. 1. Form factorfDs→η
+ (q2) as obtained using QCD sum rules.

The shaded region represents the theoretical uncertainty related to
the variation of the input parameters.

respectively. The form factorf η
+(q2), obtained in the

range of momentum transfer 0� q2 � 0.5 GeV2, is
depicted in Fig. 1; it can be fitted by a linear expression

(18)f
η
+
(
q2) =Aq2 +B,

with A = 0.14 GeV−2 and B = 0.50 ± 0.04. This
expression is consistent, in the considered range of
momentum transfer, with a polar formf η

+(q2) =
f
η
+(0)/(1− q2/M2

P ), with the mass of the poleMP �
1.9 GeV.

In the following, we shall consider the form factor
f
η
+(q2) as a theoretical input in a phenomenological

analysis ofDs transitions.

3. Ds transitions to η and η′

The form factorf η
+(q2) computed above allows

us to calculate the semileptonicD+
s → η�+ν decay

rate. It can also be used to analyze the nonleptonic
modesDs → ηπ+ andDs → ηρ+ if the factorization
approximation is adopted. This amounts to consider
the effective Hamiltonian

Heff = GF√
2
V ∗
csVud

(
C1(µ)+ C2(µ)

Nc

)
(19)× (s̄c)V−A(ūd)V−A + h.c.,

Table 2
Computed semileptonic and nonleptonicDs rates and branching
fractions. Nonleptonic rates are obtained using naive factorization.
Theη–η′ mixing is described in the flavour basis, with mixing angle
φ = 39◦

Decay mode Γ (10−15 GeV) B(10−2)

D+
s → η�+ν 30.3± 4.8 2.3± 0.4

D+
s → η′�+ν 12.7± 2.0 1.0± 0.2

D+
s → ηπ+ 38.5± 6.2 2.9± 0.5

D+
s → ηρ+ 74.5± 11.9 5.6± 0.9

D+
s → η′π+ 33.2± 5.3 2.5± 0.4

D+
s → η′ρ+ 30.7± 4.9 2.3± 0.4

with (q̄1q2)V−A = q̄1γµ(1−γ5)q2 andC1 andC2 Wil-
son coefficients, and factorize theV −A currents ap-
pearing in it. As for the modes withη′, we further
need an input on theη–η′ mixing, and we choose
the angleφ in the flavour basis mixing scheme, with
the valueφ = 39◦ coming from the measurements of
φ → η(′)γ [17]. In Table 2 we collect the resulting
branching fractions obtained in the factorization ap-
proximation, usingfπ = 0.132 GeV,fρ = 0.220 GeV,
τDs = 0.496 ps; the number of coloursNc is fixed to
Nc = 3, and the valuesC1(mc)= 1.263 andC2(mc)=
−0.513 are chosen, corresponding to the results for
the Wilson coefficients obtained at the leading or-
der in renormalization group improved perturbation
theory atµ = mc � 1.4 GeV, in correspondence to
αs(MZ) = 0.118. Using the form factorf η

+ in (18)
we obtain the branching fractionB(D+

s → η�+ν) =
(2.3±0.4)×10−2 in agreement with the experimental
outcome reported in Table 1; also the resultB(D+

s →
η′�+ν)= (1.0±0.2)×10−2, obtained using Eq. (3), is
within the experimental uncertainty quoted in Table 1.
On the other hand, as one can infer by comparing the
computed decay rates reported in Table 2 with the ex-
perimental measurements in Table 1, the calculations
of the nonleptonic modes do not fit all the experimen-
tal measurements, as already anticipated by previous
analyses.

In order to parameterize the deviation from the fac-
torization approximation, as well as the possible role
of the η and η′ gluon production, we adopt a gen-
eralized factorization ansatz, consisting in substitut-
ing the combination of the Wilson coefficientsa1 =
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C1 + C2/Nc with effective scale-independent para-
metersaeff

1 in the factorized amplitudes. The coef-
ficients aeff

1 should be considered as non-universal,
process-dependent parameters [18]. However, since
in the decay modesD+

s → ηπ+, D+
s → η′π+, and

analogouslyD+
s → ηρ+, D+

s → η′ρ+, the underly-
ing process is the same, we assume only two process-
dependent parameters to describe the deviation from
naive factorization:aeff

1,π describingD+
s → ηπ+ and

D+
s → η′π+, and aeff

1,ρ describingD+
s → ηρ+ and

D+
s → η′ρ+.
As for the possible contribution of OZI suppressed

diagrams producingη andη′, it is essentially related to
the matrix elements〈0|GG̃|η(′)〉, whereG is the gluon
field andG̃ its dual. Several theoretical investigations
suggest that〈0|GG̃|η〉  〈0|GG̃|η 〉 [7,13]; therefore,
we assume that such annihilation amplitudes mainly
affect theDs transitions toη′. A simple paramete-
terizion consists in modifying the values of the para-
metersA,B in (18), thus without affecting the shape

of the form factorf η′
+ . This seems rather reasonable,

since the range of momentum transfer inDs → η′
transitions is rather narrow (q2 � 0 for Ds → η′π ,
q2 = M2

ρ for Ds → η′ρ andq2 < (MDs − Mη′)2 for
Ds → η′�ν), and a linear expansion is a suitable rep-
resentation of the form factors. Therefore, in the case
of η′, we phenomenologically represent theDs → η′
form factor as

(20)f eff+
(
q2) = Āq2 + �B.

It is now possible to use the experimental data in
Table 1 to fit all the parameters we have introduced,
namelyaeff

1,π , aeff
1,ρ , Ā and�B. From the decaysD+

s →
ηπ+ andD+

s → ηρ+ we find that the values ofaeff
1,π

andaeff
1,ρ are bound in the ranges:

(21)aeff
1,π ∈ [0.65,1.04], aeff

1,ρ ∈ [1.21,1.86],
to be compared with the value ofa1 obtained from the
Wilson coefficientsC1 andC2: a1(mc) = C1(mc) +
C2(mc)/Nc � 1.1. As for the decay modeD+

s →
η′π+, it involves f eff+ (q2); however, only the value
f eff+ (0) = �B is needed in the approximationMπ = 0,
allowing us to constrain�B in the range

(22)|�B| ∈ [0.70,1.45].

Moreover, considering the modesD+
s → η′�+ν and

D+
s → η′ρ+, we find that the relations

Γ
(
D+

s → η′ρ+)
(23)=Xρ

[
f eff+

(
M2

ρ

)]2[
aeff

1,ρ

]2
,

Γ
(
D+

s → η′�+ν
)

=Xsemilep

(MDs−Mη′ )2∫
0

dq2 [
λ
(
M2

Ds
,M2

η′ , q2)]3/2

(24)× [
f eff+

(
q2)]2

,

where

Xρ = G2
F |VudV

∗
cs |2f 2

ρ

32πM3
Ds

λ
(
M2

Ds
,M2

ρ,M
2
η′

)3/2

and

Xsemilep= G2
FV

2
cs

192π3M3
Ds

constrain the parameters̄A and �B in selected regions
of the (�B, Ā)-plane. These regions are delimited by
two straight lines, from the datum on the nonlep-
tonicD+

s → η′ρ+ decay rate, and by two ellipses cor-
responding to the measurement of the semileptonic
D+

s → η′�+ν decay rate.
Considering simultaneously the constraints, all the

data in Table 1 can be fitted if, in the (�B, Ā)-plane,
overlap regions exist among the area delimited by the
ellipses from Eq. (24), the regions delimited by the
straight lines from Eq. (23) and the regions between
the vertical lines from Eq. (22). At the present level
of accuracy of the experimental data in Table 1 such
regions indeed exist. They are depicted in Fig. 2 and
denoted asD1, D2, D3 andD4. The regionsD1 and
D3 are defined, respectively, by the conditions:

−1.2� �B � −0.70,

2.9[0.44− 0.58�B] GeV−2 � Ā

� 1.38
[−1.62�B + 1.224

√
1.57− �B2

]
GeV−2

(25)

and

0.70� �B � 1.20,

−1.38
[
1.62�B + 1.224

√
1.57− �B2

]
GeV−2 � Ā

(26)� −2.9[0.44+ 0.58�B ] GeV−2.
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Fig. 2. Bounds on the parameters(�B, Ā) in (20). The ellipses
represent the curves obtained from Eq. (24); the dashed lines stem
from Eq. (23); the two pairs of continuous vertical lines represent
the bound (22). The shaded areas and the dots indicate the regions
of the parameter space satisfying all the constraints.

On the other hand, the regionsD2 andD4 are defined,
respectively, by the conditions:

0.70� �B � 0.755,

2.9[0.44− 0.58�B] GeV−2 � Ā

� 1.38
[−1.62�B + 1.224

√
1.57− �B2

]
GeV−2

(27)

and

−0.755� �B � −0.70,

−1.38
[
1.62�B + 1.224

√
1.57− �B2

]
GeV−2 � Ā

(28)� −2.9[0.44+ 0.58�B] GeV−2.

Although it is expected and rather plausible, the
existence of such overlap regions was not guaran-
teed a priori; it shows that we have chosen a sensible
scheme to parameterize the decays in Table 1. More
important, we expect that an improvement in the ac-
curacy of the experimental data on theDs decay rates
would sensibly reduce the size of such overlap regions,
and presumably, exclude some of them. Noticeably, al-
ready at the present level of accuracy some interesting
observations can be drawn. Let us consider, for exam-
ple, the parameters in the regionsD3 andD2. In both
the cases the experimental branching fraction of the
semileptonic decay modeDs → η′�ν is reproduced.

Fig. 3. Semileptonic spectra ofDs → η′�ν. The green curve
corresponds to the parameters(�B, Ā) = (0.9,−2.9) ∈ D1, the blue
one to(�B, Ā) = (0.72,0.08)∈ D2.

However, a prime difference is that in the regionD3
the parameters̄A and�B are opposite in sign, while in
the regionD2 they have the same sign. This implies
that the relation between theDs → η′ andDs → η

form factors in (3) cannot be satisfied by the para-
meters in the regionD3. The same conclusion holds
for the regionD1. The opposite signs between̄A and
�B, as it happens in the regionsD1 andD3, have an
observable consequence in the spectrum of the semi-
leptonic decayD+

s → η′�+ν: in this case, a zero in
the dΓ (Ds → η′�ν)/dq2 distribution should be ob-
served, as depicted in Fig. 3. On the other hand, in
the case of parameters in the regionD2 (andD4) a
smooth decrease in the spectrum should be observed
as inD → K�ν. At the present level of accuracy of the
experimental measurements, no choice can be done
between the two shapes of the semileptonic distribu-
tion.

We can reasonably expect that improved data would
restrict the allowed regions in the(�B, Ā)-plane. It
could happen that they do not intersect any more, or
that intersection regions could be found with restricted
extension, allowing a better determination of the effec-
tive parameters introduced in our analysis. The calcu-
lation of such parameters remains a challenging task,
and we do not attempt it in the present Letter. How-
ever, it is worth outlining the theoretical framework in
which the calculation could be carried out.
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Concerning the effective coefficientsaeff
1,π andaeff

1,ρ ,
which take into account the deviation from the naive
factorization in the corresponding decay modes, their
theoretical calculation would consist in a precise de-
termination of nonfactorizable contributions. A step in
this direction has been recently performed in the case
of some two-body nonleptonic B decays, where the
meson picking up the B spectator quark is light, ex-
ploiting the large value of the beauty quark mass [19].
In this case, it has been observed that the corrections
to the naive factorization are of orderαs or 1/mb, and
a QCD factorization formula has been written for the
nonleptonic matrix elements in terms of meson light-
cone distribution amplitudes. A possible extension of
such a procedure to charm requires the development
of a reliable method for computing at least the first
(process dependent) 1/mQ correction. A different ap-
proach would consist in considering the corrections to
the largeNc limit, where factorization becomes ex-
act [20]: also in this case, however, next-to-leading
1/Nc terms are generally sizeable, and one needs their
actual calculation. Therefore, it seems worth attempt-
ing to gain information on the effective coefficients
from phenomenological analyses, as done, for exam-
ple, in [18].

As for the OZI suppressed diagrams producing the
η′ through its coupling to the gluons, together with
a weak annihilation ofDs , a perturbative calculation
could be carried out in QCD, in analogy with the cal-
culation of theη′ production in quarkonium decays
[21,22]. The difference, in the present case, is that one
has to account also for the gluon emission from a light
(strange) quark, and one cannot exploit the fact that
all the quarks involved are heavy, which justifies the
application of perturbative QCD methods. The calcu-
lation, for small values ofq2, produces an amplitude
for Ds → η′�ν of the same form as provided by a lin-
earq2 representation of theDs − η′ form factor. An
important ingredient in this perturbative calculation is
the actual value of the two-gluon-η′ matrix element
〈g(k1)g(k2)|η′(p)〉 describing the vertexη′gg for off-
shell gluons. Such a matrix element is parameterized
by a form factorF(k2

1, k
2
2) whose value atk2

1 = k2
2 = 0

is fixed by the QCD anomaly; as for the momentum
dependence, various parameterizations have been pro-
posed in the literature, thus providing different values
for the effective parameters̄A and�B introduced in our
analysis, which in turn could correspond to various so-

lutions for the spectrum shown in Fig. 3. One might
notice some analogies with the analyses which explain
the observed enhancement of theη′ production inB
decays through the mechanism of gluon fusion [23].

All such considerations taken into account, we
believe that our proposed scheme, where additional
contributions are reabsorbed in the parametrization of
the Ds → η′ form factor and inaeff

1,π , aeff
1,ρ is useful

from the phenomenological point of view, as a starting
point for the investigation of the underlying dynamics,
and could be extended to other cases.

Before concluding, we want to mention a check of
consistency. If we consider the decay modeD+

s →
�K0K+, which can be related toD+

s → ηπ+ through
SU(3)F symmetry, and describe theDs → �K0 form
factor byf η

+(q2), together withfK = 0.160 GeV, we
can estimate the effective parameteraeff

1,K . The ex-

perimental measurementB(D+
s → �K0K+) = (3.6 ±

1.1)× 10−2 producesaeff
1,K ∈ [0.72,1.14], i.e., the ef-

fective parameteraeff
1,K displays a significant overlap

with the range determined foraeff
1,π . In different words,

from our analysis and assumingSU(3)F , we would be
able to predict rather accurately the experimental da-
tum forB(Ds → �K0K+).

4. Conclusions

We have presented a phenomenological analysis of
the Ds decays to final states containingη and η′.
Since the theoretical investigations based onSU(3)F
symmetry, FSI effects and standardη–η′ mixing failed
in simultaneously reproducing the observed branching
ratios for all these decays, we have considered a
possible role of annihilation diagrams, in which the
η′ is produced through its coupling to gluons. We
have proposed a parametrization of those effects in
the Ds → η′ form factor. As forDs → η, we used
a theoretical calculation of the form factorf η

+(q2)

which corresponds to a branching fraction for the
decay Ds → η�ν in agreement with data. A fit
to all the available experimental results, adopting
a generalized factorization scheme for nonleptonic
decays, is possible; it constrains the parameters in
restricted regions that can be discriminated by making
dedicated observations, for example looking at the
semileptonic spectrum of theDs → η′ transitions.
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An improvement in the precision of the experimental
data onDs decays could support this scheme and be
helpful in understanding the dynamics of theη andη′
production in heavy meson decays.
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