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Abstract-The shift-and-invert Arnoldi method has been popularly used for computing a number 
of eigenvalues close to a given shift and/or the associated eigenvectors of a large unsymmetric matrix 
pair, but there is no guarantee for the approximate eigenvectors, Ritz vectors, obtained by this method 
to converge even though the subspace is good enough. In order to correct this problem, a refined 
shift-and-invert Arnoldi method is proposed that uses certain refined Ritz vectors to approximate the 
desired eigenvectors. The refined Ritz vectors can be computed cheaply and reliably by small-sized 
singular value decompositions. It is shown that the refined method converges. A refined shift-and- 
invert Arnoldi algorithm is developed, and several numerical examples are reported. Comparisons are 
drawn on the refined algorithm and the shift-and-invert Arnoldi algorithm, indicating that the former 
is considerably more efficient than the latter. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Consider the large unsymmetric generalized eigenproblem 

where A and B are N x N large matrices. In many scientific applications, e.g., [l], we are interested 

in computing some interior eigenvalues of A in the complex plane, i.e., some eigenvalues close to 

a given shift c and/or the associated eigenvectors of the above matrix pair (A, B). The problem 

is so large that it cannot be treated by standard numerical methods for small- and medium-sized 
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matrices, but it is supposed that an LU factorization of a nonsin~ular matrix A - aI3 is feasible 

and can be done at reasonable cost. 

One of the most commonly used techniques for this kind of problem is the shift-and-invert 

Arnoldi method [2], which is a natural generalization of the shift-and-invert Lanczos method for 

the symmetric case [3?4]. Wh en A - aI3 is invertible for CT, the eigenvectors of the matrix pair 

(A, B) are the same as those of the matrix (A - aB)-“B. Therefore, we can run the Arnoldi 

method on the matrix (A - all)-‘B, The eigenvalues of (A, B) can also be recovered from the 

computed eigenvalues. 

If the shift D is suitably selected, the distribution of the spectrum of the transformed matrix 

C = (A - aB)-‘B may be favorable even if the eigenvalues close to the shift D of the matrix pair 

(A, B) are clustered. Therefore, the Arnoldi method applied to the eigenproblem of the shift- 

and-invert matrix C may give a much faster convergence with eigenvalues close to the shift (r. 

Furthermore, instead of a fixed or constant shift 0, Ruhe provided an effective technique [5-91 on 

selecting the shifts a dynamically so that the resulting variant, called rational Krylov algorithms, 

may be more efficient. 

However, it has been shown that the Arnoldi method may not converge [lo-121: the approxi- 

mate eigenvectors, Ritz vectors, obtained by this method may converge erratically and even may 

not, converge though the Krylov subspace contains sufficient information on the desired eigen- 

vectors and the corresponding approximate eigenvalues, Ritz values, converge. In fact, such a 

possible nonconvergence may occur to general standard projection methods, as shown in [11,12]. 

To correct this problem, Jin has proposed a class of refined projection methods that have a math- 

~lllatically different background from the standard methods for extracting eigenvectors. Several 

refined algorithms have been developed, and they have shown their (far) superiority to their 

corresponding standard counterparts (13-181. Stewart [19] and van der Vorst [20] have given an 

excellent and quite detailed account of the refined methods. 

Since the sIlift-and-invert Arnoldi method for problem (1) is mathematically equivalent to the 

Arnoldi method for sohing the transformed eigenproblem, the former has the same convergence 

problem as the latter does. This motivates us to derive a refined shift-and-invert Arnoldi method 

and to develop correspoIldin~ more efficient algorithms. The refined method uses refined Ritz 

vectors with minimal residuals to approximate the desired eigenvectors of the matrix pair (A, B). 
The refined Ritz vectors can be obtained by some small-sized singular value decompositions 

(SVD). It is shown that the refined method converges under a natural hypothesis that a Krylov 

subspace is good enough. Based on the MATLAB function sptarn.m due to Ruhe [Zl], we make 

a modification to it and develop a refined shift-and-invert Arnoldi algorithm. We then report 

several numerical examples and compare the refined algorithm with the shift-and-invert Arnoldi 

algorithm. Numerical experiments show that the former is considerably more efficient than the 

latter. 

The paper is organized as follows. Section 2 describes the shift-and-invert Arnoldi method 

and some properties of it. Section 3 proposes the refined shift-and-invert Arnoldi method and 

establishes some results on it, and it then presents a refined ship-and-invert Arnoldi algorithm. 

Section 4 considers the convergence of the refined shift-and-invert Arnoldi method. Section 5 

discusses implementational details. Finally, Section G reports numerical results on four real 

world problems and draws comparisons on the two algorithms. 

Throughout this paper, assume that the matrix pair (A,B) is regular; i.e., there exists a 

shift LT such that the matrix A - aB is not singular. Let C = (A - (rB)-‘B, and denote by Cm 

the vector space of dimension 17%. For a unit norm vector ~1, let K;‘,(C, vi) denote the Krylov 

subspace spanned by 2~1 1 CQ , . . . ? Cm-i~i and 7r,, the orthogonal projector onto I%,(C, ZQ). The 

norm used in this paper is the Euclidean norm. We denote by an asterisk the conjugate transpose 

of a matrix or vector and by orllin(X) the smallest singular values of a matrix. Let 1, be the 

m x H$. identity matrix and 1’, the (m + 1) x rn matrix which is the same as I, with an additional 

zero row. 
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2. THE ~~~~T-AND-INVERT ARNOLD1 ~ETHU~ 

If the matrix A - UB is invertible for some shift 0, the eigenproblem (1) can be transformed 

into the standard eigenproblem 

CI;, = &Pi, (2) 

where Bi = l/(X; - a). 

It is easy to verify that (Xi, pi) is an eigenpair of problem (1) if and only if (@i, I,P)) is an eigen- 
pair of the matrix C. Therefore, the shift-and-invert Arnoldi method for the eigenproblem (1) 
is ~~~athernati~~ly equivalent to the standard Arnoldi method for the transformed eigenprob- 
Iem (2). It starts with a given unit Iength vector VI (usually chosen randomly) and builds up an 
orthonormal bcasis t’, for the Kryiov subspace X,(C, vi f by means of the ark-Schmidt orthog- 
ol~aiizat~on process. In finite precision, r#rthogonalizatio~ is performed whenever some severe 
cancellation occurs [2]* Then the approximate eigenpairs for the transformed eigenproblem (2) 
can be extracted from Ic,(C, ~1). The approximate soiutions for problem (I) can be recovered 
from these approximate eigenpairs. 

The shift-and-invert Arnoldi process can be written in matrix form 

where e,,, is the nzth coordinate vector of dimension m, VflL+l = (V,, v,+~) = (~1, ~2~ I. ” ;um+l) 
is an N x (tn. + 1) matrix whose columns form an orthonormal basis of the (m + l)-dimensional 
Krylov subspace Ic,+l(C, III), and fi, is the (m + 1) x m upper Hessenberg matrix that is the 
same as H, except for an additional row whose only nonzero entry is hm+i,,n in the position 
(n1 + l1 ??Z). 

Suppose that (8i,$i), i = 2,2,. . . , nz. are the eigenpairs of the matrix Ii,, 

Let 

&=0+$ and 3.j = V,~i. (6) 
2 

Theu the shift-and-invert Arnoldi method uses (j\i, Si) to approximate the eigenpairs (Ai, pi) of 
problem (1). The i, and $1 are called the Ritz values and the Ritz vectors of A with respect to 
Ic,,,(C, ui), respectively. Define the corresponding residual 

Then we have the following theorem. 

THEOREM 2.1. Tile residuals Pi corresponding to the appxoximate eigenpairs (A,,$,) by the 

shift-and-invert Arnoldi method satisfv 
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PROOF. From relations (3), (4), and (G), we obtain 

Ruhe has developed a shift-and-invert Arnoldi algorithm; see, e.g., sptarn . m in AIATLAB where 

it is designed to compute all the eigenvalues in a rectangle and the associated eigenvectors. The 

algorithm can be modified to compute the k eigenvalues near a target point c and the associated 

cigenvectors. We call the resulting algorithm Algorithm 1. For details, refer to Section 5. 

3. A REFINED SHIFT-AND-INVERT ARNOLD1 METHOD 

To correct the possibie noliconvergence of Ritz vectors, Jia has proposed a class of refined 

projection methods [11,13,16] for the standard eigenproblem: for each approximate eigenvalue 

available, say, Ritz value, seek a unit Iength refined Ritz vector from the subspace to approximate 

the wanted eigenvector. The refined Ritz vector minimizes the corresponding residual norm 

formed with the approximate eigenvalue over the subspace. This implies that the refined Ritz 

vector is the best approximation to the wanted eigenvector over the subspace with respect to the 

Euclidean norm and the approximate eigenvalue. 

The principle of the refined methods can be applied to the shift-and-invert Arnoldi method 

for the generalized eigenproblem in the following way. For each &, seek a unit length vector 

U, E KhR(C, ul) that satisfies the following optimality property: 

We use (x,, u,) to approximate the eigenpair (X,, L_^~) of (A, B). So ui is the best approximation 

to p,, from Kln(C,~r) with respect to 8, and the Euclidean norm, and thus is called a refined 

Ritz vector. The resulting method is referred to as the refined shift-and-invert Arnoldi method. 

Clearly, the mathematical background for the refined method is now different from that of the 

original method. 

Denote the residual norm of the refined approximate eigcnpair (xi, u,) by 

//7’i// = //(A - i,B) u, I/ . (10) 

Then we have the following result. 

THEOREM 3.1. Assume zi to be the right singular Irector associated with the smallest singular 

value (I rllin(HTn - Gifm) of the (m + 1) x nz Hessenberg matrix i?fm - e’,j,,,. Then 
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If the shift-and-invert Arnoldi process breaks down, i.e., h,,,+l.,,, = 0, then ui = +i = vi and 

x; = x,, i = 1,2, . . . , ‘rn. 

PROOF. Since V, and V,+, are orthonormal, we have from (4), (9), and (10) that 

(1 ((A - aB)-‘B - ~$1) uj(/ = $n# I/ ((A - aB)-‘B - &I) V,;ll 

Iltll=l 

= nlin 
ZEC”’ 

lpcn+, (fim - a) ill 

ll~ll=1 

ancl 

11~~11 = I/( A- XiB 
> II V&i 

= I/ ((A - oB) - (“j - 0) B) V&ill 

= Il(A - aB) (I - (xi -u) (A - oB)-‘B) Vmiill 

= li\i - o/ II(A - CTB) ((A - aB)-‘B - 8iI) Vmiill 

I Ii, - 01 IIA - oBll llllm,, (fim - &fm) iill 

= li\i - 01 [IA - oB[I 11 (fim - &i,) iill 

= ii -U [IA - BB(lo”,in E;r, - ei.fm . I I ( > 
Moreover, if h,,,+l,* = 0, we get from Theorem 2.1 

II(A-JiB)$ilI ~0, i = 1!2,....m. (13) 

Thus. 1, = X, and +, = q;, i = 1,2,. . . , nz. 

From the above discussion, we can present the following algorithm. 

ALCoRlTHhr 2. A REFINED SHIFT-AND-INVERT ARNOLDI ALGORITHM (RSIA). 

1. 

2. 

3. 

4. 

5. 

I 

Start: Given nz, the dimension of the Krylov subspace, k, the number of desired eigenpairs, 

and a tolerance tol. Choose an initial unit length vector ~1 and shift (T. 

Iterate: For j = 1,2,. . . , ?n, do 

(a) Compute 1’ := (A - aB)-‘Bvj. 

(b) Orthogonalize T := T - V,hj where hj = V;r (Gram-Schmidt). 

(c) Get new vector vj+l = r/hj+l.j, where hj+l.j = llrll (normalize). 

Approtinmate solutions: Compute the approximate solutions & and u; by relations (9)-(11) 

and use the pairs (A?, u,) to approximate the eigenpairs (Xi, vi) of (Al B), i = 1,2,, . . , k. 
Test for convergence: If all the residual norms (Jl’ill, i = 1,2,. . . , k, are below tol, then 

stop, else continue. 

Restart: Construct a new initial unit length vector VI and go to Step 2. 
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4. THE CONVERGENCE OF THE REFINED 
SHIFT-AND-INVERT ARNOLD1 METHOD 

The Following result shows that the refined shift-and-invert Arnoldi method indeed converges 
under a natural hypothesis that the deviation of a required eigenvector from the subspace tends 
to zero. 

'I'HE~REM 4.1. Define 5 = /[A - aBll(j(A - c~B)-‘Bll and assume that E = 11(1 - x,,)pill -+ 0, 
lvhere K,, is the orthogonal projector on K,(C, ~1). Then the approximate eigenpair (ii, ui) 
satisfies 

uhere s, is the spectral condition number of 8;. 

PROOF. The eigenvalue I?, of the matrix H,,, satisfies 

From a result of [12], we have 

\ l/m 
lei - gil I IIt-4 - ~B)-‘BII (2 + A) l-l’m (&,J 

< [/(A - aB)-‘B/I 2 + 
A) ($& 

(15) 

Therefore, we get from Theorem 7.1 that 

iI(A-~,B)u,ll = li( (A - CB) - (ii - C) B) ‘tlg // 

IT. //(A - CTB) (I- (ii - CT) (A - cdl)-%) .uj// 
< Ix, - 01 /A - EIBII /j ((A - aB)-‘B - “I) ui/l 

If 6; is simple. then according to Theorem 3.7 of [lo]. we have 

Therefore, it follows from above and the Taylor expansion on J?--Fz that (15) holds. I 
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REMARK. Inequality (14) indicates that in the global sense the refined ship-aild-invert Arnoidi 
method converges, though it may converge extremely slowly because of the factor l/m. However, 

it is shown in [12] that generally this factor cannot be removed without additional assumption. 

If si is simple and not too ill-conditioned, then (15) shows that the refined method converge with 

the linear rate in E. Note that E + 0 is a necessary condition for convergence of all projection 

type methods [2,10]. So it is a natural hypothesis when considering convergence of a projection 

method. Therefore, the refined method corrects the possible nonconvergence of the shift-and- 

invert Arnoldi method. For more details on the convergence of general refined projection methods 

and of refined Ritz vectors, we refer to [11,12,17,19]. 

5. PRACTICAL IMPLEMENTATIONS 

Ruhe has provided a shifted and inverted Arnoldi program for MATLAB 5.0 (see sptarn.m in 

the PDE toolbox in MATLAB). It computes all the eigenvalues and the associated eigenvectors 

in a rectangle in the complex plane with opposite corners given by the two complex numbers lb 

and ub. When no more eigenvalues are found in the region [lb, ub], the program stops. 

The code used in our experiments for Algorithm 1 is a little different from Ruhe’s. We make 

some modifications to sptarn.m. First, we use the subspace spanned by the orthogonalized basis 

of the converged Ritz vectors instead of the Schur vectors to approximate a desired invariant 

subspace of the matrix pair (A, El). The orthogonalized basis can be obtained by small-sized 

QR decompositions. For the refined shift-and-invert Arnoldi algorithm, accordingly, we use the 

subspace spanned by the orthogonalized basis of the converged refined Ritz vectors to approximate 

the desired invariant subspace. Second, at each restart of our programs, we select a Ritz vector 

or a refined Ritz vector associated with the first Ritz value in the region [lb, zlb] that has not yet 

converged. Then the new initial vector is constructed by orthogonalizing the Ritz vector or the 

refined Ritz vector to all those converged approximate eigenvectors found. Since we cannot know 

how many eigenvalues there are in the given rectangle in practical computation in advance, our 

programs stop whenever the number of approximate eigenpairs found is bigger than or equal to 

a given number k. This avoids the programs running endlessly as Ruhe’s code may do. As a 

consequence, the eigenvalues computed lie in the region [Ib,ub] if the number of eigenvalues in 

[lb, ,ub] is bigger than k: otherwise, some of the eigenvalues computed are outside this region if 

the number of eigenvalues in the region is smaller than k. 

In our programs, the matrix by vector products (A - aB)-‘z is computed by two steps. First, 

we use the MATLAB lu command to obtain the sparse LU factors of the matrix A - crB; then 

(A - aB)-‘2 = U\L\x, where the backslash is the MATLAB left matrix divide command. 

Finally, we offer a few words about how to test convergence. In experiments, based on (8) 

and (12), we claim that Algorithm 1 has converged when 

h m+l.m IeXiI I toL (16) 

and that Algorithm 2 has converged when 

cmin (8, - ilii,,,) 5 tO1, (17) 

where to1 is a user prescribed tolerance. In such a way, we do not need to form the Ritz vector gi 

and the refined Ritz vector iii before they converge. 

6. NUMERICAL EXPERIMENTS 

ilk have tested the shift-and-invert Arnoldi algorithm and the refined shift-and-invert Arnoldi 

algorithm using MATLAB 5.0 on an INTEL PENTIUM 450 MHz with the machine precision eps = 

2.22 x 10-l’. In the experiments? we used the function sparse in MATLAB 5.0 to save the matrix 
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in question, so that only the nonzero entries of the matrix enter the computation of matrix by 

vector products. 

EXAMPLE 1. Consider the Tolosa matrix pair (Al B) from aerodynamics related to the stability 

analysis of a model of a plane in flight [l]. Here A is a sparse and highly nonnormal matrix with 

t,he order N = 2000 and B is an identity matrix with the same order. Since the eigenproblem of 

(A, B) is very ill-conditioned, it can be very difficult to compute a few eigenpairs of it. 

We were interested in the eigenvalues close to the origin. Set a region [Ib: ub] with Lb = -15 - i 

and ,ub = -1 + 15i. We selected different shifts cr and computed 23 eigenpairs of (A, B) in this 

region. Algorithms 1 and 2 were stopped as soon as stopping criteria (16) and (17) are satisfied 

for f,&,&) and (.&, G2), i = 1,2,. . , 1 kl respectively, where to1 = 10m8. They used the same 

initial vector vi generated randomly in a uniform distribution. Table 1 shows the results, where 

‘Iter.” denotes the number of restarts, “CPU” the CPU timings in seconds, and “nc.” failure to 

compute all the desired eigenvalues. 

Table 1. Results of Example 1. 

- 

- 

m 
- 

30 

35 

40 

45 

50 
- 

30 

35 

40 

45 

50 
- 

35 

40 

45 

50 
- 

35 

40 

45 

50 
- 

35 

40 

45 

50 
- 

6 Iter. CPU Iter. CPU 

-12.05 7 70.2 5 53.7 

-12.05 3 31.7 3 32.0 

- 12.05 2 29.3 2 29.9 

-12.05 3 55.6 2 39.1 

- 12.05 2 46.3 2 47.5 

-11.5 

-11.5 

-11.5 

-11.5 

-11.5 

-11 

-11 

-11 

-11 

- 10.5 

-10.5 

-10.5 

-10.5 

-10 

-10 

-10 

-10 

500 I1.C. 27 287.5 

11 138.5 7 78.0 

6 81.7 5 75.4 

4 65.7 3 50.0 

3 63.3 3 57.9 

500 11.c. 18 236 

8 118 6 87.6 

5 91.2 4 71.5 

3 58.1 3 59.1 

500 n.c. 

500 I1.C. 

6 109 

4 82.7 

41 

9 

5 

3 

85 

20 

8 

4 

576 

169 

92.0 

59.1 

500 I1.C. 

500 11.c. 

11 229 

4 82.7 

1225 

326 

152 

109 

T SIA l- RSIA 1 

It is seen from Table 1 that Algorithm 2 gas much more efficient than Algorithm 1 in many 

cases in terms of CPU timings and the number of restarts. Only for quite large m and weil- 

selected shifts (T. e.g.. 71% = 45,50 and c7 = -12.05. Algorithm 1 was comparable to Algorithm 2. 

\Vhen 0 = -11, -10.5! -10 and nz = 35,40, Algorithm 1 failed to find all the desired eigenvalues, 

while Algorithm 2 worked successfully. 

ExAh,IPLE 2. Consider the constant coefficient convention diffusion differential equation 

-Au(z. y) -t piu,(~ y) + w+,(L. Y) - P~U(G Y) = A+, Y) 



Shift-and-Invert Arnoldi Algorithm 1125 

on a square region [0, l] x [O? l] with the boundary condition u(z, y) = 0, where pi, ~2, and p3 

are positive constants. Discretization by five point difference on uniform n x n grid points using 

the rowvise natural ordering gives a block tridiagonal matrix of the form 

A= 

I 

(P + l)I 
(-BT+ 1)1 T (a + 1)I 

. . .. .. 

. . I. 
(a + 1)I 

WV 

with 

-y-l 4-T y-l 

T= 

Y-1 
-y-l 4--r 

I (20) 

where /3 = (1/2)pih, y = (1/2)p&, T = p3h2, and h = l/(71 + 1). The order of A is N = n2. 

By taking pr = 1, p:! = pa = 0. and n = 30, we can obtain a 900 x 900 matrix A(30). Let B be 

the identity matrix with order 900. Algorithms 1 and 2 were run on the matrix pair (A(30), B). 

Set a region 5 < Re(X) < 7. We wanted to compute 20 eigenvalues close to the shik LT = 6. In 

the experiments, all the ~1s were the same, and the stopping requirement and the notation used 

were as before. Table 2 lists the results. 

Table 2. Results of Example 2. 

SIA RSIA 

m Iter. CPU Iter. CPU 

30 500 1l.C. 41 116 

35 500 n.c. 21 84.6 

40 149 653 14 67.1 

45 29 152 9 50.9 

50 5 32.6 4 27.5 

fl’e can see from Table 2 that Algorithm 2 made great inlprovements over Al~orithnl 1. Only 

for quite large ‘ml e.g., ‘HZ = 50, Algorithm 1 was comparable to Algorithm 2. When 1~ = 30,35, 

Algorithm 1 did not compute all the desired eigenvalues, while Algorithm 2 performed efficiently. 

EXAMPLE 3. Dielectric channel waveguide problems arise in many integrated circuit applications. 

Discretization of the governing Helmholtz equation for the magnetic field H 

02Hr + k2n2(x, y)H, = P2Hr, (21) 
02H, + k2n2(x, y)Hy = P’H, (22) 

by finite difference leads to an unsymmetric matrix eigenvalue problem of the form 

(23) 

where Cii and C&Q are five- or tri-diagonal matrices, C12 and C21 are (tri-)diagonal matrices, 

and Bii and 822 are nonsingular diagonal matrices. 
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Table 3. Results of Example 3. 

SIA RSIA 

m Iter. CPU Iter. CPU 

30 500 n.c. 488 510 

40 500 n.c. 197 386 

50 353 1118 67 202 

60 152 640 50 215 

70 181 1017 38 218 

80 124 918 26 192 

90 59 532 22 199 

Table 4. Results of Example 4. 

I I CT,4 I DCTA 1 
Lllil IbJ1Ja 

m 0 Iter. CPU Iter. CPU 

30 -3.5 500 “.C. 15 13.0 

35 -3.5 112 128 9 10.0 

40 -3.5 500 ns. 5 7.3 

45 -3.5 6 12.1 3 5.5 

50 -3.5 5 11.9 3 6.4 

30 -3 500 I1.C. 12 10.4 

35 -3 500 ns. 7 7.9 

40 -3 500 n.c. 4 5.8 

45 -3 7 11.6 4 6.9 

50 -3 3 7.3 2 4.6 

30 -2.9 500 n.c. 9 8.0 

35 -2.9 500 n.c. 7 7.9 

40 -2.9 500 n.c. 6 8.3 

45 -2.9 6 11.6 2 4.0 

50 -2.9 2 4.1 2 4.6 

30 -2.5 500 ll.C. 10 8.5 

35 -2.5 496 480 4 4.7 

40 -2.5 7 9.2 3 5.3 

45 -2.5 2 3.6 2 3.9 

50 -2.5 1 2.4 1 2.9 

1Ve tested the problem with N = 2048 and computed 20 eigenvalues close to the shift 0 = 0.98. 

1Ve take the region -10 < Re(X) < 10. Here, all the ~1s were the same, and the stopping 

requirement and the notation used were as Example 1. Table 3 shows the results. 

It is seen from Table 3 that Algorithm 2 had a considerable improvement over Algorithm 1, as 

shown by Iter. and CPU. Besides, we found that Algorithm 1 with m = 70 used more restarts 

than that with m = 60. This is not surprising since from the theoretical analysis [10,13], a 

larger nt does not necessarily give better Ritz vectors than a smaller m does, so that a new 

initial ‘~1~ in the next restart may not contain more information on the required eigenvectors and 

thus slowed down the convergence. 

EXAMPLE 4. This example is a generalized matrix eigenvalue problem arising in the modal 

analysis of dissipative magnetohydrodynamics (hIHD) [l]. The hlHD system combines Maxwell’s 

and fluid flow equations. The physical objective of these MHD systems is to derive nuclear energy 

from the fusion of light nuclei. The plasmas generated exhibit both the characteristics of an 

ordinary fluid and special features caused by the magnetic field. The resulting MHD equations 
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are solved by applying the Galerkin method in conjunction with finite elements, which leads 

to the generalized eigenvalue problems. The corresponding eigenproblem comprises complicated 

cigenvalue patterns having different orders of magnitude corresponding to the very different 

time scales of the behavior involved in the system. We took the matrix pair (A3 B) with order 

iV = 416 from [l], and computed the 15 eigenvalues of A9 = XBp around the different shifts 

cr = -3.5, -3, -2.9, -2.5 in the region [lb, ub] with lb = -5 - 50i and ub = 5 + 50i. Table 4 

reports the results computed. In stopping criteria (16) and (17), we took to1 = lo-‘. 

It is observed that Algorithm 2 was much more efficient than Algorithm 1. For nearly half of 

the cases tested, Algorithm 1 failed to computed all the required eigenvalues, but Algorithm 2 

worked very well for all the cases. 

In summary, our refined Algorithm 2 can outperform Algorithm 1 very much. By making 

aclditional modifications, it should be extended to the rational Krylov algorithms presented by 

Ruhe [6-g]. \\‘e would expect that the resultin, 6 refined algorithms are more efficient. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14 

15 

1G 

17 

18 

I9 
20 
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