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ABSTRACT Multiple successive geometrical inhomogeneities, such as extensive arborization and terminal varicosities, are usual
characteristics of axons. Near such regions the velocity of the action potential (AP) changes. This study uses AXONTREE, a
modeling tool developed in the companion paper for two purposes: (a) to gain insights into the consequence of these irregularities
for the propagation delay along axons, and (b) to simulate the propagation of APs along a reconstructed axon from a cortical cell,
taking into account information concerning the distribution of boutons (release sites) along such axons to estimate the distribution
of arrival times of APs to the axons release sites. We used Hodgkin and Huxley (1952) like membrane properties at 200C. Focusing
on the propagation delay which results from geometrical changes along the axon (and not from the actual diameters or length of
the axon), the main results are: (a) the propagation delay at a region of a single geometrical change (a step change in axon
diameter or a branch point) is in the order of a few tenths of a millisecond. This delay critically depends on the kinetics and the
density of the excitable channels; (b) as a general rule, the lag imposed on the AP propagation at a region with a geometrical ratio
GR > 1 is larger than the lead obtained at a region with a reciprocal of that GR value; (c) when the electrotonic distance between
two successive geometrical changes (XdiS) is small, the delay is not the sum of the individual delays at each geometrical change,
when isolated. When both geometrical changes are with GR > 1 or both with GR < 1, this delay is supralinear (larger than the sum
of individual delays). The two other combinations yield a sublinear delay; and (d) in a varicose axon, where the diameter changes
frequently from thin to thick and back to thin, the propagation velocity may be slower than the velocity along a uniform axon with the
thin diameter.

Finally, we computed propagation aelays along a morphologically characterized axon from layer V of the somatosensory cortex
of the cat (Fig. 5 b; Schwark and Jones. 1990. Brain Res. 78: 501-513). This axon projects mainly to area 4 but also sends
collaterals to areas 3b and 3a. The model predicts that, for this axon, areas 3a, 3b, and the proximal part of area 4 are activated - 2
ms before the activation of the distal part of area 4.

INTRODUCTION

In the preceding publication (Manor et al., 1991),
AXONTREE, a program for the simulation of action
potentials (APs) propagating along axonal trees, was
presented. In this study, AXONTREE was used to
investigate the propagation delay expected in realistic
axons, focusing on the effect of geometrical irregularities
on this delay. Indeed, both experimental (e.g., Parnas,
1972; Grossman et al., 1979; Smith, 1983) and theoreti-
cal (e.g., Berkenblit et al., 1970; Goldstein and Rall,
1974; Khodorov and Timin, 1975; Parnas and Segev,
1979; Moore et al., 1983; Luscher and Shiner, 1990a, b)
studies show that geometrical inhomogeneities such as a
change in axon diameter or a branch point with an
impedance mismatch can lead to changes in the propaga-
tion velocity of the AP near the region of change. These
studies, in particular that of Goldstein and Rall (1974),
demonstrate that the behavior of the AP near the
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branch point (as well as near an abrupt change in
diameter) can be characterized by the geometrical ratio
(GR), which is the ratio of the input impedance of the
daughter branches to the input impedance of the parent
trunk, as defined in Methods. When GR < 1, propaga-
tion is accelerated (relative to the uniform case where
GR = 1) and the safety factor for propagation is in-
creased. When GR > 1, propagation is delayed and may
even completely fail in extreme cases. However, none of
these studies investigated in detail the propagation delay
expected at a region with a single geometrical change
(with GR . 1) nor was the effect of the interaction
among two or more branch points or varicosities studied.
Because an AP propagating within an axonal tree with
several thousand terminals must pass through on the
order of 10-12 branch points, the total delay caused by
these geometrical inhomogeneities per se could, in
principle, be substantial.

In the following, we will first discuss propagation
delays associated with single branch points or step
changes in axon diameter. We will then discuss the
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interaction among more than one such inhomogeneity
and compute the propagation delay expected along a

morphologically reconstructed cortical axon. Finally, we
discuss the implications of our results in terms of
information transmission and processing along axons.

METHODS
All simulations were performed using AXONTREE. Details are given
in the companion paper (Manor et al., 1991). In the first part of the
study we explored the effect of an abrupt change in axon diameter (or a
single branch point) per se on the propagation delay. In this part we
were not interested in the delay produced along the uniform regions
which, in an unmyelinated axon, is proportional to the space constant,
A (that is, proportional to the square root of the diameter). This holds
provided that the specific membrane parameters (both passive and
active) are uniform along the axon and one is not close to an end (Jack
et al., 1975). Thus, when the distance, x, along the axons is normalized
by units of X, the velocity (the slope of AP peak-time vs. X = xIX) is
constant, independent of the axon diameter; it changes only near
inhomogeneous regions. Therefore, to gain insights into the conse-
quence of local geometrical changes per se on the propagation delay,
the distance along the simulated axon was scaled in units of A (Figs.
1-7). Local irregularities were characterized by the geometrical ratio,
GR, defined as,

GR = : d 312/d 312

where di is the diameter of the ith daughter branch and dp is the
diameter of the parent branch. If the passive specific properties of the
membrane (Rm, Cm) and the cytoplasm (Ri) are constant along the
axon, and the daughter branches have the same electronic lengths and
boundary conditions, then GR is the ratio of the sum of the input
impedances of the daughter branches to that of the parent branch. If
GR = 1, the input impedances are matched, implying that the safety
factor for AP propagation does not change at the branch point. When
GR > 1 the safety factor for AP propagation decreases, whereas when
GR < 1 the safety factor increases (Goldstein and Rall, 1974). Note
also that when GR is an integer > 1 (and the parent and daughter
branches are electrically long), the GR factor corresponds to the
number of daughter branches, each having a diameter identical to the
parent diameter. For example, GR = 2 corresponds to the commonly
occurring case where the two daughter branches have the same

diameter as the parent axon.

For numerical stability, the spatial integration step, Ax, was X/10
along uniform regions of the axon and X/100 near regions of abrupt
geometrical change (Parnas and Segev, 1979). The temporal integra-
tion step, At, was typically 10 p.s. Unless otherwise stated, the
membrane properties were those used by Hodgkin and Huxley (1952)
and 20°C with specific cytoplasmic resistivity, Ri, of 100 flcm and
specific membrane capacitance of 1 pLF/cm2. For these values and for
an axon with a diameter of 1 pLm, the space constant, X, is - 190 p.m.

RESULTS

A single geometriQal change
The change in AP shape and velocity near a region with
a local geometrical change (with GR = 8) can be appre-

ciated in Fig. 1. In Fig. 1 A, a schematic drawing of an
axon is shown. The parent branch bifurcates into two
identical daughter branches, each having a diameter
that is 2.52 times larger than the parent diameter
(implying GR = 8). This axon is equivalent to a cable
with an 82/3 (=4)-fold increase in diameter (Goldstein
and Rall, 1974). The AP recorded at three points along
this structure is shown in Fig. 1 B (dashed curves). Point
1 is at a distance, x, of 2X before the geometrical change;
point 2 is at the branch point itself, whereas point 3 is at
x = 2X after the branch point. For comparison, the
continuous curves show the case where GR = 1, which is
equivalent to a uniform axon. Indeed, in the latter case
the shape of the AP is identical in all three recording
points and its velocity (in units of X) is constant. When
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FIGURE 1 Induction of propagation delay along a bifurcating axon. In
A, a scheme of a bifurcating axon is drawn. The GR associated with this
branch point is 8. Arrows show recording locations: 1, is 2X before the
bifurcation; 2, is at the bifurcation; and 3, is 2A after the bifurcation. In
B, the shape of the AP at these three locations is shown (dashed
curves). For comparison, the AP along a uniform axon at the same
recording sites is superimposed (continuous lines). At location 1, the
AP in the uniform axon and in the branched axon coincide. At location
2, a delay in the AP propagating into the branched axon appears and
the shape of the AP changes. Distal to the branch point, at location 3,
the AP resumes its uniform shape and appears with a delay, bt = 0.397
ms, relative to the uniform case.
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GR = 8, however, both shape and velocity change along
the axon (dashed curves in Fig. 1 B). Near the geometri-
cal change (point 2) the AP undergoes a modulation in
amplitude and shape, and it appears with a delay. After
the change, at point 3, the AP recovers to its normal
shape and appears with a delay, 8t, of 0.397 ms relative
to the uniform case.

The space-time curves in Fig. 2A illustrate how the
AP's peak time (tpeak) changes along an axon with a

single branch point. The control is the uniform case

where GR = 1; the other five curves represent tpeak versus
X for five different GR values (see arrows). The vertical
dashed line (atX = 2.5) shows the point of geometrical
change. Along a uniform region of the axon the AP peak
travels with a constant velocity of 2.843 X/ms (slope of
control curve in Fig. 2A). When GR 1, however, the
input impedance in the vicinity of the geometrical
change is altered, resulting in an increase (when GR < 1)
or a decrease (when GR > 1) in the safety factor for AP
propagation. The three upper curves in Fig. 2 A
(GR = 2, 4, and 8) show the decrease in the propagation
velocity before the geometrical change, whereas in the
two lower curves (GR = 0.5 and 0.01) the velocity before
the change increases. The situation reverses immedi-
ately after the change: the velocity increases when GR >
1, whereas it decreases when GR < 1. Then, a few
tenths of A further downstream, the velocity returns to
its constant value. For example, observing the upper-
most curve (GR = 8), a sharp jump in tpeak is seen before
the change (dashed vertical line), indicating a decrease in
AP velocity (to 0.18 X/ms). Just after the change the
slope is practically zero (infinite velocity), implying that
this region fires simultaneously. At a larger distance to
the right, the curve regains the same slope as the slope
before the change (see comparable results in Berkenblit
et al., 1970; Goldstein and Rall, 1974).
The propagation delay (8t) induced by a local geomet-

rical change per se is calculated as the difference
between tpeak at the right-most point on the control curve

(GR = 1) and tpeak at the same point on the curve

corresponding to a given GR value. For example, the
difference between the peak-time at X = 4 in the
uppermost curve and in the control curve is 0.397 ms.
Namely, a single geometrical change with GR = 8
induces a propagation delay of 0.397 ms. Likewise, a

severe narrowing (with GR = 0.01) in the axon induces a

propagation lead (a "negative" delay) of less than 0.1 ms
(lowermost curve in Fig. 2A).
The behavior of the AP peak value (V,eak) along an

axon with an abrupt geometrical change is depicted in
Fig. 2 B. The corresponding GR values are marked on

each curve. When GR > 1, the peak at the region of the
geometrical change is decreased; this reduction is appar-
ent already at a distance of 0.5 A before the change. If
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FIGURE 2 Action potential peak time and amplitude along an axon
with a single geometrical change. In A, several space-time diagrams
showing the AP peak time (tpeak) versus distance (in units of X) are
plotted for different values of GR (see arrows). The control curve
corresponds to the case of an AP propagating along a uniform axon
(equivalent to a bifurcating axon with GR = 1). When GR > 1, the AP
peak is delayed with respect to the control. When GR < 1, the AP
peak leads relative to the control. Note that, since distance is scaled in
units of X, all curves are parallel at X = 4. Hence, the delay (at)
induced by any particular GR per se can be calculated by simply
subtracting the peak time on the control curve from the peak time on
the curve with the corresponding value of GR, at a point where the
slope of the curve has stabilized to a constant value. In B, the AP
amplitude (Vp,,ak)) versus electrotonic distance for the corresponding
GR values is plotted. In the case of 10.5 > GR > 1, Vpeak is reduced
before the branch point but is restored to its original value after the
branch point. The AP fails to propagate beyond the branch point for
GR > 10.5, as exemplified by the dotted curve for the case ofGR = 11.
The vertical dashed line in both A and B (atX = 2.5) corresponds to
the location of the branch point.
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the AP propagates through the branch point (as is the
case for GR = 2, 4, and 8), the minimal Vpeak is obtained

0.1 X before the change. Thereafter, Vpeak starts to
grow back to the control amplitude (86.6 mV for the
parameters chosen). In contrast, when GR < 1, Vpeak
starts to increase before the region of change (to almost
100 mV when GR = 0.01; uppermost curve); at X = 0.5
after the change the AP resumes its constant peak value.
Note that when GR = 11 (dashed curve) the AP fails to
propagate beyond the point of change.
The propagation delay, bt, calculated from curves

similar to those shown in Fig. 2A is plotted in Fig. 3 as a

function of GR. Here, the value of GR is plotted on a

logarithmic scale, with the origin corresponding to the
point GR = 1. In this way, any given GR value and its
reciprocal value are equidistant from the origin. Two
important points are noteworthy.

(a) For the parameter chosen, the lag due to a single
geometrical change reaches 1 ms at GR = 10. Beyond
that GR value propagation is blocked (e.g., dashed curve

in Fig. 2 B). On the other hand, the maximal lead
obtained at a geometrical change with GR < 1 (relative
narrowing) is less than 0.1. ms.

(b) The monotonic increase in the slope of the curve

in Fig. 3 indicates that the lag produced as a result of any
given GR > 1 is always larger than the lead produced at
1IGR. Another outcome of this curve is that bt is a

supralinear function of GR. For example, bt at GR = 4 is
0.157 ms, whereas at twice that GR value bt is 0.397 ms
(St increases by more than two-fold).

Clearly, bt will depend on the kinetics and density of
the excitable channels. Indeed, in Fig. 4A the effect of
temperature on bt in the case of a single geometrical
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FIGURE 4 Propagation delay (bt) as a function of channel kinetics
and density. In A, the effect of temperature (which changes the H&H
rate constants a and 1) on bt at a single geometrical change with GR =
2 is calculated at intervals of 0.5°C. At 0°C, bt = 0.191 ms, decreasing to
a minimum of 0.053 ms at 25°C. A further increase in temperature
results in an increase of bt up to a temperature of 33°C, beyond which
the AP fails to propagate through the geometrical change (vertical
dashed line). This graph shows that the propagation delay at regions of
low safety factor significantly depends on the kinetics of the excitable
channels. In B, the effect of sodium channel density on &t for the same
GR as in A is calculated. For gNa < 55 mS/cm2, the AP fails to
propagate through the geometrical change (vertical dashed line).
Beyond thisgNa value, &t first rapidly decreases (for 55 mS/cm2 < gNa <
200 mS/cm2) and then decreases more gradually asgNa increases.
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FIGURE 3 Propagation delay (8t) as a function of the geometrical
ratio. The GR is plotted on a logarithmic scale, with the control case
GR = 1 at the origin. For GR < 1, bt is negative, implying a lead of the
AP as compared with the uniform case. For GR > 1, bt is positive,
implying that the AP lags as compared with the uniform case. When
GR > 10.5, the AP is blocked at the branch point (St -x o). Note that
the lag for any GR > 1 is always larger than the lead obtained at the
reciprocal of that value, i.e., 1 /GR. In the inset, Bt is plotted on a linear
scale, for GRs in the neighborhood ofGR = 1.

change with GR = 2 is examined. At low temperatures
(low propagation velocity) bt is relatively large (0.191 ms
at 0WC). This delay decreases to 0.053 ms (almost
four-fold) when the temperature is increased to 25°C.
Beyond this temperature, however, bt increases up to a

point (of 33°C) where the AP is blocked at the geometri-
cal change (dashed line). This result arises from oppos-
ing effects of temperature. Increasing the temperature
reduces the duration and amplitude (i.e., the charge) of
the AP (Huxley, 1959). This handicapped AP is more
susceptible to propagation failure at regions of low
safety factor (Westerfield et al., 1978), thus Bt is ex-

pected to increase. On the other hand, when the
temperature is increased, the threshold for initiation of
an AP first reduces (the activation rate of sodium
channels increases), whereas at high temperatures the
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threshold rises (inactivation of sodium channels and
activation of potassium channels increase). Hence, one
should expect bt first to decrease and then increase with
temperature.
The effect of channel density on it for the case of

GR = 2 is examined in Fig. 4 B. As expected, &t de-
creases as the density of the excitable channels that carry
the inward current (gNa) increases. Note that the delay is
very sensitive to the channel density for small values of
gNa. When gNa is too small ( < 55 mS/cm2), the AP fails to
propagate through the geometrical change (horizontal
dashed line).
The results of this part of the study can be summa-

rized as follows. At a region of a geometrical change the
AP shape and velocity changes. When GR > 1, the AP
peak is reduced and its velocity is decreased. As a result
the AP is delayed at the region of the geometrical
change and may completely fail when GR is above some
critical value. Depending on the kinetics of the excitable
channels, the delay due to a single geometrical change is
on the order of a few tenths of a millisecond. When
GR < 1, the AP near the region of change accelerates
but the lead of the AP is small (i.e., less than 0.1 ms). In
both cases the change in the AP shape and velocity is
apparent already at a distance of 0.5 X before the
geometrical change. The AP resumes its uniform shape
and velocity several tenths of X after the change.

Two successive geometrical changes
The results of the previous section can be used to gain
insights into the behavior of the AP in a cable with two
successive geometrical changes, one with GR, and the
other with GR2. It is clear that if the electrotonic
distance between the two changes (XdiS) is sufficiently
large, the behavior of the AP at each change is unaf-
fected by the presence of the other change. Hence, the
delay induced by the two geometrical changes is the sum
of the two individual delays obtained at each change,
when isolated. In the other extreme, when XdiS = 0, the
delay (lt) is that expected in a single geometrical change
whose corresponding GR value can be shown to be
GR, * GR2 (this is also true for symmetrical trees which
are equivalent to a single cable with two successive step
changes in diameter; see footnote 1 below). The supra-
linearity in Fig. 3 also shows that, when XdiS = 0 (where
GR = GR1 GR2) and both GR, and GR2 > 1 (or
both < 1), the delay is larger than the linear sum of the
individual delays. For such cases,

GR1,GR2 > 1

bt(GRI * GR2) > 8t(GRI) + bt(GR2); GR1, GR2 < 1. (2)

For example, the delay in an isolated region with
GR = 3, is 0.109 ms. When two such changes occur at

the same location, i.e., XdiS = 0, the delay is 0.516 ms, as
expected from a single change with GR = 9, a highly
nonlinear interaction. In an extreme case the proximity
of two successive GRs > 1 may result in propagation
failure which would not take place if the distance
between the two changes were sufficiently large. e.g.,
when both GRs = 4 and XdiS is small (which, in the limit,
corresponds to a single step with GR = 16) propagation
fails (see Fig. 3).
Another relation which can be proved from Fig. 3 is

that when one GR > 1 and the other GR <1, and XdiS =
0, the delay is smaller than the delay expected from the
linear sum of individual delays. Hence,

GR1 1,GR2 <1

at(GRI GR2) < t(GR) + &t(GR1); GR, < 1,GR2> 1.

(3)
For example, when GR = 3 (and bt is 0.109 ms in the
isolated case) and GR = 1/3 (and bt is -0.048 ms) then,
whenXdiS = 0 (and the corresponding GR is 1) the delay
is 0 (whereas the linear sum is 0.061 ms).
What is the propagation delay expected when the

distance, XdiS, between the two geometrical changes
varies? The time-space diagram of Fig. 5A demon-
strates several such cases where both GR, and GR2 = 3;
Fig. 5 B treats the case where GR, = 3 and GR2 = 1/3. As
in Fig. 2A, the control curve shows the uniform case,

where GR1 = GR2 = 1 (no delay). The other four curves

in Fig. 5A represent the case of an axon with two
successive geometrical changes, in which XdiS = 2, 0.5,

0.1, and 0. In all cases, the first geometrical change is at
X = 2.5 (vertical dashed line). As can be seen, when
Xdis 2 0.5, the delay in each change is unaffected by the
presence of the other change. For example, the curves

corresponding to Xds = 0.5 and Xdi, = 2 meet at their
right-most side (atX = 5), and the delay contributed by
both changes (0.218 ms) is exactly twice that contributed
by an isolated change with GR = 3 (i.e., the two "jumps"
in each of these curves are identical).
When Xdis < 0.5, however, the total delay is more than

the linear sum of individual delays. In these cases, the
interaction between the two successive changes results
with an additional delay, St *. Hence, one can write:

bt(GR1l GR2, Xdi) = &t(GRI) + at(GR2) + bt*, (4)
where bt(GR1, GR2, XdJS) is the delay contributed by two
changes, the first with GR, and the second with GR2,
when separated by Xdi,. This additional delay, Bt *, is a

consequence of the impedance load imposed by the
presence of a second geometrical change on the AP
when propagating through the first geometrical change.
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FIGURE 5 Space-time diagrams for an axon with two successive
geometrical changes. In A, several space-time diagrams show the AP
peak time (tpeak) along a 7A long axon (first 2X and last 2X are not
shown) with two successive geometrical changes, both with GR, =
GR2 = 3 (see the schematic at the top). The electrotonic distance
between the two geometrical changes, XdjS (arrows), is varied among
the curves. The lowest curve, marked control, corresponds to a
uniform axon. Note that for Xdi,S = 0, a single geometrical change with
GR = 9 occurs at the branch point. In B, GR, = 3 and GR2 = 1/3. Again,
the space-time curves are for different values of Xd,S. This situation
corresponds to a uniform axon bearing a single, Xdss long, varicosity.
The curve corresponding to XdiS = 0 is identical to the uniform
(control) case. Vertical dashed lines in both A and B (at X = 2.5)
indicate the point where the first geometrical change occurs.

Clearly, as seen in Fig. 5 A, this addition is maximal
whenXdir = 0.

It is important to emphasize that the additional delay,
bt *, may be larger than the sum of individual delays
obtained at each of the corresponding geometrical
changes, when isolated. This is the case for Xdi, = 0 in
Fig. 5 A, where St * = 0.298 ms, whereas the sum of
individual delays (when isolated) is 0.218 ms. This point
will be further demonstrated in Fig. 6.
Another combination of two successive geometrical

changes is demonstrated in Fig. 5 B. Here, GR, = 3 and

FIGURE 6 Effect of the electrotonic distance between two successive
geometrical changes on the propagation delay. An axon with two
successive geometrical changes, the first with GR, and the second with
GR2, is simulated. The total propagation delay, bt, was calculated as a
function of the electrotonic distance between the changes (XdiS). The
top curve and the inset correspond to GR, = GR2 = 3, the middle curve
to GR, = 3 and GR2 = 1/3, whereas the bottom curve plots Bt for GR, =
GR2 = 1/3. The middle curve is very similar to the case GR, = 1/3 and
GR2 = 3 (not shown). In all cases, the total delay is the sum of the
individual delays at each geometrical change, when XdiS is sufficiently
large (> 1). For smaller Xd,S values, the delay at the first change is
affected by the presence of the second change, resulting in a larger lag
(top curve), smaller lead (boutom curve) or a smaller lag (middle curve),
as compared with the linear case (denoted by the corresponding dotted
horizontal lines).

GR2 = 1/3. Again, the control curve is for a uniform axon.

As found in Fig. 5 A, when Xdi, 2 0.5, the total delay (8t)
is the linear sum of individual delays (i.e., bt * = 0).
Indeed, in these two cases the 0.109 ms delay induced by
the first change (widening) sums linearly with the 0.048
ms lead (a negative delay) induced by the second
change, to give atX = 5 a total delay of 0.061 ms. When
Xd1s = 0.1, however, the delay is smaller than the linear
sum, implying that bt * < 0. Note, that since GR2 =

1/GRI, Xd,s = 0 corresponds to the uniform (control)
case. The important point to note is that at X = 5 all
curves lie above the control curve, implying that the lead
due to the narrowing (where GR = 1/3) is smaller than
the lag at the widening (where GR = 3).

In Fig. 6, bt, the total lag (or lead) contributed by two
successive geometrical changes, is calculated as a func-
tion of Xdis. In the top curve, GR, = GR2 = 3 (see inset).
As discussed above, when XdiS is large, the individual
delays sum linearly (dashed horizontal line at bt = 0.22
ms). For smaller values of Xd,, the curve lies above the
dashed line, implying that 8t* > 0. The middle curve

depicts the case where GR, = 3 and GR2 = 1/3; again the
dashed line is for the linear sum of individual delays. As
mentioned in the context of Fig. 5 B, bt (the total delay)
for this case is always positive, whereas &t* (the addi-
tional delay due to interaction) is negative (curve lies
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below the dashed line). It is noteworthy that the curve
corresponding to the reverse case, where GR1 = 1/3 and
GR2 = 3, is essentially identical to this curve (not
shown). Finally, when both GR1 = GR2 = 1/3, the total
delay is always negative (lead) whereas it * > 0 (curve
lies above the dashed line).

Figs. 5 and 6 treat the case of single cables with two
successive step changes in diameter. These cables are
electrically equivalent to symmetrical trees with a sec-
ond order branching. To complete the analysis of this
section, the nonsymmetrical case (not equivalent to a
single cable) should be examined. The important fea-
tures of such a case were extracted by simulating a
particular example schematically shown by the insets of
Fig. 7. Here, a parent axon bifurcates with GR1 = 1,
giving rise to two daughter branches with identical
diameters. At a distance Xdi, from this bifurcation, a step
change (or an equivalent bifurcation) with GR2 = 3
occurs in only one of the daughters (lower branch in
inset), whereas the sibling daughter branch continues
uniformly. Because GR1 = 1, the primary bifurcation is
not expected to perturb the propagation speed (when
measured in units of A). Clearly, this is true when XdiS is
large. What happens to the propagation through this
branch point when Xdi, is small?

Fig. 7A depicts the AP peak time as a function of
electrical distance along the parent branch and the
daughter with the geometrical change (continuous line
in inset). In addition to the control curve (where
GR2 = 1), three cases are shown (Xdi, = 0.5, 0.1, and 0).
The primary bifurcation is always at X = 2 (dashed
vertical line). As expected, the slope of all curves remains
constant until the AP is electrically adjacent to the
region of the secondary geometrical change. Indeed, as
Xdis increases, the "jump" in tpeakmoves further to the
right. The delay, however, is not identical in the three
cases demonstrated; it increases as Xdis increases. This
implies that, as the two changes become electrically
close, the delaying effect of the secondary geometrical
change, and thus bt, is reduced. The reason for it can be
best explained when analyzing the extreme case where
Xd1s = 0. A simple calculation shows that this case is
equivalent to an axon consisting of a single geometrical
change with a new geometrical ratio, GR * = (GR2 + 1)!
2 = 2.1

'In the general case, the parent branch (having a diameter of dJ)
bifurcates into two daughter branches (with diameters d2 and d,). Each
daughter then bifurcates, one with GR2 and the other with GR3,
respectively. The limiting case when Xd,S = 0 for both daughter
branches, is equivalent to a single change with GR 1 = GR2 * d 3'23Id 3/2 +
GR3 * d3I2/d I2. When d2 = d3, GR1 = (GR2 + GR3) - GR,12. When
GR, = GR3 = 1, and Xdi, = 0, this case collapses to the case examined
in Fig. 7.
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FIGURE 7 Space-time diagrams for a nonsymmetrically bifurcating
axon. The parent trunk bifurcates (with GR, = 1), giving rise to two
daughter branches. One daughter branch continues uniformly (top
branch in both schematics), whereas along the lower branch a single
geometrical change (with GR2 = 3) occurs. The initial diameter of
both daughter branches is identical. The branch point occurs atX = 2
(dashed vertical lines). In A, the AP peak time along the parent branch
and the daughter branch with the geometrical change (continuous
lines in schematic) is plotted for Xdi, = 0, 0.1 and 0.5 (see arrows). The
control curve is for the case where GR2 = 1 (equivalent to a uniform
axon). In B, the AP peak along the parent axon and the uniform
daughter branch is plotted for the same XdiS values as in A. Note that
the control curve (uniform axon) and the case for Xd,S = 0.5 are
indistinguishable.

Hence, the geometrical change (GR2= 3) that per-

turbs the propagation when Xdj, is large, is reduced to a

smaller change (GR =2) when XdjS = 0. Note that for
large values ofXdi,, the delay due to the second geometri-
cal change is identical to the delay in an isolated branch
point with GR2.
An interesting question is how propagation into the

other (uniform) daughter branch is affected by the
presence of a geometrical change in the sibling (nonuni-
form) branch. Fig. 7 B shows that the propagation along
this branch is delayed as a consequence of the change in
the sibling branch but that, for the chosen GR2 value of
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3, this delay is apparent only when Xdi, is small (0 and
0.1). When the secondary change at the sibling branch is
0.5 (or more) distal to the branch point, propagation
along the other (uniform) daughter branch is not per-
turbed.

Frequent varicosities along the axon
A typical feature of axons in both vertebrates and
invertebrates is the presence of multiple, closely spaced,
varicosities or boutons. Electron microscopic (EM) stud-
ies have shown that these boutons are the main release
sites of the neuron, and are typically associated with
synaptic vesicles (McGuire et al., 1984; Schuz and
Muinster, 1985; Kisvarday et al., 1987). Careful measure-

ments of bouton distribution in reconstructed axons in
primate striate cortex (Florence and Casagrande, 1987),
in cat striate cortex (Kisvarday et al., 1987), in the
pontomedullary junction of the cat (Ohgaki et al., 1987),
in the mouse neocortex (Hellwig B., A. Schuz, and A.
Aertsen. Density and distribution of presynaptic bou-
tons on Golgi-stained axons in the cortex of the mouse.
Manuscript in preparation), and in other preparations
show that, in these axons, the average distance between
successive boutons is 4-8 ,um. The diameter of the
bouton may be two to five times larger than the interbou-
ton diameter; the length of the bouton is typically 0.5-2
,um (McGuire et al., 1984; Schuz and Munster, 1985;
Florence and Casagrande, 1987; Ohgaki et al., 1987;
Peters, 1987; Rockland, 1989). The portion of the axon
bearing varicosities is typically devoid of myelin (Fyffe
and Light, 1984). The number of boutons within a single
cortical axon can range between several hundreds (Rock-
land, 1989) to few thousands (Hellwig et al., manuscript
in preparation). What is the consequence of such a
frequent change in diameter for the propagation of APs
along the axon?

Fig. 8A plots the AP peak-time (tpeak) versus anatomi-
cal distance along an unbranched, varicose, axon. The
control is the case of a 600 ,um long uniform axon having
a diameter of 0.4 ,um. In case a, the axon starts with an
initial 100 ,um uniform (0.4 ,m) diameter; the next 500
p,m is a varicose region, each varicosity (bouton) is
modeled as a cylinder (a compartment) with a diameter
and a length of 1.6 ,um. The diameter of the axon
between boutons is 0.4 p,m and the interbouton distance
is 4 ,um (see inset). In case b, a single step increase in
diameter (from 0.4 to 1.6 ,um) occurs atx = 100 p,m.
One should remember that, in contrast to previous

figures, in Fig. 8A the abscissa is in anatomical units
(,um). Thus, the slope of each of the curves is the
reciprocal of the velocity, given in units of mm/ms. In a
0.4 ,um uniform axon (control) the velocity is 0.347
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FIGURE 8 The propagation of an action potential along an axon with
multiple varicosities. In A, three space-time diagrams are plotted.
Here, the abscissa is given in anatomical units. The control case is for a
0.4 p.m diameter, 600 p.rm long uniform axon. In curves a and b, the
axonal varicosities start at x = 100 p.m (dashed vertical line, see inset).
Each varicosity is a 1.6 p,m long, 1.6 p.m wide cylinder. The interbouton
diameter is 0.4 pm. In a, the interbouton distance is 4 ,um, whereas in b
it is 0 p.m (the latter case is equivalent to an axon with a single step
change in diameter, from 0.4 p.m to 1.6 p.m at x = 100 pm). Note that
the inset is not drawn to scale: the frequency of the varicosities in curve
a is much higher than pictured. In B, the effect of the interbouton
distance on propagation velocity (left ordinate and filled circles) and
propagation delay (right ordinate and empty squares) is shown. The
bouton dimensions and the interbouton diameters are as in A. Top
and bottom arrows in the left ordinate indicate the velocity in an axon
with a uniform diameter of 1.6 p.m (corresponding to the diameter of
the boutons) and 0.4 p.m (corresponding to the diameter of the axon
between boutons). The arrow on the right ordinate indicates the
propagation delay induced by a 600 p.m long, 0.4 p.m thick uniform
axon.

mm/ms. This is comparable to estimations of propaga-
tion velocity in axonal collaterals in unmyelinated CNS
neurons with similar diameters (Waxman and Bennett,
1972; Stone and Fukuda, 1974; Hsiao et al., 1984;
Martin, 1984). In case b, the abrupt (four times) increase
in diameter produces a marked delay at the geometrical
change (dashed vertical line). After recovery, the AP
reaches a constant velocity of 0.694 mm/ms, exactly
twice the velocity of the control case. These two cases
should be compared with case a (the varicose axon).
Near the region where the varicosities start (vertical
dashed line) a small delay in tpeak is obtained. Although
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FIGURE 9 An action potential propagating along a morphologically characterized cortical axon. InA, a HRP labeled axon from the somatosensory
cortex of the cat is shown (adapted from Schwark and Jones, 1989, Fig. 5 B). The calibration bar corresponds to 300 ,um. B-D illustrate the
distribution of voltage coded in colors (color scales given in mV relative to resting potential) along the simulated axon at three different times. The
diameter of the main axonal process, first-order collaterals and higher order collaterals were assumed to be 2.5 ,um, 1 p,m, and 0.4 ,um, respectively.
Because most of the axon is confined to grey matter, we assumed it to be unmyelinated. Branches with a diameter of 0.4 pm were studded with
boutons every 4 p.m (a total of 977 boutons). Each bouton was modeled as a 1.6 pm x 1.6 p,m cylinder. The axon was modeled with 2366
compartments using AXONTREE.

the diameter changes at this point are identical in both
cases a and b, the presence of nearby successive bottle-
necks (narrowings) in case a significantly reduces this
initial delay, as compared with the delay in case b.
Immediatly after entering the varicose region the slope
of the curve becomes essentially constant, correspond-
ing to a velocity of 0.29 mm/ms.2
The interesting finding is that, for the parameters

chosen, the velocity along the varicose region is even

2We have also examined the more realistic case where the bouton
diameter changes smoothly (rather than abruptly). Now the bouton
diameter increases from 0.4 to 1.6 p.m and decreases back to 0.4 p.m in
a sinusoidal fashion (each bouton was represented by 20 compart-
ments). Only a small difference between this case and the case where
the bouton was modeled by a step change in diameter was found. For
example, the propagation velocity in case a of Fig. 8A was 0.29 mm/ms
for the cylindrical boutons, compared with 0.319 mm/ms for the
sinusoidal boutons.

slower than the velocity in a uniform axon with 0.4 ,um
(interbouton) diameter (compare slope of curve a with
the slope of the control curve). This is surprising because
one intuitively expects the velocity to be between that in
a 1.6 ,um uniform axon (bouton diameter) and a 0.4 ,um
uniform axon (interbouton diameter). The reason for
this result is that the lag, induced locally at each passage
from the thin axon to the thick varicosity, is larger than
the lead obtained at the passage from the varicosity to
the thin axon (see Figs. 3, 5, and 6). The net delay at
each varicosity accumulates, slowing down the propaga-
tion velocity even below that in a 0.4 ,um uniform axon.

An alternative explanation for the slowing down in Fig.
8A curve a is that the AP propagating through a

varicose axon "sees" local increases in membrane capac-

itance with a negligible decrease in intracellular resistiv-
ity. This explanation holds provided that the boutons are

not too closely spaced. Indeed, when the interbouton
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distance is very small, the intracellular resistivity is
dominated by the bouton diameter, and the velocity is
expected to increase (see Fig. 8 B, two leftmost filled
circles).
How would changes in the interbouton distance affect

the propagation velocity at the varicose region? This
question is examined in Fig. 8 B. Here, the dimensions
of each bouton are as in Fig. 8A (case a) whereas the
interbouton distance ranges from 0-10 p,m. Top and
bottom arrows in the left ordinate indicate the velocity
in an axon with a uniform diameter of 1.6 p,m (the
bouton diameter) and 0.4 p,m (the axon diameter),
respectively. The filled circles indicate the propagation
velocity along a varicose axon as a function of interbou-
ton distance. The empty squares (and right ordinate)
show the corresponding propagation delay along the 600
p,m long axon, schematically represented in inset of Fig.
8 A. The arrow in the right ordinate indicates the
propagation delay induced by a 600 ,um long, 0.4 ,um
uniform axon.

Fig. 8 shows that for most realistic cases, in which the
interbouton distance was found to range between 4-8
pum, the propagation velocity is lower than the velocity in
a uniformly thin axon. Only when the interbouton
distance is very small relative to the length of the bouton
(and most of the axon consists of the large diameter), the
propagation velocity is larger than the velocity in the
thin axon. The conclusion is that, as a consequence of
the frequent varicosities typically found along many
axonal terminals, AP propagation within this region is
slowed, and consequently the total delay is larger,
compared with a homogeneous axon. Along the simu-
lated axon, the delay contributed by the boutons can be
calculated as the difference between the points labeled
by the empty squares and the value corresponding to the
arrow on the right ordinate. For example, with an
interbouton distance of 4 ,um this delay is 0.3 ms
( - 15% of the total delay).3

Propagation delay in an anatomically
characterized axonal tree
In this section, AXONTREE was used for estimating
the propagation delays in an anatomically characterized

3In these simulations, the vertical walls of the boutons were neglected.
Thus, for the interbouton and bouton diameters used in Fig. 8, the
surface membrane area of the boutons was underestimated by a factor
of 1.47. When the surface area of the vertical walls was incorporated in
the model (by increasing both the membrane capacitance and conduc-
tance of each bouton by this factor; see Segev et al., 1991), the
propagation velocity along the varicose region was found to be a few
percents lower than shown in Fig. 8 B.

axon. In particular, we were interested in exploring the
possibility that, within a single axon, the different
synaptic outputs are activated asynchronously. For the
simulation, a Horse Radish Peroxidase (HRP) labeled
axon from the somatosensory cortex of the cat was

digitized from Fig. 5 B of Schwark and Jones, 1989. This
axon emerges from cortical layer V and projects mainly
to area 4, but also sends collaterals to areas 3a and 3b
(Fig. 9A, scale bar = 300 ,um). The terminal branches
are studded with boutons (not shown). No details about
diameters and about the presence of myelin were

available. For the simulation, we have assumed that the
diameter of the main process is 2.5 ,Lm, the diameters of
the first-order collaterals are 1 p,m, whereas higher
order collaterals have a diameter of 0.4 p,m. All branches
were assumed to be unmyelinated. Boutons were distrib-
uted every 4 ,um along collaterals of second and higher
order (a total of 977 boutons). Each bouton was mod-
eled as a cylinder with a diameter and a length of 1.6 ,um.
These numbers are within the range reported by Schuz
and Munster, 1985; Florence and Casagrande, 1987;
Kisvarday et al., 1987; Peters, 1987; Rockland, 1989;
Smith and Armstrong, 1990).
Frames B-D in Fig. 9 show the distribution of voltage

(coded in colors) along the simulated axon at three
different times (upper left corner of each frame). The
current stimulus was injected to the leftmost compart-
ment at time 0. It can be seen that the total propagation
latency within this axon reaches several milliseconds. A
significant (few milliseconds) difference in activation
time of the proximal versus the distal boutons is also
observed (compare Fig. 9 C with D). The latter point is
emphasized in Fig. 10A, where the distribution of AP
peak time at the boutons of the simulated axon was

calculated. Two populations are distinct in this histo-
gram, one ranging from tpak = 2.6 to 4.6 ms (3.8 0.5
ms) and the other from tpeak = 4.6 to 6.6 ms (5.8 + 0.4
ms). The first peak is contributed by terminals innervat-
ing areas 3a, 3b, and the proximal part of area 4. The
second peak is contributed mainly by terminals innervat-
ing the distal part of area 4. The distribution of the
anatomical distance of the boutons is shown in Fig. 10 B.
Again, two populations are prominent. Note, however,
that the shapes of the histograms in Fig. 10A and B are

different. This indicates that the distance of the boutons
cannot, by itself, explain the distribution of AP peak
times along the axon. In addition to the length of the
axonal processes, the detailed geometry of the tree,
including diameter changes, also contributes to the
propagation delays along the axonal tree (see Discus-
sion).
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FIGURE 10 Asynchronous activation of the different release sites
(axonal boutons) within a single axon. In A, the distribution of AP
peak times at the different boutons of the axon simulated in Fig. 9 is
shown. The distribution of the anatomical distances of these, boutons is
depicted in B. The first peak in B corresponds to boutons innervating
cortical areas 3a and 3b and the proximal area of area 4, whereas the
second peak corresponds to boutons innervating cortical distal area 4.
See text for more details.

DISCUSSION

Recent advances in staining techniques, most notably
the use of intracellular HRP injection, have brought a
wealth of information regarding the fine structure of
axons. Detailed measurements at light microscopic (LM)
level have revealed the morphological complexity of
axons; EM investigation allows identification of the
exact sites (and types) of synapses that axons make with
their targets (e.g., Gilbert and Wiesel, 1979; Schuiz and
Muinster, 1985; Sereno and Ulinski, 1987). We now
know that axons tend to ramify extensively and create
frequent synaptic boutons (varicosities) along their ter-
minals and collaterals. These boutons (the output sites
of the axon) have a diameter which may be two to five
times larger than that of the axon along the interbouton
distance (e.g., Florence and Ca'-agrande, 1987; Gerfen
et al., 1987; Jensen and Killackey, 1987; Peters, 1987).
What is the significance of the axonal branching geome-

try for the transmission and processing of the APs

traveling along these axons?

To explore this and related functional questions,

theoretical tools should be developed in parallel with the

anatomical techniques mentioned above. These tools

should allow one to focus on the interplay between

axons morphology and their electrical function. As

elaborated in the companion paper, AXONTREE is a

simulator constructed specifically for this purpose. Here,

it was used for two, somewhat different, but yet related,

purpose.s. The first is to gain insights into the effect of

isolated geometrical changes on the conduction velocity

(delay) of the AP; our investigation focuses initially on a

single change and then on two or more, electrically

close, changes. Through this theoretical exploration

several general rules could be formulated. The second

purpose is to estimate the propagation delays to the

different output sites of a reconstructed axon. We

modeled a co'rtical axon from cat somatosensory cortex

that was characterized at the LM level. Data on length
and branching pattern was obtained from the LM study,

whereas diamteters and boutons distribution were esti-

ma-ted from o'ther studies on cortical axons performed at

the EM level. The' main results, are summarized below

and their functional i'mplications are considered.

Propagation delay at a Single

geometrical change

Fig. 3 shows that just' before propagation failure, the

delay (6t) that results from a single geometrical change

in which the geometrical ratio increases (i.e., GR > 1),

corresponding to a relative increase in diameter, may

reach 1 ms for the Hodgkin and Huxley (1952) AP at

20'C. At 6.30C, the delay may reach 2.3 ms and at 30'C it

may reach only 0.3 inS. Hence, this delay depends

strongly on the kinetics and the density of the excitable

channels (currents) that carry the AP (Fig. 4). Clearly,

the delay also depends on the passive properties of the

axon. For example, the critical value of GR in which

propagation fails depends on the value ofg, (the specific

leak conductance). When gL is increased from 0.3 to 1

MS/CM2 and all other parameters are preserved as in Fig.

3, the critical GR is decreased from 10.5 to 8 and the

maximal delay is now 0.85 ms (rather than 1 ins). This

study did not focus on the dependence of bt on the

different parameters, rather, it aimed at deriving general

qualitative rules that do not depend on a particular set

of parameters chosen.

Fig. 3 also demonstrates that &t is a supralinear
function of GR when GR > 1. Hence, increasing a given

GR > 1 by at would increase the propagation delay at

that region by more than a (Fig. 3). Fig. 3 also shows that
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for a given GR > 1, the delay is always larger than the
speedup obtained at the reciprocal of that GR value.
Thus, two successive geometrical irregularities, one with
GR > 1 and the other with the reciprocal of that GR
value, will produce a net positive delay (as compared
with the homogeneous case). This is an important result
because it implies that for an axon with a number of
geometrical changes with GR > 1 and an identical
number of changes with the inverse ratio, i.e., 1/GR such
as the varicose axon illustrated in Fig. 8, the conduction
velocity is lower than expected in a uniform axon whose
diameter is the average between its thin and its thick
parts.

Propagation delay and the interaction
between successive geometrical
changes
Our study shows that the delay that results from two
successive, electrically adjacent geometrical changes,
each with GR > 1 is larger than the linear sum of the
two individual delays (Figs. 5 and 6). When both GR <
1, the speedup is less than that expected from the linear
sum of the two.
The most interesting case occurs when an axon first

becomes thicker (with GR > 1) and, some distance
later, returns to its original diameter (i.e., GR2 = 1/

GR,). As discussed above, the delay due to this kind of
geometrical irregularity is always positive. Thus, such
varicosities can act as a neuronal delay element. The
total amount of the additional delay due to the two
associated geometrical irregularities is small, usually less
than 50 ,us for realistic geometrical values. If, however
enough of these varicosities are located one after the
other on an axon, like beads on a string, the total delay
incurred by such a structure can exceed the delay
associated with the axon without any varicosities (Fig.
8). Nonetheless, even here, the difference between a 600
,um long, thick axon without varicosities and the same

axon with varicosities is less than a third of a millisecond
(Fig. 8). One should note, however, that if the axonal
terminals are endowed with slower channel kinetics or

with a low density of excitable channels, the delay
resulting from the presence of frequent varicosities may
be significantly larger.

Delays in a reconstructed axonal tree

We also investigated the total delay and temporal
dispersion expected in an anatomically characterized
axonal tree in the last part of our study. We used a

HRP-injected axon of an extensively braching, putative
pyramidal cell from cat somatosensory cortex (Schwark
and Jones, 1989, Fig. 5 B). Because no detailed EM data

characterizing the diameter and the myelinization are

available for this axon, we used typical values derived
from a number of other cortical cells. We assumed that
the axon is unmyelinated, because most of it is confined
to the grey matter. Moreover, no myelin appears to exist
around varicosities and around thin branches in the
terminal parts of the tree. Because the presence of
myelin and the associated clustering of sodium channels
in the nodal regions (Waxman and Ritchie, 1985) will
speed up the propagation of APs, our model thus puts
an upper bound on the delays expected in this axonal
tree. Over the 3.5 mm extent of the tree, the total delay,
measured from the injection point to the most distal
bouton is 6.5 ms. The delay times fell into two groups,

one corresponding to terminals innervating areas 3a, 3b
and the proximal part of area 4, and the other corre-

sponding to terminals innervating the distal part of area

4 (Fig. 9A). Within each group, the mean and the
standard deviation was 3.8 ± 0.5 ms for the proximal
group and 5.8 ± 0.4 ms for the distal group. Only 0.4

ms for the distal group and 0.2 ms for the proximal
group, i.e., 6-7% of the mean is attributable to the
presence of the varicosities. The effect of the branch
points on the delay was much more significant; 1.49 ms
for the distal group and 0.58 ms for the proximal group,

i.e., 16-26% of the mean delay results from the presence

of branch points. In other words, the pure delays from
the axonal cables (placing the branches end to end and
neglecting the intervening branch points and varicosi-
ties) account for most (67-78%) of the delay.

Functional consequences
It is interesting to consider whether the results pre-

sented in this paper have any possible functional conse-

quences for the computations underlying neuronal infor-
mation processing (Koch and Poggio, 1987). We will
briefly consider the temporal dispersion and the total
delay associated with axonal trees.

In principle, whether differences in synaptic activa-
tion time of the target cells are significant depends on

the membrane time constant (Tm) which governs the
dynamics of the post-synaptic cell. For cells with a long
membrane time constant (15-50 ms) as found in experi-
mental conditions in cerebellar Purkinje cells (Segev et
al., 1991) and pyramidal and stellate cortical cells
(Douglas et al., 1991), a delay of a few milliseconds
between inputs to the postsynaptic cell will be masked. If
indeed such long time constants are the properties of
cortical cells in the behaving animal (where background
activity of many synapses may significantly reduce the
effective Tm), it appears that temporal dispersion of AP
propagation in axonal trees has little (if any) functional
consequences. Nevertheless, recent studies do suggest
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that an important parameter for information processing
in cortical networks is the timing of inputs converging on
a single neuron (as, for instance, in the "synfire" model
of Abeles, 1991). According to this model, a single
cortical cell acts as a coincidence detector in the millisec-
ond range. Here, axonal delays could play an important
functional role.
Whether the propagation delay along axons is used in

cortical computations is not yet clear. Yet, in some
systems, the conduction delays along axons clearly have
a functional significance. In the barn owl, for example,
precise sound localization in the horizontal plane is
achieved by measuring interaural time differences in the
range of a tenth of a millisecond. This extraordinary
temporal resolution is apparently based on small differ-
ences in conduction delays along afferents innervating
the nucleus laminaris (Carr and Konishi, 1988). Further-
more, intracellular recordings from these afferents show
orderly changes in conduction delay with depth in the
nucleus. In this case, morphological irregularities may
contribute to that delay function of the axon.
On the other hand, a number of neuronal operations,

such as direction selectivity, seem to require a delay on
the order of 20-30 ms (Koch et al., 1986). Given our
range of parameters considered, only a small fraction of
this delay could originate in the axonal tree for any
computation which is performed locally, i.e., within a
hypercolumn or two. It appears likely that such large
delays are governed by two additional sources of delays
in a single neuron. Namely, the delay imposed by the
synaptic processes (the dynamics of neurotransmitters
release and kinetics of the postsynaptic channels) and
the delay contributed by the propagation of the synaptic
potential along the dendritic tree. It is reasonable to
conclude that different sources of delays within the
single neuron (i.e., the axonal, the synaptic, and the
dendritic) are used to perform different neuronal compu-
tations.
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