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SUMMARY

The physical nature of the bacterial cytoplasm is
poorly understood even though it determines cyto-
plasmic dynamics and hence cellular physiology
and behavior. Through single-particle tracking of
protein filaments, plasmids, storage granules, and
foreign particles of different sizes, we find that the
bacterial cytoplasm displays properties that are
characteristic of glass-forming liquids and changes
from liquid-like to solid-like in a component size-
dependent fashion. As a result, the motion of cyto-
plasmic components becomes disproportionally
constrained with increasing size. Remarkably,
cellular metabolism fluidizes the cytoplasm, allowing
larger components to escape their local environment
and explore larger regions of the cytoplasm. Conse-
quently, cytoplasmic fluidity and dynamics dramati-
cally change as cells shift between metabolically
active and dormant states in response to fluctuating
environments. Our findings provide insight into bac-
terial dormancy and have broad implications to our
understanding of bacterial physiology, as the glassy
behavior of the cytoplasm impacts all intracellular
processes involving large components.
INTRODUCTION

In eukaryotes, active transport (including ATP-dependent diffu-

sive-like motion) involves protein motors and cytoskeletal

filaments. In the absence of cytoskeletal motor proteins, (micro-

meter-sized) bacteria are thought to primarily rely on diffusion for
molecular transport and cytoplasmic mixing. Diffusion is there-

fore considered an integral part of bacterial life; it determines

the mobility of cytoplasmic constituents and hence sets the

limits at which molecular interactions (and thereby biological re-

actions) can occur. Diffusion is also essential for cell proliferation

by promoting a homogeneous distribution of cytoplasmic com-

ponents and the equal partitioning of solutes between daughter

cells. Although diffusion in general has been extensively studied

theoretically and experimentally, the bacterial cytoplasm bears

little resemblance to the simple liquids usually considered. First,

the bacterial cytoplasm is an aqueous environment that is

extremely crowded (Cayley et al., 1991; Zimmerman and Trach,

1991). Second, the cytoplasm is highly polydisperse, with con-

stituent sizes spanning several orders of magnitude, from sub-

nanometer (ions and metabolites) to nanometers (proteins) to

tens and hundreds of nanometers (ribosomes, plasmids, enzy-

matic megacomplexes, granules, and microcompartments) to

micrometers (protein filaments and chromosomes). Third, meta-

bolic activities drive the cytoplasm far from thermodynamic equi-

librium. Furthermore, as a resistance mechanism, the cell can

reversibly shut down metabolism in response to environmental

stresses. How these features affect the physical properties of

the cytoplasm is poorly understood. Such an understanding is

critical because the physical nature of the cytoplasm determines

the dynamics of cytoplasmic components and therefore impacts

all intracellular processes.

Both normal and anomalous diffusive motions have been re-

ported for cytoplasmic components (Bakshi et al., 2011; Coquel

et al., 2013; English et al., 2011; Golding and Cox, 2006; Niu and

Yu, 2008; Weber et al., 2010), and a unifying picture about

the physical nature of the cytoplasm has yet to emerge. We

show here that the bacterial cytoplasm exhibits physical

properties typically associated with glass-forming liquids

approaching the glass transition. Glass-forming liquids, which

are intensively studied in condensedmatter physics, encompass
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many materials, including molecular glasses (vitreous glass) and

dense suspensions of colloidal particles (colloidal glasses)

(Hunter and Weeks, 2012). We found that the glassy behavior

of the bacterial cytoplasm affects the mobility of cytoplasmic

components in a size-dependent fashion, providing an explana-

tion for the previous seemingly conflicting reports. Strikingly,

metabolic activity abates this glassy behavior such that, in

response to environmental cues, cytoplasmic fluidity and dy-

namics are dramatically altered through modulation of cellular

metabolism.

RESULTS

The Motion of Crescentin-GFP Structures and
PhaZ-GFP-Labeled Storage Granules Is Reduced in
Metabolically Inactive Caulobacter crescentus Cells
Our study began with a serendipitous observation while studying

the bacterial intermediate filament protein crescentin. Under

native conditions, crescentin self-associates to form a stable

(i.e., having no detectable subunit exchange) membrane-bound

filamentous structure that generates the namesake curvature of

the bacterium Caulobacter crescentus (Ausmees et al., 2003). A

specific modification of the cell envelope (Cabeen et al., 2010) or

addition of a bulky tag (e.g., GFP) to crescentin (Ausmees et al.,

2003) causes the crescentin structure to detach from the mem-

brane; these nonfunctional structures display random motion in

the cytoplasm (Cabeen et al., 2009). While imaging GFP-labeled

crescentin structures in a filamentous mutant strain growing on

an agarose pad made with nutrient-containing medium (M2G),

we observed, to our surprise, that crescentin-GFP structure

movement suddenly stopped when the cells simultaneously

arrested growth (Movie S1 available online). The reason for the

abrupt growth arrest was unknown, but the ensuing drop in

crescentin-GFP structure mobility raised the intriguing possibil-

ity that metabolic activity may play a role in the motion of freely

diffusing cytoplasmic components.

A possible link between metabolism and cytoplasmic dy-

namics would be important to investigate, as bacteria in the

wild are able to shift between metabolically active and dormant

states in response to changing environments (Lennon and

Jones, 2011). Dormancy is a survival strategy that can be trig-

gered by many external insults, including nutrient limitation and

late stationary phase. To examine whether dormancy can affect

cytoplasmic dynamics, we first tracked crescentin-GFP struc-

tures (replacing wild-type crescentin structures) in otherwise

wild-type cells (using custom two-dimensional trackingmethods

for non-diffraction-limited objects; see Supplemental Informa-

tion and Figures S1A–S1F), and compared their mobility in

actively growing cells to their mobility in cells subjected to pro-

longed carbon starvation. In cells actively growing on M2G

medium, crescentin-GFP structures displayed motion and

were able to sample the cytoplasm in minutes (Figure 1A and

Movie S2) by taking large, seemingly random steps (Figure 1B).

In contrast, carbon-starved cells were unable to grow, and

crescentin-GFP structures rarely left their original locations (Fig-

ures 1A and 1B andMovie S3) for the entire duration of the exper-

iment (up to 9 hr; data not shown). We observed similar spatial

confinement in late-stationary-phase cells (Figure 1B) and under
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treatment with 2,4-dinitrophenol (DNP; Figure 1B andMovie S4),

an oxidative phosphorylation uncoupling agent that rapidly de-

pletes cells of ATP and GTP.

To quantitatively analyze crescentin-GFP structure mobility at

the population level, we calculated the mean square displace-

ment (MSD) over large numbers of trajectories (n = 718–1,943).

The MSD averages, over all objects, the square of the distance

between an object’s current position and its original position

(see Supplemental Information). Comparison of one-dimen-

sional (along cell length) MSDs between experimental conditions

confirmed the dramatic loss of mobility in metabolically reduced

cells (carbon-starved, stationary-phase, and DNP-treated popu-

lations; Figure 1C). Thus, the metabolic state of the cell had a

dramatic effect on crescentin-GFP structure mobility.

Crescentin-GFP forms large structures, with an average

apparent length of 900 nm (Figure S1G). To test whether the

motion of other large cytoplasmic components is affected, we

tracked the motion of polyhydroxyalkanoate (PHA) granules

labeled with PhaZ-mCherry. PhaZ is a PHA depolymerase that

binds to PHA storage granules (Maehara et al., 2002; Qi and

Rehm, 2001). Consistent with this binding, PhaZ-mCherry

formed fluorescent foci (1–2 per cell) that moved inside active

(untreated) C. crescentus cells (Figure S2A). Metabolic depletion

by DNP treatment dramatically reduced motion (Figure S2A),

similar to what we observed with crescentin-GFP structures.

Plasmid Motion Is Also Reduced in Escherichia coli

when Cellular Energy Is Depleted
To examine whether this metabolism-dependent motion is

unique to C. crescentus, we switched to E. coli and examined

the motion of engineered low-copy-number mini-RK2 plasmids.

These plasmids have an estimated radius of gyration of 150 nm

based on measurements of plasmids with similar base-pair

lengths (Latulippe and Zydney, 2010). Mini-RK2 lacks a partition-

ing system and hence is not actively partitioned or constrained in

space (Derman et al., 2008). This plasmid also contains a lacO

array for visualization via GFP-LacI labeling. Mini-RK2 plasmids

were imaged every 30 s on agarose pads containing M9-glycerol

(M9G) medium to sustain cellular activity. Under these condi-

tions, mini-RK2 plasmids were able to travel the cell length within

1 min, leaving their previous location from frame to frame (Fig-

ure 1D and Movie S5), as previously observed (Derman et al.,

2008). In contrast, depletion of cellular energy by DNP treatment

drastically limited their spatial exploration (Figure 1D and Movie

S6), which was confirmed at the population level in MSD plots

(Figure 1E; n = 488–497 trajectories). Thus, mini-RK2 plasmids

exhibit metabolism-dependent motion in E. coli, similar to cres-

centin-GFP structures and PHA granules in C. crescentus. As

E. coli and C. crescentus diverged over one billion years ago,

the effect of metabolism on cytoplasmic dynamics is likely to

be an ancient and common feature of the bacterial cytoplasm.

Development of a Genetically Encoded Probe to Study
Cytoplasmic Dynamics
Specific interactions with other cellular components are known

to affect the motion of components endogenous to the cyto-

plasm, altering motion in an unpredictable manner (Nenninger

et al., 2010) and making normal diffusion appear anomalous
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Figure 1. The Mobility of Crescentin-GFP Structures and GFP-LacI-Labeled Mini-RK2 Plasmids Is Affected by Metabolism

(A) Time-lapse montages of crescentin-GFP structures acquired under conditions of growth (M2G) and carbon source depletion. C. crescentus cells (CJW1265)

were grown and imaged in M2G, a glucose-based medium (top). For carbon starvation, cells were washed into M2 buffer (lacking glucose) and incubated for 3 hr

before imaging (bottom). Scale bar, 1 mm.

(B) Two-dimensional trajectories representing 200 min of crescentin-GFP tracking from single C. crescentus cells (CJW1265) under metabolically active (M2G)

and metabolically depleted (carbon starvation, late stationary phase, + DNP) conditions.

(C)MSD of crescentin-GFP structures inmetabolically active (M2G, n = 1,796 trajectories) and energy-depleted (carbon starvation, n = 861 trajectories; stationary

phase, n = 718 trajectories; and +DNP, n = 1,943 trajectories) conditions. C. crescentus cells (CJW1265) from late stationary-phase cell cultures (OD660 R 1.7)

were imaged on agarose pads made with stationary-phase culture supernatant instead of M2G.

(D) Two-dimensional trajectories of GFP-LacI-labeled mini-RK2 plasmids overlaid on corresponding phase-contrast images of metabolically active and DNP-

treated E. coli cells (JP924). Scale bar, 1 mm.

(E) MSD of mini-RK2 plasmids under metabolically active (untreated, n = 497 trajectories) and energy-depleted (+DNP, n = 488 trajectories) conditions.

See also Figures S1 and S2 and Movies S1–S6.
(Dix and Verkman, 2008). Therefore, to characterize the physical

nature of metabolism-dependent motion, we needed a probe

that is completely foreign to the cell (unlike crescentin, PHA

granules, and plasmids) and is thus unlikely to make any spe-

cific interactions with components of the bacterial cytoplasm.

As the direct injection methods used in eukaryotic cells cannot

be used with micron-sized bacteria, we attempted to introduce

nonbiological probes (quantum dots, dextrans, or gold particles)

into the bacterial cytoplasm with biolistic and electroporation

techniques. None of these attempts were successful. As an

alternative, we sought a genetically encoded probe that is

foreign to the bacterial cytoplasm and is capable of self-assem-

bly into particles. Several eukaryotic viruses are known to repli-

cate in cytoplasmic factories that require a matrix made of

self-assembling viral proteins. The avian reovirus protein mNS

is an example of such a self-assembling protein (Broering

et al., 2002), and a C-terminal fragment is sufficient to form

globular cytoplasmic particles, even when fused to GFP (Broer-

ing et al., 2005). These GFP-labeled particles, referred to as

GFP-mNS particles here, are unlikely to make specific interac-

tions with components of the bacterial cytoplasm, given the
evolutionary divergence between bacteria and the avian reovirus

host.

Induction of GFP-mNS synthesis in E. coli usually resulted in a

single fluorescent focus per cell (Figure S3A). The foci exhibited

significant motion in metabolically active cells but became

spatially confined with DNP treatment (Figures 2A–2C andMovie

S7), recapitulating our results with plasmids, PHA granules,

and crescentin-GFP structures. Depletion of cellular energy

through treatment with carbonylcyanide-m-chlorophenylhydra-

zone (CCCP) instead of DNP had the same negative effect on

GFP-mNS mobility (data not shown). Collectively, these results

further support the notion that metabolism-dependent motion

is a general property of the bacterial cytoplasm.

Metabolism-Dependent Motion Is Not Driven by Known
Motor-like Activity or Chromosome Dynamics
The observation that the motion of cytoplasmic components

depends on metabolic activity was surprising, as it appeared

inconsistent with diffusion, which is a passive process. ATP-

dependent motion was recently reported for chromosomal loci

in E. coli (Weber et al., 2012). However, chromosomal loci are
Cell 156, 183–194, January 16, 2014 ª2014 Elsevier Inc. 185
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Figure 2. GFP-mNS Probe Dynamics Are

Affected by Cellular Metabolism

(A) Representative time-lapse montages of GFP-

mNS particles (yellow) in E. coli cells (CJW4617)

acquired under untreated and DNP-treated con-

ditions (+DNP). Scale bar, 1 mm. Time is min:sec.

(B) An example of a two-dimensional trajectory of a

GFP-mNS particle in an E. coli cell (CJW4617), with

or without DNP treatment.

(C) MSD of GFP-mNS particles in metabolically

active (untreated, n = 729 trajectories) and DNP-

treated (+DNP, n = 643 trajectories) E. coli cells

(CJW4617).

(D) Two-dimensional trajectory of a GFP-mNS

particle in a filamentous E. coli dnaC2 cell

(CJW4619) at the restrictive temperature (37�C)
with or without DNP treatment.

(E) MSD of GFP-mNS particles in filamentous

E. coli dnaC2 cells (CJW4619) at their restrictive

temperature with (+DNP, n = 118 trajectories) or

without (untreated, n = 192 trajectories) DNP

treatment.

(F) Histogram of GFP-mNS particle displacements

in E. coli cells (CJW4617) with or without DNP

treatment. Line width indicates Poisson counting

error, and the gray shading delineates the

estimated tracking error. Displacements were

measured over 15 s intervals.

(G) Histogram of GFP-mNS particle displacements

in E. coli dnaC2 cells (CJW4619) at the restrictive

temperature (37�C) with or without DNP treatment.

Line width indicates Poisson counting error, and

the gray shading delineates the estimated tracking

error. Displacements were measured over 15 s

intervals.

See also Figures S2–S5 and Movie 7.
distinct from free cytoplasmic components, as they remain

confined within a small space (where they ‘‘jiggle’’) by virtue of

their attachment to the rest of the chromosome. As a conse-

quence, the motion of chromosomal loci depends not only on

the cytosolic environment, but also on the DNA structure. Using

DAPI staining, we found that energy depletion by DNP treatment

has a strong effect on the shape and hence the structure of the

chromosome (Figures S4A and S4B) and likely contributes to

the change in chromosomal locus dynamics. Consistent with

this notion, the mobility of chromosomal loci is also ATP depen-

dent in eukaryotic nuclei (Heun et al., 2001; Levi et al., 2005), and

this ATP dependence has been attributed to reduced activity of

DNA-remodeling proteins (Soutoglou and Misteli, 2007).
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Although our cytoplasmic probes do

not associate with the chromosome, it

remained possible that their meta-

bolism-dependent motion results from a

change in chromosome structure and

dynamics (for example, through probe

entrapment; see Supplemental Informa-

tion). We found that the chromosome

affected the spatial distribution of GFP-

mNS particles (see Supplemental Infor-

mation). However, experiments with
dnaC2 mutant cells, which produce large DNA-free regions,

showed that metabolism-dependent motion occurs indepen-

dently of the DNA (see Supplemental Information and Figures

2D, 2E, and S2B). These experiments exclude a predominant

role for the chromosome in the metabolism-dependent motion

of free cytoplasmic components.

In eukaryotes, agitation of the pervasive cytoskeletal mesh-

work by the activity of motor proteins can produce diffusive-

like motion in the cytoplasm in an ATP-dependent manner

(Brangwynne et al., 2009). This process is often referred to

as ‘‘active diffusion.’’ However, bacteria lack motor proteins

like dyneins, myosins, and kinesins, and their cytoskeletal

elements are primarily membrane associated. Furthermore,



metabolism-dependent motion still occurred when the polymeri-

zation ofMreB (bacterial actin homolog) or FtsZ (tubulin homolog)

was disrupted (see Supplemental Information and Figures S3B,

2E, 2D, and S2B note that FtsZ rings do not form in filamentous

dnaC2 cells). Thus, the mechanism producing the metabolism-

dependent motion in bacteria appears different from the cyto-

skeletal motor-based ‘‘active diffusion’’ observed in eukaryotes.

Through drug inactivation of transcription, translation, or pep-

tidoglycan wall synthesis, we also showed that metabolism-

dependent motion does not originate from the sole (motor-like)

action of RNA polymerases, ribosomes, or penicillin-binding pro-

teins on their DNA, mRNA, or peptidoglycan substrates (see

Supplemental Information and Figures S3C–S3E).

Increase in Frequency of Large Displacements
Contributes to Metabolism-Dependent Motion
To gain insight into the origin of metabolism-dependent motion,

we sought to characterize this motion more precisely. An inter-

esting characteristic of energy-depleted cells is that, although

GFP-mNS particles remained largely confined in space in these

cells, they still appeared to display small displacements over

the imaging interval (15 s); this was true in wild-type and

dnaC2 cells (see Figures 2B and 2D for example trajectories).

Through control experiments and simulations (see Supple-

mental Information and Figure S5), we determined that our

single-particle tracking method can distinguish small (>20 nm)

displacements. Therefore, even after accounting for potential

localization errors, GFP-mNS particles displayed discernible

motion in DNP-treated cells, as shown by the distributions of

displacement lengths (Figure 2F for wild-type cells and Fig-

ure 2G for dnaC2 cells, with gray shading denoting our esti-

mated tracking error; see Supplemental Information). Under

both untreated and DNP-treated conditions, small displace-

ments were more frequent than large ones (Figures 2F and

2G). However, the frequency of long displacements was much

greater in metabolically active cells. This higher frequency

of long displacements is likely responsible for the ability of

GFP-mNS particles to explore more cytoplasmic area in active

cells. In other words, GFP-mNS particles are able to sample

the cytoplasm of active cells with large displacements, though

they remain spatially confined in inactive cells because the

largest displacements disappear.

The Effect of Metabolism on Cytoplasmic Dynamics
Depends on Particle Size
Recent fluorescence recovery after photobleaching (FRAP)mea-

surements from our laboratory have shown only a nominal differ-

ence in the diffusion coefficient of free GFP between untreated

and DNP-treated C. crescentus cells (Montero Llopis et al.,

2012). Because GFP (sizez3 nm) is smaller than mini-RK2 plas-

mids, PHA granules, and crescentin-GFP filaments, this obser-

vation raised the possibility that the influence of metabolism on

motion may depend on particle size. To examine this possibility,

we took advantage of our titratable GFP-mNS system in which

GFP-mNS synthesis can be tuned to different levels by varying

the inducer (IPTG) concentration and the induction time. By

doing so, we obtained GFP-mNS particles with a wide range of

fluorescence intensities and hence sizes (Figure S6A and S6B).
We then plottedMSDs of particles binned by fluorescence inten-

sities (bins 1–9) and found that MSDs of both untreated and

DNP-treated cell are inversely correlated with fluorescence in-

tensity (Figures 3A and 3B show selected bins on a log-log scale

for clarity), as anticipated. When we compared the distribution of

displacement lengths between untreated and DNP-treated con-

ditions across discrete bins of particle fluorescence intensities,

we found that the difference between the two conditions is

accentuated with fluorescence intensity and hence particle

size (Figures 3C and S7).

To estimate the absolute size of particles from their fluores-

cence intensity, we measured the diffusion coefficients of

GFP-mNS particles in solution after cell lysis and compared

these values to those of fluorescent beads of known size (see

Supplemental Information and Figures S6C and S6D). From

these measurements, we obtained a calibration curve (see

Supplemental Information), which we used to estimate the

particle size (in nm). We then characterized the relationship

between particle size and metabolism-dependent motion by

calculating the radius of gyration (Rg; along the long axis of

the cell) of each trajectory. Rg is the root-mean-square dis-

tance from the center of the trajectory (see Supplemental

Information) and measures the average space that a particle

explores. Rg analysis showed that both cellular energy deple-

tion (+DNP) and increasing particle size leads to increasing

spatial confinement (Figure 3D). By calculating the ratio

ðRuntreated
g � R+DNP

g Þ=R+DNP
g (which compares the difference in

space explored in metabolically active conditions relative to

energy-depleted conditions) as a function of particle size (Fig-

ure 3E), we found that the ratio is significantly greater than

zero and increases with increasing particle size (except

perhaps for the largest size bin, possibly because these

particles may be too big to move even in active cells). This

trend supports a size dependence for metabolism-dependent

motion. Of equal interest, the ratio ðRuntreated
g � R+DNP

g Þ=R+DNP
g

decreased toward 0 as size decreased (Figure 3E), with an esti-

mated intercept near 30–40 nm assuming a linear relationship.

This finding suggests that cytoplasmic components smaller

than this estimated size are not affected by metabolism-depen-

dent motion.

The Distribution of Displacements Is Non-Gaussian
In normal diffusion, the diffusing particles will exhibit a Gaussian

distribution of displacements. In contrast, the displacement

distributions of GFP-mNS particles under both untreated and

DNP-treated conditions diverged from the expected Gaussian

distribution (Figure 4A shows bin 5 as an example), as signified

by long tails. We quantified deviations from a Gaussian distribu-

tion by calculating the non-Gaussian parameter a2 (see Supple-

mental Information). The a2 value of a Gaussian distribution is

zero and grows as the tail of themeasured distribution increases.

First, we found that, in metabolically active cells, the a2 values of

GFP-mNS displacement distributions grew with increasing GFP-

mNS particle size (Figure 4B), indicating that non-Gaussian

behavior increases with particle size. Second, the non-Gaussian

behavior was dramatically stronger for particles in metabolically

inactive cells, wherein a2 grewmuch faster with particle size than

in active cells (Figure 4B).
Cell 156, 183–194, January 16, 2014 ª2014 Elsevier Inc. 187
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Figure 3. Effect of Metabolism on Cytoplasmic Motion Depends on Particle Size

(A) MSD of GFP-mNS particles of varying binned fluorescence intensities in E. coli cells (CJW4617) under normal growth conditions (M2G).

(B) Same as (A) but for GFP-mNS particles in E. coli cells (CJW4617) under DNP treatment.

(C) Histograms of GFP-mNS particle displacements under untreated and DNP-treated conditions for selected bins. Displacements were measured over 15 s

intervals. Line width indicates Poisson counting error, and the gray shading delineates the estimated tracking error.

(D) Mean radius of gyration (Rg) of all trajectories from GFP-mNS particles of a given binned size is plotted as a measure of spatial exploration for untreated and

DNP-treated cells.

(E) The ratio ðRuntreated
g � R+DNP

g Þ=R+DNP
g is plotted as a function of particle size.

See also Figures S6 and S7.
Nonergodicity Increases with Energy Depletion and
Particle Size
Notably, deviations fromGaussian statistics for particle displace-

ments have been reported in various nonliving physical systems,

including glass-forming liquids near the glass transition. Colloidal

suspensions have proven to be instructive model systems to

characterize the dynamics of glass-forming liquids (Hunter and

Weeks, 2012). Dense colloidal suspensions (also known as

colloidal glasses) aremetastable near the glass transition, chang-

ing from liquids to amorphous solidswith small changes in colloid

concentration. At lowconcentration (lowcrowding), colloidal par-

ticles exhibit diffusive behavior. Increasing the concentration of

particles results in a strong increase in viscosity and a decrease
188 Cell 156, 183–194, January 16, 2014 ª2014 Elsevier Inc.
in particle mobility, ultimately driving the system through the

glass transition to a disordered solid-like state (Pusey and van

Megen, 1986). The approach to the glass transition is accompa-

nied by several distinct features. For example, the non-Gaussian

parameter a2 increases as the system approaches the glass

transition (Kegel and van Blaaderen, 2000; Marcus et al., 1999;

Weeks et al., 2000). Additionally, the system becomes non-

ergodic (Cipelletti and Ramos, 2005). In ergodic systems, time

averages are equivalent to ensemble averages. For example, to

measure probe diffusion in cells, one could either track a probe

in a single cell over a very long time and average over all times

or track many probes in different cells over a short time and

average over all probes. The two methods produce the same
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Figure 4. GFP-mNS Particles Display Non-Gaussian and Nonergodic Behavior in the Cytoplasm

(A) Experimental distributions of GFP-mNS particle displacements for E. coli cells (CJW4617) under untreated and DNP-treated conditions for a selected size bin

(bin 5). Dashed lines are the best fit to a Gaussian distribution. Line width indicates Poisson counting error, and the gray shading delineates the estimated tracking

error. Time interval is 15 s.

(B) Non-Gaussian parameter a2 of particle displacement distributions is plotted as a function of particle size for E. coli cells (CJW4617) with or without DNP

treatment.

(C) Comparison of MSD and MSDt for selected size bins for cells under untreated conditions.

(D) Same as (C) but for cells under DNP treatment.

(E) The parameter g is plotted as a function of particle size for cells with or without DNP treatment.
result if the system is ergodic. Nonergodicity can arise from cag-

ing or aging phenomena, whereby the probe becomes trapped in

a given region or the system slowly moves from one region of

configuration space to another.

If the cytoplasm were ergodic, we would expect ensemble-

averaged MSDs of many GFP-mNS trajectories to coincide with

the time-averaged MSD of a single trajectory. Obtaining the

time-averaged MSD of a trajectory in a single cell with sufficient

statistics for this comparison requires acquisition of an extremely

long trajectory, which was not possible for GFP-mNS particles

due to technical limitations (photobleaching and phototoxicity).

Instead, we compared ensemble-averaged MSDs with an MSD

ðMSDtÞ that is both time and ensemble averaged (see Supple-

mental Information). If the system were ergodic, MSD and

MSDt would be equivalent. We found relatively close agreement

between the MSD and its corresponding MSDt for GFP-mNS

particles in untreated cells (Figure 4C), except perhaps for the

largest particles. However, in DNP-treated cells, MSD and

MSDt were significantly different for all particle sizes, and this

difference was greatest for the largest GFP-mNS particles (Fig-

ure 4D). We defined a parameter g to measure the difference

between the MSD and MSDt (see Supplemental Information),
with g = 0 indicating equivalency between MSD and MSDt. For

GFP-mNS particles in metabolically active cells, g fluctuated

near zero except for GFP-mNS particles of the largest size bin

(Figure 4E). However, under metabolic depletion, g grew in

response to increasing GFP-mNS particle size (Figure 4E). These

differences cannot be explained by the finite number of trajec-

tories or by their limited duration (see Supplemental Information).

These results suggest that the bacterial cytoplasm becomes

increasingly nonergodic with both energy depletion and in-

creasing particle size.

The Cytoplasm Displays Dynamic Heterogeneity
Although non-Gaussian statistics and ergodicity breaking are

consistent with glassy dynamics, a hallmark of glassy systems

is dynamic heterogeneity, which is characterized by regions of

high particle mobility coexisting with regions of low particle

mobility (Berthier, 2011). Due to crowding, particles in colloidal

suspensions can become trapped by their nearest neighbors, re-

sulting in small random displacements of the particles. Over

longer times, the ‘‘cage’’ formed by their neighbors can sponta-

neously rearrange through collective motion, allowing the parti-

cles to escape with large displacements. Particles in regions
Cell 156, 183–194, January 16, 2014 ª2014 Elsevier Inc. 189
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Figure 5. Two Subpopulations of GFP-mNS Particles Exist in Both Active and Inactive Cells

(A) Radius of gyration (Rg) of individual trajectories is plotted as a function of GFP-mNS particle size for E. coli cells (CJW4617) under untreated and DNP-treated

conditions. The horizontal dashed line delimits slow (Rg < 0.3 mm) and fast (Rg > 0.3 mm) particles.

(B) Histogram ofRg for cells under untreated and DNP-treated conditions. The vertical dashed line delimits slow (Rg < 0.3 mm) and fast (Rg > 0.3 mm) particles. The

gray shading delineates the estimated tracking error.

(C) Fraction of slow particles (Rg < 0.3 mm) for trajectories in each size bin for cells with or without DNP treatment.

(D) MSD of slow (Rg < 0.3 mm) and fast (Rg > 0.3 mm) GFP-mNS particles.

(E) Distribution of displacements for slow (Rg < 0.3 mm) and fast (Rg > 0.3 mm) GFP-mNS particles under untreated and DNP-treated conditions. The line width

indicates Poisson counting error, and the gray shading delineates the estimated tracking error.
with different cage rearrangement times will exhibit different

dynamics.

To examine whether heterogeneity in particle dynamics exists

in the GFP-mNS tracking experiments, we plotted Rg measure-

ments of individual GFP-mNS trajectories as a function of particle

size (Figure 5A). Interestingly, the Rg values split GFP-mNS parti-

cles into two distinct subpopulations at an Rg value of 0.3 mm,

irrespective of particle size or metabolic state of the cell. This

can be easily seen in the distributions of Rg (Figure 5B). Because

Rg is a measure of how much space a particle explores on

average, we will refer to the two populations as ‘‘slow’’ (Rg <

0.3 mm) and ‘‘fast’’ (Rg > 0.3 mm) particles. Though fast and

slow particles were found in both active and inactive cell popu-

lations, their fraction differed, with the fraction of slow particles

being low in the active (untreated) cell population and high in

the inactive (+DNP) cell population (Figure 5B). This trend was

observed across the nine bins of particle sizes (Figure 5C).

Thus, the fraction of slow and fast particles appears to be the pri-

mary reason for the difference in dynamics between active and

inactive cells. Note that the presence of fast particles in the

DNP-treated cell population was not due to cell growth by

DNP-resistant cells, as no DNP-treated cells (out of 43 109 cells)

were able to form a colony after overnight incubation.

The slow and fast particle populations from both active and

inactive cells exhibited markedly different behavior, as evident

from their MSDs (Figure 5D) and displacement distributions (Fig-

ure 5E). Fast particles not only exploredmore cytoplasmic space
190 Cell 156, 183–194, January 16, 2014 ª2014 Elsevier Inc.
on average but did so with displacements from distributions

shifted toward longer lengths. Most striking was the observation

that fast particles from both untreated and DNP-treated condi-

tions behave similarly, with virtually overlapping MSDs and

displacement length distributions (Figures 5D and 5E). Although

not to the same degree, the behavior of slow particles was also

close between metabolically active and energy-depleted condi-

tions. This suggests that particles from the fast population and,

to a lesser extent, particles from the slow population experience

a similar local environment regardless of metabolic status.

The difference in particle dynamics (slow and fast) may reflect

dynamic heterogeneity within the cytoplasm. Similar to glass-

forming liquids, the slow particles would be caged by neigh-

boring macromolecules and have a low probability of escape,

whereas the probability of escape through collective rearrange-

ment of neighboring macromolecules would be greatly in-

creased for fast particles. The collective effect of all ongoing

metabolic activities in active cells would facilitate cage turnover,

whichwould explain the observed higher fraction of fast particles

in active cells (Figures 5B and 5C). Alternatively, the two popula-

tions in particle dynamics may stem from heterogeneity among

cells: some cells would have slow particles, whereas others

would have fast particles. In this latter case, two particles in

the same cell would always behave similarly (slow or fast),

whereas in the first scenario (heterogeneity within the cyto-

plasm), slow and fast dynamics could coexist in a single cell.

To test this, we sought to identify instances of cells containing
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Figure 6. Double-Particle Tracking and Correlation of Displacements Are Consistent with Dynamic Heterogeneity in the Cytoplasm

(A) Example of two-dimensional trajectories of two GFP-mNS particles in a single E. coli cell (CJW4617). The trajectory of the left particle has a radius of gyration

Rg = 0.12 mm, and the particle has an estimated size d = 144 nm; for the right particle, Rg = 0.43 mm and d = 158 nm.

(B) Radius of gyration (Rg) of individual trajectories for pairs of GFP-mNS particles in individual E. coli cells (CJW4617) under metabolically active conditions.

Only the results for particle pairs with a difference of particle size of less than 10% are shown. The horizontal dashed line delimits slow (Rg < 0.3 mm) and fast

(Rg > 0.3 mm) particles.

(C) Plot showing the average displacement length (displacement2) following an initial displacement (displacement1) of a given length for GFP-mNS particles in

E. coli cells (CJW4617) under untreated and DNP-treated conditions. The second displacement was signed positive if it was in the same direction as the initial

displacement and negative otherwise. Each point represents the average of 700 displacements. Solid lines represent the best fit (displacement2 = �0.34

displacement1) to the data where displacement1 < 0.2 mm. The time interval is 15 s.
two particles of similar size (within 10%). Cells with two GFP-

mNS foci were rare and tended to be observed only under greater

induction conditions of GFP-mNS synthesis, which led to larger

and thus slower particles. Despite the bias toward slower parti-

cles, we still found that fast (Rg > 0.3 mm) particles could coexist

with slow (Rg < 0.3 mm) particles (Figures 6A and 6B), arguing that

the difference in dynamics primarily comes from dynamic het-

erogeneity within the cytoplasm of individual cells.

Local Caging Is Mitigated by Cellular Metabolism
In dense colloidal suspensions, local caging is evident in correla-

tion analysis of consecutive displacements (Doliwa and Heuer,

1998; Weeks and Weitz, 2002). For small displacements, the

local caging results in a negative linear correlation between con-

secutive displacements. The linear relationship does not hold for

longer displacements, which indicates the escape of the particle

from its cage, presumably through collective rearrangement of its

neighbors. To examine whether the dynamics of GFP-mNS parti-

cles are linked to caging, we calculated the average displace-

ment length following an initial displacement of a given length

(signed positive if the second displacement was in the same

direction as the initial displacement and negative otherwise).

An object trapped in a containerwith perfectly reflectingwalls ex-

hibits an apparent negative correlation between two subsequent

steps with a correlation coefficient c = �0.5 (Doliwa and Heuer,

1998). If the object has a nonzero probability of escaping the

cage, the correlation coefficient is expected to be between

0 and �0.5. For small initial displacements (<200 nm), we

observed a strong negative correlation (c = �0.34 for both un-

treated and DNP-treated cells; Figure 6C), in agreement with

local caging. Around 250 nm, this linear relationship breaks,

consistent with cage escape. The break in linearity provides an

estimation of the cage size (Weeks and Weitz, 2002). The higher

number of displacements above 250 nm in untreated cells rather

than inDNP-treated cells (reflected by the greater number of data

points greater than 250 nm in Figure 6C) suggests more frequent

cage escape and thus higher cage turnover under metabolically
active conditions, consistent with the greater proportion of fast

particles in the active cell population (Figures 5B and 5C). This

result suggests that cellular metabolism facilitates long-distance

motion by increasing cage rearrangement (see Discussion).

DISCUSSION

Our findings fundamentally alter the way that we view the

bacterial cytoplasm. We show that, above a certain size scale

(�30 nm), the bacterial cytoplasm behaves differently from a

simple (viscous) fluid. Instead, it displays striking features

(such as non-Gaussian distributions of displacements with

long tails, nonergodicity, caging, and dynamic heterogeneity;

Figures 4B, 4E, 5A, and 6) that are characteristic of colloidal

glasses (Cipelletti and Ramos, 2005; Hunter and Weeks, 2012).

The cytoplasm behaves as a liquid for small particles while it

increasingly behaves as a glass-forming liquid approaching

the glass transition with increasing particle size. This size

dependence provides an explanation for previous seemingly

conflicting reports of normal and anomalous diffusion (see Sup-

plemental Information and Figures S6E–S6G). In dense colloidal

suspensions containing particles of two sizes, the smaller parti-

cle can be mobile, perceiving the environment as a liquid, while

the larger one can display glassy dynamics (Zaccarelli et al.,

2005). This is in line with the size-dependent dynamics that we

observed for GFP-mNS particles. As their size increases, GFP-

mNS particles would become increasingly constrained by other

surrounding components of the cytoplasm.

Remarkably, the glassy dynamics are partially suppressed by

metabolic activity in a size-dependent manner. In other words,

our data suggest that cellular metabolism enhances the motion

of cytoplasmic components by ‘‘fluidizing’’ the cytoplasm, and

this effect increases with component size.

What Is the Origin of the Glassy Behavior?
Aspects of glassiness have been reported in eukaryotic cells

but have been attributed to the mechanical response of their
Cell 156, 183–194, January 16, 2014 ª2014 Elsevier Inc. 191



extensive cytoskeletal network (Fabry et al., 2001). Bacteria lack

such a pervasive cytoskeletal meshwork and its associated

motors. However, the bacterial cytoplasm is more similar to

colloidal glasses by being more crowded than the eukaryotic

cytoplasm based on the diffusion coefficient of free GFP being

about three times smaller in E. coli than in eukaryotic cells (Elo-

witz et al., 1999; Swaminathan et al., 1997). Because crowding

in dense colloidal suspensions is responsible for their glassy dy-

namics, it is likely that the glassy behavior of the bacterial cyto-

plasm originates from its extreme crowding (Cayley et al., 1991;

Zimmerman and Trach, 1991). While measuring crowding inside

bacterial cells is technically difficult and is subject to uncer-

tainties, estimates suggest that macromolecules occupy 20%–

40% of the bacterial cytoplasm (Cayley et al., 1991; Zimmerman

and Trach, 1991). An additional�20% of the cytoplasm consists

of ‘‘bound’’ water, presumably as a hydration layer to macromol-

ecules (Cayley et al., 1991), suggesting that the total excluded

volume may range between 40%–60%. Colloidal suspensions

can exhibit glassy dynamics over a wide range of volume frac-

tions depending on the properties of the system. For example,

monodisperse suspensions of noninteractive colloidal particles

vitrify at volume fractions near 58% (Hunter and Weeks, 2012).

Importantly, elements of glassy dynamics are observable at

lower (e.g., 45%) volume fractions (Kegel and van Blaaderen,

2000;Weeks et al., 2000). If the colloidal particles are interacting,

glassy dynamics can occur at even lower volume fractions (Daw-

son, 2002). Furthermore, glass transition occurs at a lower den-

sity in a confined geometry (Fehr and Löwen, 1995).

How Can Cellular Metabolism Fluidize the Cytoplasm to
Enhance Motion?
The nucleoid affects the distribution of large components

(Coquel et al., 2013), and the dynamics of individual chromo-

somal loci change with ATP depletion (Weber et al., 2012).

However, we found that metabolic depletion results in the

confinement of both GFP-mNS particles and mini-RK2 plasmids,

even when they are located in the large DNA-depleted regions of

filamentous dnaC2 cells (Figures 2D, 2E, and S2B). Thus, DNA

dynamics, DNA-related processes (e.g., transcription), or agita-

tion of the DNA mesh from DNA-associated activities cannot be

the driving factor underlying metabolism-dependent motion and

the proposed increase in cage turnover in active cells. We also

ruled out a predominant role for MreB (Figure S3B) or FtsZ (Fig-

ures 2D, 2E, and S2B; note that filamentous dnaC2 cells do not

make FtsZ rings). Inhibiting translation or peptidoglycan synthe-

sis had little, if any, measurable effect onmetabolism-dependent

motion (Figures S3C and S3E). This suggests that any of these

processes cannot alone account for the observed metabolism-

dependent motion. However, there are a multitude of cellular

processes occurring simultaneously inside of metabolically

active cells. We envision that these processes collectively pro-

mote cage turnover, as opposed to a single process being solely

responsible.

How could cellular activities collectively increase cage turn-

over? Spitzer and Poolman argued that, from a physical

chemistry perspective, hydrophobic and screened electrostatic

interactions, together with macromolecular crowding, must

result in the formation of overcrowded regions of macromole-
192 Cell 156, 183–194, January 16, 2014 ª2014 Elsevier Inc.
cules separated by a more fluid phase of less-crowded cytosol

(nanopools) (Spitzer, 2011; Spitzer and Poolman, 2009). Their

theory also stipulates that metabolic reactions, by altering the

hydrophobicity and charge of molecules, would continuously

remodel the topology of nanopools and overcrowded regions

within the cytoplasm. Following this view, it is conceivable that

large particles would become caged in the overcrowded regions

or nanopools and that the metabolism-dependent rearrange-

ment of these domains would promote their long-range motion.

A second, nonexclusive way by which metabolism could pro-

mote cage turnover does not require microphase separation

and is based on the notion that cellular activities cause agitations

to the system. A remarkable property of liquids near a glass

transition is that small changes in the system can dramatically

modify its fluidity. In a colloidal glass, particles are caged by sur-

rounding neighbors. However, agitation can fluidize the system

by increasing the rate of cage rearrangements (Petekidis et al.,

2002). We provide evidence that cellular metabolism promotes

cytoplasmic fluidization (Figures 1, 2, 3, 4, and 5) and uncaging

(Figure 6C). Metabolic activity can cause a variety of pertur-

bations (conformational changes, fluid displacements, non-

equilibrium fluctuations, etc.) that may collectively influence

cage rearrangement, allowing cage escape and long-distance

motion. When all metabolic activities are abolished, rearrange-

ment of the local domain (cage) would become rare (as in

nonliving glassy materials), leading to particle confinement.

What Are the Biological Implications?
Current models of bacterial processes generally consider the

cytoplasm as a simple fluid. However, even in active cells, the

cytoplasm retains glassy features in a component-size-depen-

dent manner (Figures 4B, 5A–5C, and 6C). Based on our rough

critical size estimation, we expect that cytoplasmic constituents

R30 nm will be subject to metabolism-dependent motion. This

implies that proteins, which typically have a size <10 nm, will

not be affected, consistent with the minimal effect of DNP on

the apparent diffusion of free GFP in C. crescentus (Montero

Llopis et al., 2012). However, larger cellular components such

as plasmids (Figures 1D and 1E), protein filaments (Figures 1A–

1C), storage granules (Figure S2A), and the multitude of other

large components populating the cytoplasm (e.g., polyribo-

somes, chromosomes, enzymatic megacomplexes, intracellular

organelles, phage capsids and genomes, microcompartments,

etc.) will be impacted by the glassy behavior of the cytoplasm

and the metabolic state of the cell. Many of these large compo-

nents are involved in processes that are essential for life and

fitness in natural environments, and their functions depend on

their ability to move in the cytoplasm. For example, although

the origin region of the chromosome segregates via an active

mechanism, the bulk of the chromosome has been proposed

to partition passively through an entropy-driven mechanism

(Jun andWright, 2010) that implies diffusion. Similarly, multicopy

plasmids and some storage granules requiremotion for their par-

titioning (which is essential for their propagation). Low-copy

plasmids typically have a dedicated partitioning system, but

even then, some plasmid partitioning systems have been pro-

posed to rely on an active diffusion-ratchet mechanism (Hwang

et al., 2013; Vecchiarelli et al., 2013) in which plasmid diffusion is



an essential element. We even expect phages to be impacted by

the physical nature of the cytoplasm, as the assembly of their

genomes and capsids depends on their ability to interact.

Our data suggest that cellular metabolism fluidizes the cyto-

plasm, allowing larger cellular components to escape local envi-

ronments and sample cytoplasmic space that they otherwise

could not. This metabolism-induced fluidization may help the

cell to achieve the delicate balance of attaining extremely high

concentrations of biomolecules (to increase metabolism and

cell proliferation) without severely compromising macromolec-

ular motion. Ultimately, during the course of evolution, the glassy

properties of the cytoplasm may have set upper limits to the size

of molecular components and the degree of molecular crowding

a cell can have. Higher crowding could result in particles of

smaller sizes (such as proteins) ‘‘perceiving’’ the cytoplasm as

more glass like, severely impacting biochemical reactions.

Consistent with this idea, the mobility of free GFP becomes dis-

proportionally reduced compared to a smaller molecule (e.g.,

glucose derivative) when high osmotic stress increases cyto-

plasmic crowding (Mika et al., 2010).

Another interesting outcome of the metabolic effect on cyto-

plasmic fluidity is that fluctuations in the environment can modu-

late cytoplasmic dynamics by affecting metabolism. Metabolic

dormancy is widespread in the wild; for example, the fraction

of quiescent cells ranges from 20% in the human gut to >80%

in soil samples (Lennon and Jones, 2011). Dormancy has gener-

ated considerable interest in the scientific community, notably

because of its links to both pathogenesis and antibiotic resis-

tance (Coates, 2003). Dormancy is a survival strategy that bacte-

ria in both environmental and clinical settings use to respond to

stress such as starvation, antibiotic exposure, and high cell den-

sity (Lennon and Jones, 2011). We show that the motion of large

components drops under metabolic depletion, and this occurs

under natural conditions such as prolonged carbon starvation

and late stationary phase (Figures 1B and 1C). This implies that

the fluidity of the cytoplasm in dormant cells is very different

compared to active cells, a difference that has not, to our knowl-

edge, been considered. It would be interesting to examine in the

future whether the vitrification of the dormant cytoplasm helps to

preserve subcellular architecture during quiescent periods while

still allowing diffusion of proteins and metabolites to permit a

quick restart of growth when conditions improve.

EXPERIMENTAL PROCEDURES

Procedures used for imaging, strains construction, single-particle tracking,

trajectory analysis, tracking precision estimation, image analysis, parameter

determination (Rg, MSD, MSDt, a2, g), and particle size estimation are

described in the Extended Experimental Procedures.

Strains, Plasmids, and Growth Conditions

A list of strains is provided in Table S1. Exponentially growing cell cultures

were used in all experiments (OD600 % 0.3 for E. coli and OD660 % 0.25 for

C. crescentus), except where noted.

C. crescentus strains were grown at 30�C in defined minimal M2G medium

(Ely, 1991) and were supplemented with antibiotics when appropriate.

E. coli strain JP924 was grown at 30�C in M9 glycerol medium supple-

mented with casamino acids (M9G), 50 mg/ml of ampicillin, and 2 mg/ml of

chloramphenicol. GFP-LacI expression was accomplished by spotting cells

on agarose pads containing a concentration gradient of L-arabinose prior to
imaging. CJW4386 (carrying dnaC2) was grown at 30�C in M9G, 50 mg/ml

ampicillin, and 2 mg/ml chloramphenicol. Ninety minutes prior to imaging,

the culture was shifted to 37�C, and L-arabinose was added (to a final concen-

tration of 0.02%) 45 min prior to imaging.

E. coli strains CJW4617 and CJW4619 were grown at 30�C in M9G supple-

mented with 50 mg/ml kanamycin. GFP-mNS synthesis was induced by addi-

tion of isopropyl b-D-1-thiogalactopyranoside (IPTG) to 50–200 mM. After

30–120 min at 30�C, induction was stopped by washing cells into IPTG-free

M9G medium. CJW4619 (carrying dnaC2) cells were incubated at 37�C for

2–3 hr to obtain filamentous cells.

Light Microscopy

Cells were imaged on agarose-padded slides supplemented with indicated

media; see Extended Experimental Procedures for further details. Cell outlines

were obtained from phase contrast images using open-source software

MicrobeTracker (Sliusarenko et al., 2011). Fluorescent spots were detected

and tracked using SpotFinder (Sliusarenko et al., 2011) and custom-built

scripts in Matlab (TheMathWorks), as described in the Extended Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Results, Extended Experimental

Procedures, one table, and seven movies and can be found with this article

online at http://dx.doi.org/10.1016/j.cell.2013.11.028.
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