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a b s t r a c t

A system to update estimates from a sequence of probability distributions is presented.
The aim of the system is to quickly produce estimates with a user-specified bound on the
Monte Carlo error. The estimates are based upon weighted samples stored in a database.
The stored samples are maintained such that the accuracy of the estimates and quality of
the samples are satisfactory. This maintenance involves varying the number of samples in
the database and updating their weights. New samples are generated, when required, by a
Markov chain Monte Carlo algorithm. The system is demonstrated using a football league
model that is used to predict the end of season table. The correctness of the estimates and
their accuracy are shown in a simulation using a linear Gaussian model.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

We are interested in producing estimates from a sequence of probability distributions. The aim is to quickly report these
estimateswith a user-specified bound on theMonte Carlo error.We assume that it is possible to useMCMCmethods to draw
samples from the target distributions. For example, the sequence can be the posterior distributions of parameters from a
Bayesian model as additional data becomes available, with the aim of reporting the posterior means with the variance of
the Monte Carlo error being less than 0.01. We present a general system that addresses this problem.

Our system involves saving the samples produced from the MCMC sampler in a database. The samples are updated each
time there is a change of sample space. The update involves weighting or transiting the samples, depending on whether the
space sample changes or not. In order to control the accuracy of the estimates, the samples in the database are maintained.
This maintenance involves increasing or decreasing the number of samples in the database. This maintenance also involves
monitoring the quality of the samples using their effective sample size. See Table 1 for a summary of the control variables.
Another feature of our system is that the MCMC sampler is paused whenever the estimate is accurate enough. The MCMC
sampler can later be resumed if a more accurate estimate is required. Therefore, it may be the case that no new samples
are generated for some targets. Hence the system is efficient, as it reuses samples and only generates new samples when
necessary.

Our approach has similar steps to those used in sequential Monte Carlo (SMC) methods (Doucet et al., 2001; Liu, 2008),
such as an update (or transition) step and re-weighting of the samples. Despite the similarities, SMC methods are unable to
achieve the desired aims considered in this paper. Specifically, even though SMCmethods are able to produce estimates from
a sequence of distributions, it is unclear how to control the accuracy of this estimatewithout restarting thewhole procedure.
For example, consider the simulations in Gordon et al. (1993) where the bootstrap particle filter, a particular SMCmethod, is
introduced. In these simulations the posterior mean is reported with the interval between 2.5 and 97.5 percentile points. As
these percentile points are fixed, there is no way to reduce the length of the interval. The only hope of reducing the interval
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Table 1
Summary of control variables.

Control variable Measurement Target interval

Accuracy of estimates (A) Standard deviation of estimates [β1, β2]
Quality of samples (Q ) Effective sample size of database/NMAX [γ1, γ2]

is to rerun the particle filter with more particles, although there is no guarantee. This conflicts with the aim of reporting the
estimates quickly. In practice, most SMC methods are concerned with models where only one observation is revealed at a
time (see simulations in e.g. Kitagawa, 2014, DelMoral et al., 2006 and Chopin, 2002). Our framework allows for observations
to be revealed in batches of varying sizes; see the application presented in Section 3.

A potential application of the system ismonitoring the performance ofmultiple hospitalswhere the data observed are pa-
tient records and the estimate of interest relates to the quality of patient care at each hospital. Controlling the accuracy of this
estimatemay relate to controlling the proportion of falsely inspected hospitals. Another example of a realistic application of
the system is a football leaguemodel (see Section 3) where the data revealed are thematch results and the estimate of inter-
est is the end of season rank league table. Controlling the estimated rank may be of interest to sports pundits and gamblers.

In Section 2we define, in detail, the setupwe are considering.We then describe the separate processes of the system.We
also describe how to combine the weighted samples to form the estimate of interest. Then in Section 2.7 we present a modi-
fied batchmean approach that we use to compute the accuracy of the estimate. In Section 3 we investigate the performance
of the system using amodel for a football league. For this application, the aim is to provide quick and accurate predictions of
the end of season team ranks as football match results are revealed. We examine the performance of the system as the size
of data received increases. Currently, there is no theoretical proof that the proposed system is stable; however simulations
verify the correctness of the reported accuracy and the estimate. We present such a simulation in Section 4, where we apply
the system using a linear Gaussianmodel and simulated data. We conclude in Section 5 with a discussion of potential future
topics of research.

2. Description of the system

2.1. Setup

We now describe the settings we consider and the necessary operations required for our system to function. Let
(Sn, Sn, πn)n∈N be a sequence of probability spaces. We are interested in reporting πngn =


gn(x)dπn(x) where gn is a, pos-

siblymultivariate, random variable on (Sn, Sn, πn). In order to implement our system, the following operations are required:

1. MCMC: for all n ∈ N, generate samples from an MCMC with stationary distribution πn.
2. Weighting Samples: for all k ∈ D := {j : Sj−1 = Sj and πj ≪ πj−1}, the Radon–Nikodym derivative dπj

dπj−1
can be evaluated.

3. Transiting Samples: for all k ∈ D ∃fk : Sk−1 × [0, 1] → Sk such that ξ ∼ πk−1,U ∼ U[0, 1] =⇒ fk(ξ ,U) ∼ πk.

The weighting operation enables us to weight previously generated samples according to the latest measure. In the case
where the sample space changes or the Radon–Nikodym derivative is not defined, the transition operation allows us to map
the samples to the latest measure. If such a transition function, in operation 3, is unavailable, then the following may be
used instead.

3′. Transiting Samples: for all k ∈ D ∃fk : Sk−1 × [0, 1] → Sk.

This alternative transition operation allows us to map the samples into the latest sample space of interest.

2.2. Global variables

The samples produced by the RMCMC process (Section 2.3) are stored in a database. Each sample is recorded to the
databasewith a production date and an information cut-off. The production date is the date and time the samplewaswritten
to the database from the RMCMC process. The information cut-off refers to the measure the MCMC was targeting when the
sample was produced. Lastly, each sample will enter the database with weight 1. Themaximum number of samples allowed
in the database isNMAX. In Section 2.5we explain how the control process variesNMAX over time. Further, we shall refer to the
current number of samples in the database as N . The deletion process (Section 2.6) ensures that N ≤ NMAX by sometimes
removing samples from the database. A summary of the systems global variables is provided in Table 2 along with their
descriptions.

2.3. RMCMC process

The RMCMC process, summarised in Algorithm 2.1, is an MCMC method that changes its target without the need to
restart.When the target of interest changes fromπj−1 toπj so does the target of theMCMC. TheMarkov chain continues from
the latest sample, making a transition step using fj if there is a change of sample space. This ensures that the next MCMC is
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Algorithm 2.1 RMCMC process
Parameters: MCMC algorithm, B0.

1: repeat indefinitely.
2: if target changes to πj then
3: Set B = B0.
4: Update target of MCMC to πj.
5: if j ∈ D then
6: Set current position of MCMC to fj(ξ ,U) where U ∼ U[0, 1] and ξ is the latest sample generated.
7: if rmcmc_on=true then
8: Perform MCMC step.
9: if B = 0 thenwrite sample to database with weight 1.

10: else B← B− 1.
11: else sleep for some time.

exploring the correct space.We continue from this sample in the hope that theMarkov chain converges faster to the updated
target distribution than a randomly chosen starting point. To allow the Markov chain to move toward the updated target
distribution we use a burn-in period where the first B0 samples are discarded after the target changes. This burn-in period
will also weaken the dependence between samples from different target distributions. As this MCMCmethod is never reset
and continues from the last generated sample we refer to it as a rolling MCMC (RMCMC) process.

The RMCMCprocess is only activewhen new samples are required as it can be paused and resumed by the control process
(Section 2.5). If the process is paused for long periods, itmay be the case that no samples are produced for some targets. In Al-
gorithm 2.1 the generated samples are written to the database individually. In practice, however, it may bemore convenient
to write the samples to the database in batches. This practice is allowable and will not affect the functioning of the system.

2.4. Update process

The update process, presented in Algorithm 2.2, ensures that the samples are weighted correctly each time the target
changes. There are two types of updates depending on the measures and their sample spaces. More precisely, consider a
change of target from πj−1 to πj. If j ∈ D, that is the sample spaces differ or the Radon–Nikodym dπj/dπj−1 is not defined,
then the function fk is used to map the samples in the database onto the new space. On the other hand, if j ∉ D, the samples
are first re-weighted according to dπj/dπj−1, then scaled. We now discuss these re-weight and scaling steps in more detail.

Algorithm 2.2 Update Process
1: repeat indefinitely.
2: if the target changes from πj−1 to πj then
3: Label the out-of-date samples ξ1, . . . ξm with corresponding weights w1, . . . , wm.
4: if j /∈ D then
5: Update the weight wi ← wivi where vi ∝

dπj
dπj−1

(ξi) for i = 1, . . . ,m.

6: Compute d =
m

k=1 wk

/
m

k=1 w2
k


.

7: Set wi ← dwi for i = 1, . . . ,m.
8: Write the weights into the sample database.
9: if j ∈ D then

10: Replace samples by fj(ξi,U1), . . . , fj(ξm,Um) where U1, . . . ,Um
iid
∼ U[0, 1], leaving the weights unchanged.

11: else sleep for some time.

Suppose that the RMCMC process produces the samples ξ1, . . . , ξm ∼ πj−1 where πj−1 is the target of interest. Next,
suppose the target changes from πj−1 to πj. In order to use the samples from the previous measure, πj−1, for estimating πjgj,
the weights are updated as follows. For i = 1, . . . ,m define the updated weightWi from wi as

Wi = wivi where vi ∝
dπj

dπj−1
(ξi).

Afterwards, the weights are scaled such that the sum of the weights is equal to their effective sample size. More precisely,
define the scaled weight wi from Wi as

wi = Wi

m
k=1

Wk

m
k=1

W 2
k

(i = 1, . . . ,m).
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Table 2
Description of the global variables in the rolling MCMC system.

Variable Description

rmcmc_on Indicator if RMCMC process is supposed to be producing new samples.
NMAX Maximum number of samples allowed in the database.
N Number of samples contained in the database.
(ξi, wi)i=1,...,N The samples and their corresponding weights in the database.

Algorithm 2.3 Control Process
Parameters: β1, β2, γ1, γ2,NMIN.

1: repeat indefinitely.
2: Compute Q and A.
3: if A < β1 and N ≥ NMIN then set rmcmc_on=false.
4: if (A > β2) or (rmcmc_on=false and Q < γ1 and N = NMIN) then set rmcmc_on=true
5: if rmcmc_on=false and Q < γ1 and N > NMIN then decrease NMAX.
6: if rmcmc_on=true and Q > γ2 then increase NMAX.

Straightforward calculations show that scaling in this fashion ensures that the effective sample size of the database is the
sum of the effective sample sizes of the most recently weighted samples and the newly generated samples.

2.5. Control process

The control process determines when the RMCMC process is paused and changes the maximum number of samples
contained in the database. This is done to maintain the accuracy of the estimate of interest and the quality of the samples.
We now discuss each of these in turn.

At any given time, denote the samples in the database by ξ1, . . . , ξN . For i = 1, . . . ,N denote the ith sample weight in
the database as wi. To estimate the quantity of interest πkgk, for some k ∈ N, we use the estimator

T =

N
i=1

wigk(ξi)

N
i=1

wi

.

The accuracy of the estimate, A, is defined as the standard deviation of T (in Section 2.7 we discuss how to estimate A). The
process aims to control the accuracy A such that A < ϵ for some fixed ϵ > 0. When considering multiple estimates i.e. mul-
tivariate gk, we force the standard deviation of all the estimates below the threshold ϵ. One approach to control the accuracy
would be to pause the RMCMC process each time A < ϵ and resume if A ≥ ϵ. However, this may lead to the RMCMC process
being paused and resumed each time a new observation is revealed, as a small change in the accuracy will inevitably occur.
Therefore, we use 0 < β1 < β2 ≤ ϵ so that if A ≤ β1 the RMCMC process is paused and if A > β2 the RMCMC process is
resumed.

The control process also controls the quality of the samples in the database. The process aims to hold a good mixture of
samples in the hope that a future change of measure does not require the resuming of the RMCMC process. We define the
quality of the samples in the database as

Q =
ESS
NMAX

where ESS =


N
i=1

wi

2

N
i=1

w2
i

.

The quality of the samples, Q , is the effective sample size of all the weights in the database divided by the optimal effective
sample size of the database, NMAX. The optimal effective size of the database consists of a database with NMAX samples all
with weight 1. As with the accuracy, we aim to maintain the quality such that γ1 < Q < γ2 for some 0 < γ1 < γ2 ≤ 1.
The control process is summarised in Algorithm 2.3. To ensure that the database is never depleted, a minimum number of
samples is imposed at NMIN > 0 such that the number of samples, N and NMAX cannot drop below NMIN. Therefore, when the
RMCMC process is paused, Q < γ1 and NMAX = NMIN we cannot decrease NMAX any more. In this case, the RMCMC process
is resumed to generate new samples that replace the poor quality samples in the database.

2.6. Deletion process

This process deletes samples from the database if the current number of samples, N , exceeds the maximum number of
samples allowed NMAX. Removing samples from the database reduces the computational work performed by the update
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Algorithm 2.4 Deletion Process
1: repeat indefinitely.
2: if N > NMAX then delete samples from the database.
3: else sleep for some time.

process and calculating the estimates. Moreover, lowering the number of samples is the way the control process maintains
the quality of the samples. For simplicity, if N > NMAX, the N − NMAX samples that were produced the earliest are removed.
The deletion process is summarised in Algorithm 2.4.

2.7. Modifying batch means to estimate the accuracy

There are severalmethods to estimate the variance ofMCMCs such as block bootstrapping (Lahiri, 2003, Chapter 3), batch
means (Flegal and Jones, 2010) and initial sequence estimators (Geyer, 1992). In our system the samples in the database have
weights which complicates the estimation of the variance. The aforementioned methods cannot be used as they essentially
treat all samples with equal weight. We now present a version of the batch mean approach that is modified to account for
the sample weights.

Assume that the estimate of interest is πngn for some n ∈ N. First, order the samples in the database ξ1, . . . , ξN and their
corresponding weights w1, . . . , wN by their production date. This ensures that the dependence structure of the samples is
maintained. Then we divide the samples into batches or intervals of length b according to their weights. More precisely, let
D0 = 0,Dj =

j
i=1 wi and L = ⌈

N
i=1 wi/b⌉ be the number of batches. It may be the case that a weight spans more than

one interval. Therefore we need to divide each weight by the proportion it spans a given interval. For the ith interval and
uth sample define κi(u) = [min {Du, ib} −max {Du−1, (i− 1)b}]+, where [x]+ = max (0, x), for i = 1, . . . , L. Then κi(u) is
the batch weight of ξu in interval i. The mean of the weighted samples in the ith interval is

µi =

N
u=1

κi(u)gn(ξu)

N
u=1

κi(u)
.

Finally, we estimate the squared accuracy by

Â2
=

1
L

L
i=1

(µi −µ)2 , µ = 1
L

L
j=1

µj.

The batch length b should be large enough to capture the correlation between samples, yet small enough to give a stable
estimate of the variance. In practice we recommend using several batch lengths in order to get a conservative estimate of A.
Moreover, the batch mean estimate should not be trusted when the number of batches, L, is low. This can occur as

N
i=1 wi

can become very small. In this case, we suggest setting the accuracy A to −1 nominally. This prompts the control process
to remove samples from the database and then restart the RMCMC process. This action effectively replenishes the database
with new samples. In practice, we recommend taking this action when L < 20.

2.8. Remarks

Effective sample size for correlated samples. The quality, Q , uses the effective sample size defined for independent samples,
not correlated samples which we use in our system. In the system, consider the extreme case where all samples have the
same value i.e. ξ1 = · · · = ξN produced from the same target. Each of these sampleswill have the sameweight and therefore
Q = 1 suggesting that the optimal quality has been achieved. Further, the accuracy of the estimate, A, will be very low since
the weights and samples are all the same. Hence, in this extreme case, the control process would take no action. This is
clearly undesirable. Ideally, the effective sample size used to calculate Q should take into account the autocorrelation of the
samples, where high autocorrelation (in absolute value) leads to a lower effective sample size. However, we use this version
of the effective sample size for independent samples as it is quick and simple to compute.
Degeneracy of the sample weights.We now discuss how the system handles two types of degeneracy of the sample weights.
The first iswhere a single sample in the database hasmost of the totalweight and all other samples have 0 or nearly 0weight.
If this were to occur, the effective sample size, and therefore the quality, Q , will be very low. In this case, the control process
will remove samples from the database before resuming the RMCMC process. The second is where all sample weights are 0
or nearly 0. As a consequence, the sum of the weights,

N
i=1 wi, will be very low. Recall that the batch mean approach uses

L = ⌈
N

i=1 wi/b⌉ batches where b is the length of the batch. Further, if L < 20 the control process removes samples from
the database and resumes the RMCMC process. Therefore, in the case where

N
i=1 wi drops to low, the sample database in

replenished. To summarise, the system does not attempt to avoid these types of degeneracy, but to take remedial action
when it does occur.
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Burn-in periods. In the RMCMC process, we perform a burn-in each time a change of measure occurs. In some cases, how-
ever, it may not be necessary, as we now discuss. Assume that we have the samples ξ1, . . . , ξm ∼ πj−1. Next, consider a
change of measure from πj−1 to πj such that j ∈ D. In this case, a burn-in period is unnecessary as the new chain starts at a
representative of πj, namely fj(ξm,U) ∼ πj where U ∼ U[0, 1]. On the other hand, if either the samples ξ1, . . . , ξm are not
from πj−1 or the transition function in operation 3′, but not operation 3, is available, then a burn-in period is required. In
any case, performing a burn-in is mostly harmless.
Subsampling. The samples produced from an MCMC method are correlated. If the correlation of the samples is high then a
large number of samples are required to achieve the desired accuracy of the estimate. As a consequence, the update process
and the calculation of the estimate would take a long time. To alleviate this problem we use subsampling.

Use of subsampling within an MCMC method entails saving only some samples produced. More precisely, with a sub-
sampling size k, every kth sample is saved and the rest discarded. To choose the subsampling size k, we suggest performing a
pre-initialisation run of theMCMC on the initial set of data. One approach, that we use in our implementation of the system,
is to vary k until ρ := ς2/var {g1(ξ1)} ≈ 2 where ς2

= var {g1(ξ1)} + 2

∞

j=1 cov

g1(ξ1), g1(ξ1+j)


. We found that setting

ρ ≈ 2 worked well in our implementations of the system, however may not be appropriate in all applications. In practice,
a method such as initial sequence methods (Geyer, 1992) or a batch mean approach (Brooks et al., 2011, Section 1.10.1) can
be used to estimate ς2. We chose to use the batch mean approach in our system.

If the initial Markov chain ξ1, ξ2, . . . is Harris recurrent and stationary with invariant distribution π , then by the Markov
chain central limit theorem (e.g. Jones, 2004)

√
n


1
n

n
i=1

g(ξi)−


g(x)π(dx)


d
−→ N


0, ς2 as n→∞.

Thus ς2 is the asymptotic variance of the Markov chain. Hence, by choosing ρ ≈ 2, we obtain

2
∞
j=1

cov

g(ξ1), g(ξ1+j)


≈ var {g(ξ1)} ,

i.e. the sum of all covariance terms contributes as much as var {g(ξ1)} to ς2. This way, the covariance between the samples
is prevented from getting too large relative to var {g(ξ1)}.
Choice of Scaling.Asdiscussed in Section 2.3, the databasewill consist ofweighted samples fromdifferent target distributions.
In Section 2.5 the weighted sample average, T , is used to estimate πjgj for some j ∈ N. In this subsection we show that, due
to the scaling of the weights (Section 2.4), the variance of T is minimised under certain assumptions. A similar calculation
can be found in Gramacy et al. (2010).

We begin by showing that T can be decomposed according to two sets of samples. Denote the invariant measure of the
RMCMC process at a given time instance as πj for some known j ∈ N. Further, label the samples produced from this MCMC
targeting πj as ξm+1, . . . , ξN for some m ∈ {0, . . . ,N}. The case m = N corresponds to the situation when no samples
have been produced from πj. Label the remaining sample as ξ1, . . . , ξm. These samples will have already been weighted and
scaled in previous iterations.

The estimator, T , can be decomposed according to the two sets of samples as

T =

m
i=1

wigj(ξi)+
N

i=m+1
gj(ξi)

m
i=1

wi + (N −m)

,

aswj = 1 for j = m+1, . . . ,N . In terms of the updated weights, T can be written as T = αT1+ (1−α)T2 where T1 =
m

i=1

Wigj(ξi)/
m

i=1 Wi and T2 =
N

i=m+1 gj(ξi)/(N−m) are the individual estimators ofπjgj given by the two sets of samples and

α =
ESSm

ESSm + (N −m)
where ESSm =


m
i=1

Wi

2

m
i=1

W 2
i

.

The choice of the scaling performed in the update process (Section 2.4) led to this choice of α. We now show that this choice
of α, under certain assumptions, minimises the variance of T . Assume that φ ∈ R is a constant. Then the variance of the
estimator T = φT1+(1−φ)T2 is var(T ) = φ2var(T1)+(1−φ)2var(T2)wherewe assume that T1 and T2, ormore specifically
the two sets of samples ξ1, . . . , ξm and ξm+1, . . . , ξN , are independent. The variances of the individual estimators are

var(T1) =
σ 2

ESSm
and var(T2) =

σ 2

N −m
,

where we assume that var

gj(ξi)


= σ 2, for i = 1, . . . ,N and that the weights are constants. Upon differentiating we find

that settingφ to ESSm/{ESSm+(N−m)}minimises var(T ) thus regainingα. These assumptions are unrealistic in our setting.
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However, this motivates the use of a burn-in period within the RMCMC process after new data are observed. Although we
cannot guarantee independence between the sets of samples, the burn-in period at least weakens their dependence.

3. Application to a model of a football league

In this section we demonstrate how the system performs on amodel of a football league. The data we use are the English
Premier League results from 2005/06 to 2012/13 season. In a season, a team plays all other teams twice. For each match
played, a team receives points based on the number of goals they and their opponent score. If a team scores more goals
than their opponent they receive 3 points. If a team scores the same number of goals as their opponent they receive 1 point.
If a team scores fewer goals than their opponent they receive 0 points. The rank of each team is determined by their total
number of points, where the teamwith the highest number of points is ranked 1st. A tie of ranks is then determined by goal
difference and then the number of goals scored.

We are interested in the probability of each rank position for all teams at the end of a season. The aim is to estimate these
rank probabilities to a given accuracy. Thus, in this applicationwe are concerned aboutmaintaining the accuracy ofmultiple
predictions.

Throughout this section, we use the following notation. Let Ip be the p × p identity matrix and 1p be a vector of 1s of
length p. Further, let N(µ, Σ) denote a multivariate normal distribution with mean µ and covariance matrix Σ . Denote the
cardinality of a set A by |A|. We shall reserve the index t = 1, . . . , T for reference to seasons. Lastly, let logN(µ, σ 2) denote
a log-normal distribution i.e. if X ∼ N(µ, σ 2) then exp(X) ∼ logN(µ, σ 2).

We begin by presenting a model for football game outcomes. The model we use is similar to that presented in Glickman
and Stern (1998) and Dixon and Coles (1997).

3.1. Football league model

Consider a model with hidden Markov process Xt (t ∈ N), observed process Yt (t ∈ N) and parameter θ . The observation
Yt contains all observations for state Xt . Denote the jth observation of state t as Yj,t . Next define the kth observation batch of
state t asYk,t for k = 1, . . . , ct for some ct ≥ 1. For instance, if the observations are batched in groups of 10, the kth batch
of state t isYk,t = Y10k−9,t , . . . , Y10k,t . In this application section, we are interested in the modelp(xt |x1:t−1, θ) = p(xt |xt−1, θ)

p(yk,t |y1:(k−1),t , y1:(t−1), x1:t , θ) = p(yk,t |xt , θ)
p(x1|θ), p(θ)

(1)

wherey1:0,t is an empty observation batch introduced for notational convenience. In this section, the sequence of target
distributions is defined as follows. Let ϖk,t = p(x1:t , θ |y1:k,t , y1:(t−1)) for t = 1, 2, . . . and k = 0, . . . , ct . Then, we are
interested in the targets πn = ϖϕ1(n),ϕ2(n) for n ∈ N where

ϕ2(n) = max


j ∈ N : (n− 1) ≥

j−1
i=1

(ci + 1)


, ϕ1(n) = n− 1−

ϕ2(n)−1
i=1

(ci + 1),

wherewe set
0

i=1(ci+1) = 0. The transition steps occur at k ∈ D = {n ∈ N : ϕ1(n) = 0}. In this application, the transition
functions fk (k ∈ D) are dictated by the model namely p(xt |xt−1, θ) in (1).

We now describe the states Xt , the observations Yt and the parameter θ in this football application. Each team is assumed
to have a strength value (in R) which remains constant within a season. Let Ut be the set of teams that play in season t, Xi,t
be the strength of team i in season t and Xt = (Xi,t)i∈Ut . To condense notation, for any set A ⊂ Ut define XA,t := (Xi,t)i∈A and
form the parameter vector θ = (λH , λA, σp, σs, η, µp), which we now define.

At the end of every season, some teams are relegated and new teams are promoted to the league. Denote the set of
promoted teams that begin season t by Wt and let Vt = Ut\Wt be the set of teams that remain in the league from season
t − 1 to t . The promoted teams’ strengths are introduced such that XWt ,t |(θ, Xt−1 = xt−1) ∼ N


µp1|Wt |, σ

2
p I|Wt |


. Thus any

previous history in the league is not used for a promoted team. From season t − 1 to t , the strengths of the teams that were
not relegated are evolved such that XVt ,t |(θ, Xt−1 = xt−1) ∼ N


ηCtxVt ,t−1, σ

2
s I|Vt |


, where Ct = I|Vt | − |Vt |

−1 1|Vt |1
T
|Vt |.

Thus between seasons, the strengths of the teams that are not relegated are centred around 0 and expanded (η > 1)
or contracted (η < 1). Next, consider a match, in season t , between home team j and away team k (j, k ∈ Ut ). We as-
sume that the number of home Gk

j,H and away goals Gj
k,A are modelled by Gk

j,H |(θ, Xt) ∼ Poisson

λH exp


xj,t − xk,t


and

Gj
k,A|(θ, Xt) ∼ Poisson


λA exp


xk,t − xj,t


respectively independently of each other. The parameters λH and λA are strictly

positive and pertain to the home and away advantage (or disadvantage) which is assumed to be the same across all teams
and all seasons. More precisely, λH (λA) is the expected number of home (away) goals in a match between two teams of
equal strength. Finally, denote the results of season t by Yt ; the number of home and away goals for all games in season t .
For this football application, the sample space is Sn = R20ϕ2(n)+2 × (R+)4.

For the first season strengths,we use an improper flat prior. For the home and away advantagewe take respective Gamma
distribution priors of shapes 5 and 2 and scales 5 and 1. For (η, σs) and (µp, σp)we take their Jeffreys priors. Jeffreys priorwas
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used for both (η, σs) and (µp, σp) after considering the amount of information available for eachparameter. For instance, if 10
seasons are considered, only 9 transitions between seasons are available for the likelihood of (η, σs). Thus, using an informa-
tive prior would greatly influence the posterior distribution. This can also be argued for the promotion parameters (µp, σp).

3.2. The MCMC step

For the MCMC step in the RMCMC process (Algorithm 2.1), we use a Metropolis–Hasting algorithm (Metropolis et al.,
1953; Hastings, 1970). In general, a different, potentially more complex MCMC method can be used. However, the system
does not rely on the choice of MCMC method, and will work with a simple sampler, as demonstrated in this application.
We use independent proposal densities for the separate parameters. Due to the high dimension of the combine states and
parameter, we choose to implement block updates (Brooks et al., 2011, Section 21.3.2). This entails proposing parts of the
state and parameter at any stage. The proposal densities used and the block updating are summarised in Algorithm 2.1
located in Section 2 in the Supplementary material (see Appendix A). In the algorithmwe propose a new strength of a single
season 80% of the time and part of the parameter θ the remaining 20%. This was done so that exploration of the chain was
mainly focused on the states. The proposal densities’ parameters were determined by consideration of the acceptance rate
in a pre-initialisation run of the MCMC. Lastly, the samples were written into the database in batches of 1000.

3.3. League predictions

In Section 3.1we introduced amodel for the team strengths and the outcome of footballmatches, in terms of goals scored.
In Section 3.2 we presented the MCMC method which produces samples used to estimate the states and parameters of the
model. We now explain how these samples are used to predict the vector of final ranks for the current season, which is our
estimate of interest i.e. πngn.

For each sample, all games in a season are simulated once. Thus each sample gives a predicted end of season rank
table. The distribution across these predicted rank tables gives the estimated probabilities of the ranks of each team. This
distribution is the posterior summary of interest whose accuracy we aim to control.

3.4. System parameters

As mentioned in Section 2.8, we performed a pre-initialisation run using 10,000 samples to determine the subsampling
size. Based on the results from the 2005/06 to the 2009/10 season, we found that a subsample size of 80 gave ς ≈ 2.
We used a burn-in period of B0 = 10,000 within the RMCMC process. Within the control process we use β1 = 0.01 and
β2 = 0.0125 for the accuracy thresholds and γ1 = 0.1 and γ2 = 0.75 for the quality thresholds. Whenever the control
process demanded a change in NMAX, it was increased or decreased by 10% of its current value. Finally, we set NMIN = 1000.

As mentioned in Section 3.3, our estimate consists of rank probabilities for each team i.e. each team has estimated
probabilities for ending the season ranked 1st, . . . , 20th. The accuracy of each of the 400 rank probabilities is calculated
using the method presented in Section 2.7 using two batch lengths b = 10 and b = 50. The maximum standard deviation
is reported as the accuracy of the estimate to be conservative.

3.5. Results

The system is initialised with the results from the 2005/06 to 2009/10 seasons of the English Premier League. Using the
samples from this initialisation, we proceeded with 3 separate runs of the system. The system itself remained unchanged in
each of the runs; however, the way the results for the next 2 seasons were revealed varied. The match results were revealed
individually, in batches of 7 days and in batches of 30 days. A new data batch was revealed only if the RMCMC process was
paused.

In Table 3 we present the system results of each run. We see that for larger data batches, the RMCMC process is resumed
more often. Further, the percentage of new samples generated after new data are revealed increases as with the size of
the data batch. The average percentage of new samples is calculated as follows. Before a new data batch is revealed the
percentage of new samples in the database generated after the introduction of the latest data is calculated. The average of
these percentages is then taken over the data batches. This means that for larger data batches the RMCMC process will often
be resumed to generate new samples that replace most of the samples already in the database. In Table 4 we present the
estimated posterior mean of the components of θ at the end of the run for each batch size. As expected, being based on the
same data, these final estimates are almost identical for the various batch sizes. In Table 5 we present the predicted end of
2012/13 season ranks for selected teams and ranks. Each team and rank have 3 predictions given by the runs using different
batch sizes. For each batch size, these predictions are being controlled. More precisely, for every rank of every team the
predictions’ standard deviation is being controlled below β2 = 0.0125. This is consistent with the predictions across the
various batch sizes. The predictions for all teams and ranks can be found in Section 1 in the Supplementary material (see
Appendix A). In the following, we present some results for the 7 day batch run only. Further results for all the batch sizes are
presented in Section 1 in the Supplementary material (see Appendix A). In Fig. 1 we display the accuracy of the predictions
(A), the quality of the samples (Q ) and the number of samples in the database (N) as new data are revealed. In Fig. 1(a), the
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Table 3
System summary for various data batch sizes.

Individual 7 day 30 day

No. of batches 760 70 20
Range of games per batch [1, 1] [3, 21] [10, 53]
No. times RMCMC resumed 39 31 18
Total No. MCMC steps 24,010,000 14,230,000 9,240,000
Average % of new samples 2% 20% 53.6%

Table 4
End of run parameter estimated mean with 95% credible intervals.

Parameter Individual 7 day 30 day

λH 1.446 (1.406, 1.497) 1.447 (1.406, 1.496) 1.446 (1.406, 1.494)
λA 1.031 (0.998, 1.073) 1.032 (0.995, 1.073) 1.032 (0.997, 1.077)
η 0.970 (0.865, 1.054) 0.967 (0.865, 1.049) 0.964 (0.864, 1.048)
σs 0.083 (0.061, 0.117) 0.084 (0.059, 0.113) 0.086 (0.059, 0.116)
−µp 0.245 (0.316, 0.172) 0.242 (0.322, 0.167) 0.244 (0.315, 0.171)
σp 0.116 (0.049, 0.204) 0.117 (0.063, 0.191) 0.114 (0.06, 0.202)

Table 5
End of 2012/13 season rank predictions for selected teams and ranks. Each team and rank
have 3 predictions given by (from top to bottom) the individual, 7 day and 30 day batch run.

Team Rank
1 2 3 · · · 18 19

Arsenal
8% 14% 17% · · · 0% 0%
8% 14% 17% · · · 0% 0%
8% 15% 19% · · · 0% 0%

Aston Villa
0% 0% 1% · · · 6% 5%
0% 0% 1% · · · 6% 5%
0% 0% 1% · · · 6% 5%

Chelsea
9% 15% 19% · · · 0% 0%
9% 15% 21% · · · 0% 0%
10% 16% 20% · · · 0% 0%

Everton
1% 2% 6% · · · 1% 1%
1% 3% 5% · · · 1% 1%
1% 2% 5% · · · 1% 1%
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Wigan
0% 0% 0% · · · 10% 11%
0% 0% 0% · · · 10% 11%
0% 0% 0% · · · 11% 12%

control process attempts to keep the accuracy of the predictions between β1 = 0.01 and β2 = 0.0125. Occasionally, after
new data are revealed, the accuracy exceeds the upper threshold β1. The accuracy drops nominally to 0 at the end of each
season prior to the introduction of the next seasons’ fixtures. Similarly, in Fig. 1(b), the quality of the samples is attempted
to be kept between γ1 = 0.1 and γ2 = 0.75. In Fig. 1(c), we see that the number of samples in the database, N , varies over
time. More precisely, after 5 batches of data, 19,246 samples are used. However, later the number of samples used decreases
to approximately 14,000 samples. Similar features are seen for the different batch sizes. The change in the accuracy of the
predictions and the quality of the samples gets smaller as the batch size decreases.

Fig. 1(d) is a plot of the Kaplan–Meier estimator (Kaplan and Meier, 1958) of the survival function of the samples in the
database as new data are revealed. More precisely, let U be a random variable of the number of new data batches observed
before a sample is deleted. Then Fig. 1(d) is a plot of the Kaplan–Meier estimator of S(u) = P(U > u). The Kaplan–Meier
estimator takes into consideration the right-censoring due to the end of the simulation i.e. samples that could have survived
longer after the simulation ended. We see that samples survive as new data are observed e.g. a sample survives 10 or more
batches with probability 0.33. Thus samples are reused as envisaged in Section 2.4. Lastly, from using the different batch
sizes (see Section 1 in the Supplementary material, Appendix A) we see that samples survive more data batches as the size
of the batch gets smaller.

In order to determine the quality of the predicted ranks given by the system, we performed a separate run and consider
the coverages of the prediction intervals. For this run the initial observations consisted of the 2005/06–2007/08 seasons’
results. We then introduced the match results for the 2008/09–2012/13 seasons in 7 day batches. Over the 5 seasons there
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N

u

S
u

Fig. 1. System results using 7 day batches where (a) is the accuracy (A) of the predictions, (b) is the quality (Q ) of the samples, (c) is the number of samples
in the database (N) as new data are revealed and (d) is the Kaplan–Meier estimator the samples lifetime.

were 178 batches of intervals for each team. Before each batch of results was introduced, conservative 50% and 95% intervals
were formed for the predicted end of season rank of each team. These confidence intervals are conservative due to the
discreteness of ranks. The true mass contained in the conservative 50% intervals was on average 76.1%. Similarly, the true
mass contained in the conservative 95% intervals was on average 98.8%. When compared with the true end of season ranks,
74.2% of the true ranks lay in the conservative 50% intervals and 99.3% lay in the 95% intervals.

4. Application to a linear Gaussian model

In Section 3we are unable to check if the strengths of the teams and the other parameters (i.e. the states and parameters)
are being estimated accurately as their true distributions are unknown. In this section we inspect the estimates given by
the RMCMC system using simulated data. We use a linear Gaussian model such that the Kalman filter (Kalman, 1960) can
be applied. This simulation will allow us to compare the RMCMC system and the Kalman filter estimates. This linear and
Gaussian model was chosen to resemble the football model described in Section 3. For this model the Kalman filter gives
the exact conditional distribution. Therefore, the Kalman filter will provide the benchmark estimates to compare against.

Consider the model defined as follows:
State : Xt = AXt−1 + Φt , Φt

iid
∼ N(0, Σ)

Observation : Yt = BXt + Ψt , Ψt
iid
∼ N(0, Ξ),

for t = 1, 2, . . . (2)

and prior distribution X0 ∼ N(µ0, Σ0). For this particular simulation we chose A = 0.7(I20 − 1
201201T

20), Σ = 0.05I20 and
Ξ = 0.02I380. The matrix B is constructed according to the football matches in the English Premier League in the 2005/06
season. More precisely, each row of B consists of zeros apart from two entries at i and j corresponding to a football match
between home team i and away team j. A 2 is put in the ith position and a 1 at the jth. The rows are ordered chronologically
from top to bottom. For the prior distribution, we set µ0 to be a vector of zeros and Σ0 = I20. Denote the ith component of
Xt as Xi,t .

A single realisation of the states and observations was generated for t = 1, . . . , 7. Using these observations, the RMCMC
systemwas run 100 times to estimate means. This was compared with the estimates given by the Kalman filter. Each run of
the RMCMC system was initialised using the observations from state t = 1, . . . , 5.
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(a) Posterior mean of X5,6 and X5,7 . (b) Posterior mean of X18,6 and X18,7 .

(c) Posterior mean of X5,6 afterY1,6 revealed. (d) Posterior mean of X18,7 afterY20,7 revealed.

Fig. 2. Simulation results: (a) and (b) are violin plots of the difference between the 100 RMCMC and the Kalman filter posterior mean. (c) and (d) are Q–Q
plots of the Kalman filter and RMCMC system posterior distribution from a single run (black).

The sequence of targets is similar to that used in Section 3.1 with ϖk,t = p(x1:t |y1:k,t , y1:(t−1)). For the transition function
fj (j ∈ D) we use the observation equation in (2). Finally, we take gn to be the identity function, so that our estimate of
interest in the posterior mean. The observations were revealed in batches of 10, so that each state consisted of 38 batches.
Specifically, the vector Yt contains all 380 observationswherewedenote the jth observation as Yj,t . The kth observation batch
of state t isYk,t := Y10k−9,t , . . . , Y10k,t . Therefore, after initialisation, the batchesY1,6, . . . ,Y38,6,Y1,7, . . .Y38,7 are revealed.

Within the control process we again use β1 = 0.01, β2 = 0.0125 and γ1 = 0.1, γ2 = 0.75. Also, we set NMIN = 1000. For
this simulation controlling the accuracyA pertains to controlling themean posterior of each component of every state as new
data are observed. We use a Gibbs sampler (see e.g. Geman and Geman, 1984) as the conditional distributions for the states
can be explicitly computed for this model. Each Gibbs sampler step consists of updating a single randomly chosen state as
outlined in Algorithm 2.2 located in Section 2 of the Supplementarymaterial (see Appendix A).We used no subsampling and
used a burn-in period of B0 = 1000. The accuracy was calculated using the batch mean approach described in Section 2.7
with batch lengths 10 and 25. The RMCMC process wrote 500 samples to the database at a time.

Fig. 2 presents results comparing the Kalman filter estimates with the 100 RMCMC estimates as the observations are
revealed. The upper row of Fig. 2 are violin plots (see e.g. Hintze and Nelson, 1998) of the difference between the Kalman
filter and the 100 RMCMC system posterior mean of selected states and components. Violin plots are smoothed histograms
on either side of a box plot of the data.

The estimate may be biased due to the scaling and normalisation of the weights carried out by the update process (Sec-
tion 2.4) (see for example Hesterberg, 1995 for the bias in weighted importance sampling). This is apparent in posterior
mean for X18,6 (Fig. 2(a)), as in 81 out of the 100 runs the RMCMC process remained paused after Y37,6 was revealed. For
these 81 runs, the posterior mean was formed using weighted importance sampling. In contrast, we see nearly no bias in
the posterior mean for X5,6 afterY1,6 was revealed (Fig. 2(b)) where the RMCMC process was started in every run (the pos-
terior mean given by the Gibbs sampler is unbiased). Table 6 shows the estimated bias of the 100 RMCMC system posterior
means with respect to the estimate given by the Kalman filter. Table 7 shows the standard deviation of the 100 RMCMC
system posterior means. We see that the standard deviation (the accuracy A) is controlled below the imposed threshold of
β2 = 0.0125. The lower row of Fig. 2 is Q–Q plots of the Kalman filter estimate and the weighted RMCMC samples’ posterior
distribution at the 1%, 2%, . . . , 99% quantile from 1 of the 100 runs. The Q–Q plots for other components of and RMCMC runs
are similar to those presented. These Q–Q plots indicate that the two distributions are roughly similar.

Comparison of the two distributions is difficult as the RMCMC samples are not only weighted but are also dependent.
Thus tests, such as the Kolmogorov–Smirnov test (e.g. see p. 35 Lehmann and D’Abrera, 1975), cannot be applied.

5. Conclusion

We have presented a newmethod that produces estimates from a sequence of distributions that maintains the accuracy
at a user-specified level. In Section 3 we demonstrated that the system is not resumed each time an observation is revealed
and thus the samples are reused. Therefore,weproceedwith importance samplingwhenever possible. Furtherwe attempt to
reduce the size of the sample database whenever possible (Section 2.5), thus limiting the computational effort of the update
process and calculation of the estimates or predictions. In Section 4we used a linear Gaussianmodel to show that the system
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Table 6
Tables of estimated bias of the 100 system posterior means with respect to the Kalman
filter posterior mean.

Last batch revealed Last batch revealedY1,6 Y15,6 Y37,6 Y1,6 Y15,6 Y37,6

X5,6 0.0009 0.0004 0.0004 X5,6 0.0009 0.0004 0.0004
X18,6 −0.0012 −0.0001 0.0049 X18,6 −0.0012 −0.0001 0.0049

Table 7
Tables of the empirical standard deviation of posterior mean given by 100 runs of
the system.

Last batch revealed Last batch revealedY1,6 Y15,6 Y37,6 Y3,7 Y10,7 Y20,7

X5,6 0.0109 0.0023 0.0016 X5,7 0.0065 0.0030 0.0026
X18,6 0.0110 0.0019 0.0030 X18,7 0.0077 0.0037 0.0022

produced comparable estimates to those given by the Kalman filter. Proving the exactness of the estimates produced by the
system, if possible, is a topic for future work.

For our system, we advocate using a standard MCMC method such as a Metropolis–Hastings algorithm before resorting
to another more complicated method such as particle MCMC methods (Andrieu et al., 2010) or SMC2 (Chopin et al., 2013).
By starting with a standard MCMC approach, we avoid choosing the number of particles, choosing the transition densities
and the resampling step that comes with using a particle filter, not to mention the higher computational cost.
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