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Abstract 

The geometry and symmetry characterizing the regular and semi-regular polyhedra has a major impact in the manmade world of 
building systems. The geometric properties of polyhedra can be applied not only to the world of design and construction but can 
also be used to interpret the proportions and movement of the human body. This paper describes a computational methodology to 
design and build three-dimensional structures for movement practices based on the regular convex polyhedra —also called 
Platonic solids. A parametric approach is applied to design these structures —here defined as “movement infrastructure". 
Contemporary design and fabrication technologies are applied to the theories of movement by  Rudolf Laban, which were 
introduced in the first half of the twentieth century but still have a major influence in the field of dance and human movement 
analysis.  Prototypes have been built assembling parts fabricated using 3D printing technologies and off-the-shelf components. 
Such a parametric approach can be further applied to design and build a “movement infrastructure” at several scales and made of 
different materials, varying from private indoor home use to public outdoor settings. 
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1. Introduction 

Rudolf Laban (1879-1958), one of the most influential theorists of human movement, developed a taxonomy of 
movement routines related to the five regular polyhedra: tetrahedron, cube, octahedron, dodecahedron, icosahedron 
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[1, 2, 3]. His theories were illustrated with drawings and models built constructions based on the Platonic solids, 
were used in dance training and performances. The icosahedron was the polyhedron most used by Laban and, in the 
field of dance, is often referred to as “Laban icosahedron”.  Photographs of dancers, practicing and performing 
inside an icosahedron, date back to the second decade of the XX century, when Laban lived and worked in the 
colony of Monte Verità in the Swiss town of Ascona [5, 6]. The Laban icosahedron has continued to being used in 
dance as well as in and other performing arts. 

 
 
 
 
 
 
 
 
 
 
  

Fig. 1.  The Laban icosahedron and movement practices: (a) photo of dancer from Choreographie; (b) "Photographs" (1955), Rudolf Laban: 
NRCD. URL: <http://www.dance-archives.ac.uk/media/1207>; (c) Image retrieved from http://www.amplab.ca/2014/10/23/labanotation-

topology-moving-body/; (d) Image retrieved from http://www.dcd.ca/exhibitions/sutcliffe/icosahedron.html 

Although the icosahedron was the most prominent polyhedron in the theory of movement developed by Laban, 
the relationship between human movement and the other four Platonic solids was explored as well [7]. But while the 
icosahedron was built at human scale, the movement studies relating to the other four solids —often called 
“crystals” by Laban and his scholars—  were mainly documented by sketches, artists renderings, diagrams and scale 
models [8, 9]. 

The relationship between human movement and geometry is also the research topic of the author’s doctoral 
study. The research quantitative methodology is mainly based on data collection from movement practices inside a 
built “movement infrastructure” related to the Platonic solids.  The design and construction of the five regular 
polyhedra —of such size and structural strength to accommodate a performer— has become an essential component 
of the research.  Ease of fabrication and cost affordability are also design constraints which suggest the use of ready-
made components.  

This paper outlines the design and fabrication of a “movement infrastructure” comprised of custom parts and off-
the-shelf components. The parametric and CAD modeling process of the Platonic solids —described in the other 
paper published by the author in these proceedings [10]— is further developed for the design of custom components. 
These components have been 3D printed as prototypes but also designed for other fabrication processes. 

 
Nomenclature 

CR radius of  the circumsphere whose surface contains the vertices of the polyhedron  
EL  length of polyhedron edge 
a polyhedron dihedral angle  
b angle defined by the centre of polyhedron and sets of two vertices endpoints of each polyhedron edge 
f golden ratio equal to numerical value 1.618033988 [11] 

2. The Five Platonic Solids Geometric Properties  

A general definition of the geometry of the five Platonic solids assists in the quantifiable parameters of design 
and fabrication for the “movement infrastructure”. Table 1 summarizes the geometric properties which will be used 
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in later sections to establish computational design rules. A more complete description of the Platonic solids can be 
found in the other paper by the author published in these proceedings [12].  

Table 1. The Five Regular Polyhedra as Geometric Entities 

Polyhedron Name Number of  Faces Number of 
Edges 

Number of 
Vertices 

Schläfli Symbol 
{n, q} [13] 

a angle b angle 

Tetrahedron 4 6 4 {3, 3} 70.53° 109.471 
Hexahedron 
(Cube) 6 12 8 {4, 3} 90° 70.529 

Octahedron 8 12 6 {3, 4} 109.47° 90.000 

Dodecahedron 12 30 20 {5, 3} 116.57° 41.810 

Icosahedron 20 30 12 {3, 5} 138.19° 63.435 

Fig. 2. The Platonic solids and their angles: (a) tetrahedron; (b) hexahedron; (c) octahedron; (d) dodecahedron; (e) icosahedron 

3. The Human Body Proportions and the Icosahedron  

The design and construction of the “movement infrastructure” brings human and ergonomics factors relating to the 
movement to be performed inside each geometric shape. A detailed discussion of such factors goes beyond the 
scope of this paper but a summary can be essential to understand the design and fabrication process.  

Fig. 3. Human proportions and the icosahedron: (a) rectangles following the golden ratio; (b)Vitruvian man and golden ratio; (c) Virtruvian man 
and movement rotations joints; (d) the three anatomical planes inscribed in the vertices of the icosahedron 

According to several studies on human proportions [14, 15] the ratio between the height and the distance between 
the navel and feet of a human body can be approximated to the golden ratio f; such distance can also be considered 
an approximate location of the center of gravity of the human body. The vertices of an icosahedron can be grouped 
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to define three sets of orthogonal rectangles whose sides are proportional to the golden ratio. These rectangles also 
lie in the three anatomical planes —sagittal, frontal, and horizontal— of a human body whose navel is at the center 
of the icosahedron. 

4. The Platonic Solids Become a “Movement Infrastructure”: From Digital Models to Fabricated Parts 

The “movement infrastructure” designed by the author comprises a set of five regular polyhedra designed according 
to the proportions of her body, and built as an hybrid system. A numerical relationship essential in the design of the 
polyhedra is the relationship between CR and EL where CR represent the navel height in the human body. 

EL  =  2  cosb CR 
Each polyhedron is defined as a hollow structure geometrically composed of a set of vertices and edges; the faces  

of the polyhedron are eliminated for these purposes. The edges are made of off-the-shelf components while custom 
designed vertices act as joints which connect the edges. The geometry of the vertices/joints of the polyhedron is 
defined by the intersection of the q edges meeting at each vertex as specified by the Schläfli symbol {n, q} in Table 
1. 

4.1. Defining and Specifying the Polyhedron Edges 

The polyhedron edges, which are geometrically defined as lines, represent a dominant quantitative entity as well as a 
simple geometry –a line identified by two endpoints. They can be fabricated from off-the-shelf components, selected 
according to functional requirements. The function determines the structural characteristics and related material; the 
outdoor or indoor settings define the material specifications as well as the required thickness and profile. The 
following geometric characteristics are considered: 

• hollow or solid profile 
• profile geometry —e.g. circle, triangle, square. 

These properties determine the design of the vertex/joint. Three different concepts have been explored and 
designed for all the five Platonic solids.  

4.2. Finding an Aesthetic Intention in Designing and Fabricating the Polyhedron Vertices 

The design of the joints connecting the edges of the polyhedron represents the main exploration in the construction 
of the “movement infrastructure”. This process leads not only to the fabrication of an utilitarian object, but is also 
characterized by an aesthetic intention. The geometry of the regular polyhedra defines and inspires also the 
geometry of movement sequences and is expressed in the vertices/joints. There are several commercially available 
connectors for the assembly of pipes/tubes, including spherical joints and other connections systems utilized in 
space frame structures [16]. Nevertheless the expression of the specific geometric relationship of each polyhedron 
configuration was the motivation which led to design custom solutions for 3D printed prototypes of connectors. The 
custom designed joints can be grouped in three different concepts. 

Fig. 4. Vertex as a structural connection: (a) tetrahedron; (b) hexahedron; (c) octahedron; (d) dodecahedron; (e) icosahedron 



76   Daniela Bertol  /  Procedia Technology   20  ( 2015 )  72 – 78 

Concept “A” (figure 4) deals with vertices/joints connecting edges with a polygonal profile, e.g. a square. This 
design is best suited for metal sheet cut and bent to follow the polyhedron b angle. The bent metal joint/vertex is 
then fastened to the edges made of polygonal tubes. 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Vertex as a structural connection: (a) tetrahedron; (b) hexahedron; (c) octahedron; (d) dodecahedron; (e) icosahedron 

Figure 5 shows design drawings for concept “B” developed for edges made of tubes or pipes with a circular 
profile. The joint is a circular tube acting as male or female connector, which geometrically can be considered a 
continuation of the edges. A q number of such tubes tilted at a b angle are extended to their intersection with each 
other. A suitable fabrication process is based on welding of metal tubes, each sliced at an angle equal to 360 
degrees/ n, where n is the number of sides of the polyhedron face, specified by the Schläfli symbol {n, q} in Table 1. 

Concept “C” (figure 6) is also based on edges with circular profile. The vertex connector continues the 
cylindrical extrusions of each edge. Each pair of adjacent cylindrical extrusions is then connected by solids 
generated by sweeps or lofts of profiles offsetting the edges profile. This vertex connection is geometrically the most 
complex as shown by the graphic construction in figure 6. The fabrication processes for such joint include injection 
molding and metal casting. 

 
 

 
 
 
 
 
 

 

Fig. 6. Vertex as a structural connection: (a) tetrahedron; (b) hexahedron; (c) octahedron; (d) dodecahedron; (e) icosahedron 

 

5. Fabricating and Practicing in the “Movement Infrastructure” 

“Movement infrastructure” prototypes have been fabricated with 3D printed vertices/connections and PVC pipes. 
The length of the CR (defined in the nomenclature) is relevant for the movement practice since it refers to human 
proportions —as summarized in section 3. The connections have been fabricated of PLA and ABS plastic using the 
3D printers Makerbot Replicator and XYZprinting. 

A set of the five Platonic solids of a CR measuring 150 centimeters has been built with concept “B” connections 
and PVC pipes of ¾ inches diameter. This movement infrastructure has been located in outdoor settings and several 
movement practices have been performed inside the icosahedron (figure 7).  The edges of the icosahedron guide the 
performer in movement alignments, emphasizing the geometry of the human body. 
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Fig. 7. Outdoor movement practice in the icosahedron 

 
 
 
 
 
 

 

 

Fig. 8. Indoor movement practice in the icosahedron 

A second “movement infrastructure” prototype has been fabricated only for the icosahedron. The connections 
follow concept “C” and have been 3D printed from ABS plastic. The CR measures 100 centimeters which is the 
performer’s navel height.  This icosahedron is located indoors and it has been used for daily movement practices 
inspired by the polyhedron geometry. The initial vertices-edges relationships generate a multitude of more complex 
geometric explorations associating the performed movements to intersecting spirals, helices and Hamiltonian paths.  

 
 
 
 

 
 
 
 
 

Fig. 9.Hamiltonian paths in the icosahedron 

In Laban’s theories [16] there are several references to Hamiltonian paths —mathematically defined as “a graph 
path between two vertices of a graph that visits each vertex exactly once” [17]. Figure 9 shows four different 
Hamiltonian paths inscribed in the same icosahedron. Movement sequences are being designed according to the 
movement of a leading arm following each Hamiltonian path. The mapping of movement data to geometric forms is 
currently being developed, using motion tracking, computer animation and video postproduction. 

 

6. Conclusion 

This paper has summarized the relationship between Platonic solids and human proportions, which was explored in 
Laban’s theories on human movement. Prototypes of a “movement infrastructure” have been designed and built 
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using 3D printing and off-the-shelf parts, with the intent to further investigate Laban’s theories in the context of the 
geometric properties of movement. The author plans to develop further prototypes for home fitness equipment and 
public art.  
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