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Abstract

Visual expertise in fingerprint examiners was addressed in one behavioral and one electrophysiological experiment. In an X-AB

matching task with fingerprint fragments, experts demonstrated better overall performance, immunity to longer delays, and evidence

of configural processing when fragments were presented in noise. Novices were affected by longer delays and showed no evidence of

configural processing. In Experiment 2, upright and inverted faces and fingerprints were shown to experts and novices. The N170

EEG component was reliably delayed over the right parietal/temporal regions when faces were inverted, replicating an effect that in

the literature has been interpreted as a signature of configural processing. The inverted fingerprints showed a similar delay of the

N170 over the right parietal/temporal region, but only in experts, providing converging evidence for configural processing when

experts view fingerprints. Together the results of both experiments point to the role configural processing in the development of vis-

ual expertise, possibly supported by idiosyncratic relational information among fingerprint features.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The training and exposure that fingerprint examiners

undergo as part of their profession represents an ex-

treme case of perceptual learning. These experts receive

extensive training in the fingerprint identification proc-

ess with competency testing under an accomplished

professional. In addition, the penalty for incorrect iden-
tifications is quite high: lives or careers could be ruined

and labs shut down because of inappropriate accusa-

tions or exonerations. As a result, fingerprint examiners

take their jobs very seriously and spend a great deal of

time studying prints. This situation produces an inten-

sive study of a stimulus set that may lead to profound

changes to the perceptual systems of fingerprint examin-
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ers. Given this pool of expertise, it is somewhat surpris-

ing to find that very few if any empirical studies have

addressed how long-term exposure to fingerprints might

alter the perceptual processing of latent and inked prints

by examiners. The goal of this article is to characterize

the differences between fingerprint experts and novices,

and address the nature of the strategies and visual skills

that experts may have developed during training. The
results not only bear on the nature of skill development

with examiners, but help constrain models of perceptual

learning as well, in particular the role and nature of con-

figural processing in visual expertise.

While relatively little work has been done with finger-

print examiners, we draw upon several related studies

of expertise that have identified behavioral and neural

correlates of expertise (e.g. Gauthier, Skudlarski, Gore,
& Anderson, 2000; Rossion, Gauthier, Goffaux, Tarr,

& Crommelinck, 2002; Shiffrin & Lightfoot, 1997;

Tanaka & Curran, 2001), since fingerprints share some
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characteristics with faces and other stimuli that exhibit

perceptual learning. Goldstone (1998) identified four

general mechanisms that might support the development

of perceptual expertise. For stimuli that can be repre-

sented along different psychological dimensions, atten-

tion weighting allows more emphasis to be placed on
relevant dimensions, and differentiation allows increased

separation between objects in psychological space. In

addition to these manipulations of dimensional repre-

sentations, new features can be created, either through

imprinting, which creates new receptors specific to the

to-be-learned features (Schyns & Murphy, 1994; Schyns

& Rodet, 1997), or unitization, which creates complex

configurations out of single features (Shiffrin & Light-
foot, 1997). For more naturalistic stimuli without clear

psychological dimensions, much of the emphasis of

expertise research has addressed the role of relational

information and context-related effect in which the per-

ception of one feature is influenced by the presence or

absence of other features. Both of the mechanisms can

be subsumed under the general category of configural

processing. Configural effects have long been studied
in faces (Yin, 1969), and more recently these effects have

been extended to other types of objects. Perhaps the

most comprehensive look at training effects with novel

stimuli is work with Greeble stimuli by Gauthier and

Tarr (1997) and Gauthier, Williams, Tarr, and Tanaka

(1998), who described configural benefits for single fea-

tures when surrounded by the appropriate context, but

only after training and only for upright stimuli. Later
work has suggested that this form of configural process-

ing is supported by the gradual development of rela-

tional information between features throughout the

course of learning (Gauthier & Tarr, 2002).

The neural basis for expertise has been addressed in

imaging experiments (Gauthier et al., 2000; Gauthier,

Tarr, Anderson, Skudlarski, & Gore, 1999; Tarr & Gau-

thier, 2000), electrophysiological studies (Gauthier, Cur-
ran, Curby, & Collins, 2003; Rossion, Gauthier, et al.,

2002; Tanaka & Curran, 2001) and single-cell recording

(Baker, Behrmann, & Olson, 2002; Logothetis, 2000). It

appears that brain regions that initially are highly

responsive to complex visual objects such as faces are

also activated by learned stimuli after training, suggest-

ing a recruitment of face-responsive areas to support

expertise for other complex objects (although see
Carmel & Bentin (2002) for a defense of a modular ac-

count of face processing). At the level of single cells,

configural processing seems to occur via increasing spe-

cialization of responses to conjunction stimuli, rather

than increased firing rates (Baker et al., 2002).

Fingerprint matching shares some similarity with a

radiological screening process, and several articles have

documented expertise effects with radiologists. Sowden,
Davies, and Roling (2000) found that experts could

better detect low-contrast dots embedded in simulated
X-rays, and Myles-Worsley, Johnston, and Simons

(1988) reported that experts had better memory per-

formance for abnormal X-rays while exhibiting worse

performance for normal X-rays.

Fingerprint examinations are somewhat unique as a

task. Unlike tumor detection, which is essentially a cat-
egorization task, latent fingerprints are compared with a

very specific candidate sample. While this task shares

some of the characteristics of an identification process,

both samples are present simultaneously. In addition,

fingerprints share a very small set of features, some of

which, such as ridge endings and bifurcations, are dis-

tributed in fairly random locations from one print to an-

other. This makes relational information important.
However, unlike faces, the feature locations are much

less constrained on a fingerprint, and relatively little

work has been done with analogous stimuli in the liter-

ature. Thus it remains to be seen whether configural

processes can develop for fingerprints. If so, this will

suggest the conditions under which configural process-

ing can develop.

Given that relatively little literature exists on finger-
print examiners, our first aim is to identify whether ex-

perts do indeed differ from novices on tasks related to

fingerprint examinations, and then determine whether

performance differences might be tied to the mechanisms

that have been identified that support perceptual learn-

ing. The results of our first experiment will point to

the suggestion of configural processing in experts, and

we follow this up with a second experiment designed
to look for neurophysiological evidence of configural

processing.
2. Experiment 1

Although some elements of initial triage and screen-

ing might be handled via a computer, virtually all evi-
dence presented in court is based on a visual match

made by an examiner. Fingerprints contain characteris-

tic features such as general ridge paths of loop, whorl, or

arch, as well as idiosyncratic features of specific ridge

paths with ridge endings or bifurcations, and texture

and pore positions on ridges. This provides a very con-

sistent visual diet for examiners, which may enable their

visual system to adopt strategies that enhance informa-
tion acquisition from one fingerprint. The training may

also enhance maintenance of visual information during

an eyemovement, and thus Experiment 1 includes an ele-

ment of visual working memory.

Fingerprints are somewhat like faces in that they

have certain features that tend to occur in similar loca-

tions across exemplars, and thus may exhibit properties

in experts similar to those seen with faces, most notably
configural processing and superior subordinate-level

categorization performance (e.g. Tanaka, 2001). Thus



1 Note that because we have no control over the testing conditions,

we could not perform gamma correction or equate luminance and

brightness across observers. While this may produce individual

variability across subjects, it is unlikely to contribute to differences

across groups unless one group used systematically inferior equipment.

We designed our software to run on even 5year old computers, and

thus this explanation is unlikely to account for our group differences.

In addition, differences in equipment are unlikely to result in the

interactions between conditions that we observe for some but not other

groups. We discuss the issues raised by a lack of gamma correction in a

later section.
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some of our stimulus manipulations follow from the face

processing literature. However, latent fingerprints recov-

ered from crime scenes tend to be moderately to severely

degraded, may represent only part of the fingerprint,

and are contaminated by visual noise deriving from

dust, surface texture, pressure, and many other sources
of variability. As one fingerprint expert described it,

their job is to �see through the noise� in order to pick

out particular features that enable a match. Thus we

also included manipulations designed to capture ele-

ments of expertise that have evolved to work under these

conditions.

The typical fingerprint matching process involves a

latent print placed next to a candidate inked print ta-
ken from another source. An expert examines the two

prints, either enlarged on a screen or through a magni-

fying lens, to end up at one of three conclusions: (1)

there is sufficient detail to reject the two prints as com-

ing from the same source, (2) there is sufficient detail to

conclude that the two prints come from the same

source, and (3) there is insufficient detail to make a

determination (usually due to a poor quality print).
During the examination process, the expert must make

eyemovements between the latent and inked prints in

an attempt to visually match features. The matched fea-

tures take on up to three levels of detail, which include

Level 1 detail, which is area that is visibly just the

general direction of ridge flow of a fingerprint; Level

2 detail, which is clear enough to specific individual

ridge paths with ridge endings and bifurcations; and
Level 3 detail, which is area clear enough to reveal

the texture and pore position detail within a ridge.

After an open-ended examination that can take minutes

to hours, the expert makes one of the three conclusions

described above.

To assess the possible mechanisms for expertise, we

designed an experiment that abstracted what we be-

lieved to be some essential skills of the fingerprint
matching process, but does not require lengthy examina-

tions. We settled on an X-AB matching task, in which

an observer is presented with a section of a fingerprint

for study, and is then tested with two prints in a

forced-choice test. The two test prints were sometimes

degraded with visual noise or partially masked to simu-

late some of the characteristics of latent prints. Noise

has the property that it makes local information varia-
ble, and McKone, Martini, and Nakayama (2001,

2003) argued that added noise was one method to isolate

configural processing in faces. To assess the visual mem-

ories of experts and novices, a visual mask was inserted

between the study print and the test prints, which re-

mained visible for either 200ms or 5200ms. In addition,

because our experts are scattered across the country and

in Europe, we designed our experiment as a Java applet
that runs in any browser and collected data over the

web.
2.1. Method

2.1.1. Participants

Eleven fingerprint experts were recruited by the sec-

ond author to participate. These experts were all active

and had completed training required to practice in the
field. Eleven novices were also recruited to participate,

who included students at Indiana University, as well

as older participants from the Bloomington, Indiana

community. Care was taken to recruit observers who

were equally motivated in each group. None of the par-

ticipants received monetary compensation, but agreed to

participate out of interest in the topic and a desire to as-

sist law enforcement officials, however indirectly. The
novices represented a somewhat younger group of

observers, with many in their early 20s although one

was in her early 30s and two were in their late 50s.

The practicing experts were typically mid-career profes-

sionals, with ages that ranged from early 40s to late 50s.

We judged it too impolite to request exact ages of

our experts since we were relying on their voluntary

participation. All observers reported normal or cor-
rected-to-normal vision. All observers were naı̈ve as to

the purpose of the study, and gave informed consent

according to Indiana University guidelines.

2.1.2. Stimuli

We deemed it too difficult for novice observers to

match latent to inked prints, and so we instead con-

structed a database of individual features cropped from
inked prints from the NIST 27 database (National Insti-

tute of Standards and Technology). Fig. 1 shows pairs of

examples from each of the six types of features used,

which measured approximately 150 pixels in diameter.

Because data was collected via the web, participants were

asked to adopt what for them was a comfortable viewing

distance. At a normal viewing distance of 27 in. on a

17 in. monitor at a resolution of 1024 · 768 pixels, the
stimuli encompassed approximately 7� in diameter. 1

Sixteen fragments of each type were included in the

study. These were organized into pairs that were as

similar as possible. Since the same image is used at both

study and test in the X-AB task, care was taken to

remove obvious artifacts such as lint or hairs that would



Fig. 2. Sequence of events in Experiment 1. Note that the study image

has a different orientation and is slightly brighter to reduce reliance on

low-level cues.

Fig. 1. Example fingerprint fragments used in Experiment 1 from the six different types of fragments. Pairs are grouped vertically in this figure. Each

fragment was paired with a close match to reduce reliance on categorical information such as �loop�, �whorl� or �arch�.
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make a match trivial. In addition, we introduced two

manipulations at study designed to reduce the reliance
on low-level features. First, we introduced a brightness

jitter to the study image, randomly making it up to

20% brighter on each trial. We noted that the two test

images in a pair sometimes differed in brightness and

this jitter reduced brightness as a cue to the correct an-

swer. We also introduced orientation jitter at study, such

that the feature could be rotated up to 30� left or right of
its original orientation. This also makes orientation a
poor cue to identity. Our goal was to force observers

to rely on the structure of the fingerprint features rather

than specific feature anomalies that are not related to

the structure of fingerprints, since inked and latent

prints cannot be matched on the basis of brightness or

the presence of lint or some other idiosyncratic feature.

2.1.3. Procedure

Fig. 2 diagrams a typical trial. A single study feature

appeared for 1000ms, which was immediately replaced

by a visual mask. This mask remained on the screen

for either 200ms or 5200ms. This was then replaced

by two test features, one of which was the study feature

(no longer perturbed by orientation or brightness jitter)

and the other was a matched foil. The participant then

made an unspeeded forced-choice response indicating
the feature they believed was presented at study. Reac-

tion times were not measured and speed was not stressed

since actual fingerprint examinations are open-ended

and we felt that expert examiners may feel uncomforta-

ble with speeded responses. After the response, visual

feedback on the accuracy of their decision was then pro-

vided, which served to motivate both groups of observ-

ers. We address any learning issues this may have raised
in the results and discussion section. Observers clicked

on a button for the next trial.

There were 48 pairs used for all 144 trials of the

experiment, and either feature could be shown at study.

Thus a pair was seen 3 times at test throughout the

experiment and each feature was seen on average 1.5

times at study. By using 96 fragments and matched pairs
at test, we tried to minimize the likelihood that subjects

would learn the fingerprint fragments throughout the

course of the experiment.

As shown in Fig. 3, there were two manipulations

that could be applied to the test images. First, the test

features could be presented in broadband visual noise,
which served to obscure some of the visual features

and approximates some of the noise that latent images

contain. The spatial characteristics of this noise are

not identical to the naturally occurring visual noise,

but this manipulation may still tap whatever skills ex-

perts have developed to deal with noisy images.



Fig. 3. Four types of test trials.
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The second manipulation involved partially masking

the print. This has two purposes. First, this manipula-
tion is designed to simulate the fact that latent prints

rarely have the amount of detail as the inked print,

and tend to be patchy due to many factors, such as

the texture of the surface they are found on. Second, this

manipulation allows a particular statistical analysis to
Fig. 4. Construction of partial masks. The semi-transparent masks are multip

the mask and its compliment (photographic negative) produces two partially
address configural processing as described in a later sec-

tion. The construction of partial masks is illustrated in
Fig. 4. First, visual noise was generated in Matlab

(Mathworks Software) and severely low-pass filtered

to produce the image in the upper left. This image was

then treated as a semi-transparent mask, such that when

multiplied with the fingerprint produces the partial print
lied with the fingerprint to produce partially masked prints. Using both

masked prints that when added together recover the original print.



436 T.A. Busey, J.R. Vanderkolk / Vision Research 45 (2005) 431–448
to the right. Thirty masks were generated in Matlab and

then applied in real time during the experiment to both

images at test.

The compliment of each mask was also used, as illus-

trated in the lower left of Fig. 4. This was done by taking

the inverse of the mask prior to applying it to the finger-
print feature. When applied to the fingerprint as a mask,

this reveals areas previously masked, and hides regions

previously revealed. The summation of the two partial

prints yields the original fingerprint feature, as show

on the right side of Fig. 4. The use of low-pass filtered

noise as masks reduces the problems that might occur

if sharp edges were used in the masks, which could pro-

duce new features at sharp boundaries. This also
approximates the patchiness of latent prints when recov-

ered from irregular surfaces.

As shown in Fig. 3, both noise and partial masking

could be applied to a test image. There were two levels

of each of the three manipulations (short and long

mask, clear or noisy features, and full or partially

masked prints) that were fully crossed to give eight

conditions.
Participants completed 144 forced-choice trials which

took approximately 30min.
Fig. 5. Experiment 1 data. Error bars represen
2.2. Results and discussion

Results for experts and novices are shown in Fig. 5,

which present the proportion of correctly matched fea-

tures in each condition. The data were submitted to a re-

peated measures analysis of variance, with expert/novice
as a between subject factor and delay, noise and partial

masking as within-subject variables. The results in Fig. 5

are graphed separately for short and long mask delays,

since neither group showed an interaction between delay

and either of the other two variables.

First, consider the experts, which are shown in the

top panels of Fig. 5. Surprisingly, the experts show no

effect of delay (F(1,10) < 1), and no interactions between
delay and either noise or partial masking (both F values

less than 1). However, experts show effects of both add-

ing noise (F(1,10) = 197.0; p < 0.05) and partial masking

(F(1,10) = 79.7; p < 0.05). Of particular interest is the

strong interaction between partial masking and added

noise (F(1,10) = 151.9; p < 0.05). This interaction may

come from several possible sources, but, as discussed be-

low, one intriguing suggestion is that performance on
the full prints when presented in noise is higher than

one would expect based on partial-image performance.
t one standard error of the mean (SEM).
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The three-way interaction between delay, noise and par-

tial masking was not significant (F(1,10) < 1).

The novices show a different pattern of results. First,

performance overall is significantly lower for novices

compared with the experts (F(1,20) = 11,204, p < 0.05).

In addition, novices show an effect of delay, which can
be seen in the lower two panels of Fig. 5 (F(1,10) =

7.89, p < 0.05), although the effect of delay did not inter-

act with either noise or partial masking (both F-values

less than 1). While the novices also show effects of

noise (F(1,10) = 49.6, p < 0.05) and partial masking

(F(1,10) = 15.4, p < 0.05), they fail to exhibit an interac-

tion between the two (F(1,10) < 1), which stands in con-

trast to the strong interaction seen with the experts. As
with the experts, the three-way interaction between de-

lay, noise and partial masking was not significant

(F(1,10) < 1). It is important to note that interpretations

of the interaction between added noise and partial

masking for the experts is subject to scale dependency is-

sues (e.g. Bogartz, 1976; Loftus & Bamber, 1990), which

we address in a later modeling section.

These differences observed between experts and nov-
ices separately are confirmed by addressing the interac-

tions with subtype (expert or novice). All three

variables interact with subject type (delay · subtype:

F(1,20) = 5.3; p < 0.05; noise · subtype: F(1,20) = 6.4;

p < 0.05; partial masking · subtype: F(1,20) = 6.9; p <

0.05). In addition, the three-way interaction between

subtype, partial masking and added noise was signifi-

cant (F(1,20) = 6.46; p < 0.05), which confirms the inter-
action found between partial masking and added noise

found only for experts. This three-way interaction

makes the two-way interactions between subtype and

the three within-subjects variables somewhat difficult

to interpret, with the exception of the delay · subtype

interaction, which results from the fact that the experts

are unaffected by delay but the novices are.

The inclusion of feedback raises the possibility of
learning, which may have affected the results. We used

96 different features in the 144 trials, and so each feature

was only seen on average 1.5 times at study and three

times at test, and most of the test trials were either par-

tially masked, presented in noise, or both. This mini-

mized the possibility of learning effects, but to test this

we split the data for each subject into first and second

halves of the experiment and included this as a factor
in the original ANOVA described above. The first

half/second half factor did not show a main effect, nor

did it interact with any other factor or combination of

factors (all p > 0.05). Thus learning does not appear to

be a major factor in Experiment 1.

Of all of these results, most interesting are the ef-

fects of delay found only for novices, and the inter-

action between noise and partial masking found only
for experts. These results demonstrate clear differences

between the two groups, and the pattern of results
suggests the nature of the processing differences. The

strong performance observed in experts and their

resistance to the longer delay suggests that they en-

code feature information into more durable storage,

such as verbal re-descriptions. In addition, they may

possess better visual memory that is robust against
the mask, which may facilitate matching images across

eyemovements.

Most intriguing, however, is the strong performance

with the full image is embedded in noise, relative to

the partial image in noise. Consider the values converted

to d 0 values, which tends to linearize percent correct. In

the forced-choice task, d 0 is equal to (1/
p
2) [zInv(pc) �

zInv(1 � pc)], where zInv is the inverse cumulative
normal distribution and pc is percent correct for that

condition. For experts in the short delay condition, the

d 0 value for the partial image is 0.56, while the d 0 value

for the full image is more than twice that (1.66). The

novices showthe opposite pattern: d 0 for the partial im-

age is 0.39, while the d 0 for the full image is less than

double that value (0.72). Given that the full image can

be construed as two partial images, it is somewhat sur-
prising that the d 0 value more than doubles for the full

image in the expert data.

2.3. Evidence for configural processing

What might account for this more than doubling of d 0

values when the second half of the image is added to cre-

ate the full image? One possibility that we explore in this
section is that of configural processing, where the pres-

ence of one part of the image influences the processing

of the second part. Configural processing has received

much support within the face perception literature (see

Maurer, Le Grand, & Mondloch, 2002, and Rossion

& Gauthier, 2002, for recent reviews), and is seen as

one mechanism supporting perceptual expertise. The

interaction between partial masking and subject type
(expert vs. novice) suggests that there are differences be-

tween the groups, but this interaction is only partially

informative. First, it is scale dependent, and the novices

may be near floor. Second, an interaction may exist, but

experts may show only additive summation, while nov-

ices might be sub-additive. Neither would be consistent

with configural processing. Thus to address evidence for

configural processing we implemented a multinomial
model, as described below, which used a probability

summation prediction to suggest what performance on

the whole image should be given the partial image per-

formance. Actual performance greater than that predic-

tion is consistent with configural processing. Note that

this modeling deals with scaling issues as well, since

the probability summation prediction builds in the scale

into the model. Thus a set of data could be near floor or
ceiling and still demonstrate evidence for configural

processing.
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Recall that for each of the 26 partial masks used in

the experiment, its converse mask was also used. Since

adding together two partially masked images recovers

the full image, each partially masked image contains ex-

actly half of the information of the full image (barring

non-linearities, discussed in a later section). Because of
this design, we can use performance in the partial mask

condition to make a prediction for performance in the

full image condition. This was accomplished using a

multinomial model, which is illustrated in Fig. 6. The

model makes several assumptions:

(1) The observer recovers enough information from one

half of an image in order to make a correct response
with probability d.

(2) If insufficient information has been recovered in

order to make a correct response (which happens

with probability (1 � d)), the observer can still make

the correct response via guessing with probability g,

which was set to 0.5.

Full images can be construed as an image consisting
of two halves, and therefore contain twice as much

information as partially masked images (which contain

only one half). The multinomial trees show in Fig. 6

reflect this. For a full image, the model provides two

opportunities to recover enough information from

half of an image in order to make the correct deci-

sion (each with probability db). For a partial image,

the model provides only one opportunity (with proba-
bility dh).
Fig. 6. Multinomial models for full and partial images. The parameters db a

half of an image when that half is in a full image (db) or a partial image (dh)

evidence for configural processing, as described in the text. The parameter g

forced choice paradigm.
This model structure allows statistical tests of a con-

figurality hypothesis. If the presence of one half influ-

ences the processing of the second half, then db should

be different than dh. If db < dh then the presence of the

second half reduces the information acquired from the

first half (and vice versa). If the two are equal then a
form of independence holds and the two halves do not

influence each other. The most interesting case is when

db > dh, which implies that more information is acquired

from one half when the second half is present (and vice

versa). This finding would be consistent with configural

processing.

The relation between db and dh was addressed by first

testing a reduced model in which db = dh. We used the
GPT software (Hu & Phillips, 1999), which provides a

v2 statistic that tests whether this model is rejected by

the data. If we reject the reduced model, we have statis-

tical evidence that db 5 dh. The next step is to then fit

the full model with separate estimates of db and dh. This

model is fully saturated, but the estimates of db and dh
reveal the directionality of the relation between db
and dh.

We saw no interaction between delay and the other

two variables for either subject group, so we collapsed

across delay when generating model predictions. We fit

the multinomial trees separately for the no-noise and

noise conditions. The input to the model is the number

of correct and incorrect trials in the different conditions,

combined for experts and novices separately. The pro-

gram fits a single set of parameters for all experts and
a separate set for all novices.
nd dh represent the probability of obtaining enough information from

. The relation between db and dh determines whether the data contain

is a guessing parameter set to 0.5, appropriate for the two alternative
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For the experts in the no-noise condition, we reject

the reduced model (v2 = 7.75; p < 0.05) and the full

model estimated db = 0.841 and dh = 0.944. This relation

between db and dh is opposite that predicted by a config-

urality hypothesis, and suggests that experts acquire less

information from each half when the full image is
shown. This conclusion may be affected by one of sev-

eral non-linearities, as discussed later.

A different pattern emerges from the expert data

when the images are presented in noise. As with the

noise-free data, we reject the reduced model (v2 = 12.1;

p < 0.05). The full model estimates are db = 0.497 and

dh = 0.298. This finding of db significantly above dh is

consistent with configural processing, since the results
are interpreted as the expert acquiring more information

from one half of an image when the other half is present

than when the other half is absent.

The novice data for the no-noise conditions are sim-

ilar to that of the experts: we again reject the reduced

model (v2 = 7.47; p < 0.05) and find that db < dh
(db = 0.395 and dh = 0.544). This is once again the oppo-

site pattern from configural processing. In noise, we find
that we cannot reject the reduced model (v2 = 0.53;

p > 0.05), which implies that db � dh (the two values

are very similar: db = 0.18 and dh = 0.14). This last result

is consistent with a form of independence between the

two halves and provides no evidence for configural

processing in novices. Thus only experts show evidence

of configural processing, and only in the presence of

noise.
There is an alternative way to look at these data that

also deals with the scaling issues. Consider the data pre-

sented in noise for the experts, which shows a steep de-

cline in performance when partially masked. The data

for the novices when not in noise covers the same range

of performance, and shows a much shallower drop.

Thus looking at the data like this visually demonstrates

a scale invariant interaction between partial masking
and subject type. However, the modeling is still neces-

sary in order to demonstrate configural processing.

The evidence for configural processing in noise with

experts is perhaps not surprising when one considers

the fact that experts are used to examining latent prints

in noise and may have developed abilities such as confi-

gural processing to overcome the noise. McKone et al.

(2001, 2003) argued that the addition of noise reduces
reliance on individual features, since they become unpre-

dictable when noise is added, thus pushing observers to

use configural processing if possible (in this case only for

our experts). What is perhaps more surprising is that we

find evidence for configural processing with singleton

fingerprint elements. The analogous experiment with

faces (where configural processing effects are often de-

scribed) would demonstrate configural effects when just
single features such as an eye or a mouth is used. Thus in

some sense our singleton features worked against a con-
figural processing mechanism, and positive evidence for

configural processing should be viewed in this light. This

also suggest that configural processing can occur with

stimuli that have relevant features in relatively uncon-

strained locations.

A critical assumption with the multinomial modeling
above is that the partially masked stimuli contain ex-

actly half of the information that the full image con-

tains. This is true for a linear system such as an ideal

observer, but there are two sources of non-linearities

that could break this assumption. The first non-linearity

is found in the gamma of monitors. Typically when

these experiments are done the monitor is calibrated

so that there is a linear relation between the internal
scale (pixel values) and the amount of light coming from

the monitor (luminance). Because these experiments

were done over the web we were unable to calibrate

the monitors of the participants. We did consider several

systems that might provide rough calibration via gray-

level matching, but these were judged to be too cumber-

some to explain to our users and lacked any testing that

would insure accurate calibration. As a result of this
lack of calibration, there may be a non-linear relation

between pixel values and luminance which may have

made regions that were masked easier to see than they

should have been in the no-noise condition, thus inad-

vertently providing more than half of the information

in a partially masked image. This may underlie the

sub-linear performance seen with both experts and nov-

ices in the no-noise condition. Adding noise to an image
alleviates some of these concerns, because now not all of

the information in the partially masked areas resides at

one set of luminance levels. Thus in some sense the data

from the added-noise conditions is perhaps more trust-

worthy since monitor non-linearities affect it less.

The second source of non-linearities is in the obser-

ver�s visual system. The transfer function between

luminance and the visual system�s response may be
non-linear, and this may also lead to better performance

on the partially masked images than the full image per-

formance can account for.

Neither form of non-linearity can account for the fact

that we observe data consistent with configural process-

ing only for the experts when they view images in noise,

unless experts have different transfer functions than nov-

ices. This indeed could be one possible mechanism:
perhaps in the process of examining thousands of finger-

prints over the course of a career the experts have al-

tered their sensitivity at low brightness values. Sowden

et al. (2000) found better detection performance for

radiologists, which suggests we might find similar low-

level discriminability for fingerprint experts. The fact

that we observe this in noise makes this explanation less

likely, but different transfer functions remain a candi-
date difference between novices and experts. Thus it is

desirable to look for converging evidence for configural
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processing from other domains to support the Experi-

ment 1 conclusions. To explore this finding further, in

Experiment 2 we consider evidence from EEG

recordings.
3. Experiment 2

3.1. Converging evidence for configural processing from

neurophysiology

Within the face perception literature, several different

techniques have been used to demonstrate configural

processing. From early illustrations of the Thatcher Ef-
fect (Thompson, 1980) to the influential Tanaka and

Farah (1993) paper, evidence has mounted that upright

faces are processed to some degree holistically. While

this has taken on different meanings for different authors

(see Rossion & Gauthier (2002) and Maurer et al. (2002)

for reviews), the general consensus seems to be that for

holistic processing, the perception of an individual fea-

ture is affected by the context in which it is presented,
and that relational information plays an important role.

Inverting the face reduces or eliminates these effects (e.g.

Farah, Wilson, Drain, & Tanaka, 1998; McKone et al.,

2001, 2003; see Rossion & Gauthier, 2002 for a sum-

mary of face inversion effects). Electrophysiological evi-

dence of configural processing has been described as a

delay of a particular component associated with faces,

termed the N170, which is thought to represent ‘‘the late
structural encoding stages of complex visual informa-

tion processing’’ (Eimer, 2000). The N170 component

is particularly large when faces are presented, and is

thought to originate in parietal/temporal brain regions,

primarily on the right side but also on the left (Henson

et al., 2003; Horovitz, Rossion, Skudlarski, & Gore,

2004). Several papers have linked the N170 to expertise

effects, including Tanaka and Curran (2001), who found
evidence for expertise effects with bird and dog experts.

A more recent paper by Gauthier et al. (2003) used an

interference paradigm to demonstrate that car experts

were more likely to automatically encode an irrelevant

half of a picture despite instructions to the contrary.

By intermixing car and face trials, the authors demon-

strated that car and face perception regions interfered,

suggesting that some of the same brain areas responsible
for face recognition were also recruited for car identifi-

cation. These behavioral results were found to be corre-

lated with activity in the N170 component in the right

hemisphere, suggesting that the expertise effects (in this

case emerging through interference effects) were percep-

tual in nature, rather than strategic or decisional.

The N170 component is reliably delayed for inverted

faces, often in both right and left hemispheres (Rossion
et al., 2000), but not for other types of stimuli. Rossion

et al. (2000) tested a host of non-face stimuli such as
houses and greebles in both upright and inverted presen-

tations and found a delayed N170 only for faces. A later

training study (Rossion, Gauthier, et al., 2002) using

greeble experts found a delayed N170, but primarily in

the left hemisphere, while delayed N170 effects for faces

tend to be stronger in the right hemisphere. More recent
work found evidence for a delayed N170 to inverted cars

(Rossion, Joyce, Cottrell, & Tarr, 2003) which was

somewhat unexpected given the previous findings. How-

ever, it may be that the 3/4 views of cars used in the

study may tap some elements of expertise that we gain

via our everyday exposure to vehicles. Thus while the

delayed N170 component is not specific to inverted

faces, it does seem to represent a marker for expertise
and possibly a signature of configural processing.

While fingerprints do not have the strikingly different

features that eyes, mouths and noses represent, they do

have readily identifiable features such as general ridge

flow, specific ridge paths with ridge endings and bifurca-

tions, and texture and pore positions. In addition, fin-

gerprints do have an upright orientation and experts

almost always orient a print prior to a comparison if
the top is possible to determine from the print (some-

times latent prints are difficult to orient). If there exists

a common structure to fingerprints, and fingerprint ex-

perts learn this structure primarily from upright prints,

then this suggests that we might observe configural

processing with upright fingerprints.

For novices, fingerprints represent a much more

unfamiliar stimulus set than cars or houses that have
been used as comparison stimuli. In addition, fingerprint

experts receive much more training and exposure than

that typically provided by psychology experiments,

which may more dramatically alter the cortical represen-

tation of these stimuli. Thus upright and inverted finger-

prints, when used with experts, provide a good test of

the relation between expertise and the delayed N170.

The evidence from Experiment 1 that experts might
use configural processing as part of their perceptual

analysis, and the delayed N170 component seen with in-

verted faces has been interpreted as evidence for confi-

gural processing. These two lines of evidence suggest

an obvious experiment: test fingerprint experts with up-

right and inverted fingerprints in an EEG experiment. If

experts process upright fingerprints in a configurable

manner, we should see a delayed N170 with the inverted
fingerprints. Experiment 2 tests this prediction. We in-

cluded upright and inverted faces to replicate the de-

layed N170 in our experts, and also ran novice

observers as a control.

Several authors have made a distinction between cat-

egory level (or entry level) and subordinate level tasks

(Carmel & Bentin, 2002; Rossion, Curran, & Gauthier,

2002; Tanaka, Luu, Weisbrod, & Kiefer, 1999). Tanaka
et al. (1999) experiments revealed that the basic and sub-

ordinate level categorizations can produce differences in
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brain activity as early as 130ms after stimulus onset.

While faces may be automatically categorized at the

individual level, fingerprints, at least to novices, are

likely not. To address this issue, we had our participants

first perform an identification task for 400 trials, and

then a categorization task for 400 trials. We are prima-
rily interested in latency differences for the N170 compo-

nent. To anticipate our results, the two tasks produce

very similar patterns of results for the latency data,

and thus the two tasks may be viewed as a replication

in the present context.

3.2. Method

3.2.1. Apparatus

The EEG was sampled at 1000Hz and amplified by a

factor of 20,000 (Grass amps model P511K) and band-

pass filtered at 0.1–100Hz (notch at 60Hz). Signals were

recorded from sites F3, F4, Cz, T5, and T6, with a nose

reference and forehead ground; all channels had below 5

kX impedance. Recording was done inside a Faraday

cage. Eyeblink trials were identified from a characteristic
signal in channels F3 and F4 and removed from the

analysis with the help of blink calibration trials. Images

were shown on a 21 in. (53.34cm) Macintosh color mon-

itor approximately 44 in. (112cm) from participants.

The data was digitally low-pass filtered below 30Hz

prior to estimation of the N170 latencies for the four

conditions.

3.2.2. Observers

We recruited four experts from the United States. All

had expertise similar to the experts in Experiment 1. One
Fig. 7. Examples of Exp
expert was the second author, although he was naı̈ve as

to the purposes of the EEG experiment prior to his par-

ticipation. Four novice observers were recruited from

the Indiana University community who did not have

experience with fingerprint stimuli. As in Experiment

1, the experts were mid-career professionals, while the
novices were advanced undergraduates.

3.2.3. Stimuli

The entire stimulus set appears in Fig. 7. Face stimuli

consisted of grayscale frontal views of eight bald men.

Fingerprint stimuli were chosen from the NIST 27 data-

base of fingerprint stimuli, and were fully rolled stand-

ard prints for 10-print records rather than latent
prints. We used fully rolled standard fingerprints rather

than fragments in order to make orientation quickly

apparent to the participants.

Faces subtended a visual angle of 5.8� · 6.8�. Finger-
prints subtended a visual angle of approximately

7.0� · 7.0�. The images were shown at full contrast on

a monitor with background set to 19.2cd/m2, black set

to. 76cd/m2 and white set to 61.8cd/m2.

3.2.4. Procedure

Observers completed two halves of the experiment. In

the first half they were to identify which of the eight

faces or fingerprints was presented on each trial. Each

image appeared for 1000ms, which was followed by

the observer�s response of 1–8 on a numeric keypad.

They were given a sheet with the 16 stimuli along with
numbers assigned to each stimulus. All observers were

asked to hold the sheet upright even if the stimulus on

a particular trial appeared upside down. In the second
eriment 2 stimuli.
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half of the experiment observers made a face/fingerprint

categorization task, pressing one of two keys. No feed-

back was provided.

Stimuli were presented for 1000ms. EEG was re-

corded from 100ms prior to stimulus onset to 1100ms

post-stimulus onset. The stimuli appeared in random-
ized order. Observers completed 200 trials (100 in each

task) of each of the four main stimulus types (upright

and inverted faces and upright and inverted fingerprints)

for a total of 800 trials. All observers completed 400 tri-

als of the identification task followed by 400 trials of the

categorization task. We deliberately did not counterbal-

ance the order of task across subjects because we judged

the identification task to be more important and we did
not want it to be influenced by any fatigue effects. As it

turned out the effects are qualitatively similar for the

two tasks and thus they represent a replication of the ef-

fects within the experiment. The lack of counterbalanc-

ing makes direct amplitude comparisons problematic

should one wish to compare identification and categori-

zation brain responses.

The inter-trial interval was set by the observer since
they initiated the next trial with the response to the

previous trial. After their response the next trial ap-

peared with a delay ranging from 1700 to 1800ms.

While this delay was random within this interval, the

EEG signal may be contaminated with slow anticipatory

waves (e.g. Vogel & Luck, 2000). While these cannot

contribute directly to our condition differs due to the

random order of the stimuli, we filtered our data using
both a 1Hz highpass filter and also a linear drift

correction algorithm. Neither signal processing tech-

nique altered the pattern of latency results significantly,

although the highpass filtering produced noticeably

cleaner data and thus we present the results from the fil-

tered data. The unfiltered data produced very similar

patterns of results.

3.3. Results

Behaviorally, accuracy was reduced for both inverted

fingerprints and inverted faces relative to their upright

versions, but this reached significance only for faces

for both groups (novices: t(3) = 5.1; p < 0.05; experts:

t(3) = 4.8; p < 0.05). There were no significant differ-

ences between novices and experts on any of the four
stimulus conditions. Note, however, that behavioral per-

formance is based on viewing the entire 1000ms presen-

tation, whereas the N170 differences discussed below are

based only on the initial percept of the stimulus. In addi-

tion, accuracy was very high (the lowest was 77% where

chance is 12.5%). Thus there may be processing differ-

ences between experts and novices as revealed by EEG

that are not evident in behavioral data.
We now turn to the EEG data. The data from Exper-

iment 2 is shown in Figs. 8 and 9 for the electrodes of
interest, in this case T5 and T6, which are located in

the left and right parietal/temporal regions. Data from

experts is shown in the top panels, while data from nov-

ices is shown in the bottom panels. Vertical lines are the

computer-based estimates of the latency of the N170,

which finds the minimum value in a window that
includes the N170 component, in our case the window

between 125 and 200ms.

3.3.1. Analysis of variance

The prior results derived from the literature provide a

clear prediction regarding the latencies of the N170 com-

ponent for upright and inverted stimuli. Before address-

ing this specific comparison, we first report the results of
an overall analysis of variance, which has four within

subject factors: Task (identification and categorization),

Channel (T5 and T6), Stimulus (faces and fingerprints)

and Orientation (upright and inverted). Subject type (ex-

pert or novice) was a between-subject factor. Readers

mainly interested in the delayed N170 predictions may

wish to skip to the next section and come back to the

ANOVA results.
Given the predictions from the literature, the most

interesting comparison is the interaction between stimu-

lus, orientation and subject group. The Stimulus · Ori-

entation · Subject Type interaction was significant

(F(1,6) = 10.3; p < 0.05). The related four-way interac-

tion that includes task was marginally significant

(F(1,6) = 4.1; p = 0.089) but the four-way interaction be-

tween Stimulus, Orientation, Channel and Subject Type
did not reach significance (F(1,6) = 1.5; p > 0.05). This

latter result suggests that while the effects of inversion

are larger in the right hemisphere, there may be enough

differences in the left hemisphere to make this interac-

tion non-significant. Thus both hemispheres may con-

tain effects consistent with configural processing. The

five way interaction that includes all factors was margin-

ally significant (F(1,6) = 4.1; p = 0.09). There was also a
significant Task · Stimulus · Subject Type interaction

(F(1,6) = 6.6; p < 0.05). Finally, the main effects of Stim-

ulus (F(1,6) = 7.4; p < 0.05) and Orientation (F(1,6) =

59.8; p < 0.05) were both significant, as was the interac-

tion between Task, Stimulus and Orientation (F(1,6) =

6.8; p < 0.05). Overall, experts show faster N170 laten-

cies (F(1,6) = 7.94; p < 0.05).

3.3.1.1. Testing specific predictions from the literature.We

now turn to the specific predictions provided by prior

work. Based on the existing literature we have a clear

a priori prediction: inverted faces should produce

an N170 that is delayed relative to upright faces. If ex-

perts process fingerprints configurally, they should show

a delayed N170 for inverted fingerprints relative to the

upright fingerprints. Given this prediction from the liter-
ature we conducted paired one-tailed t-tests comparing

latencies for upright vs. inverted stimuli, with alpha set
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to 0.05. Note that data from the identification and cate-

gorization tasks comes from different halves of the exper-

iment, and we discuss the data separately below for each

task. We focus primarily on latency effects, since while

the N170 is also sometimes enhanced as well as delayed
when stimuli are inverted, this effect does not always ob-

tain in inversion experiments.
3.3.1.2. Data from the identification task. Consider the

data from the face stimuli, shown as thin curves in

Fig. 8. The largest latency differences are found in the

right hemisphere (channel T6) of both groups, for both

faces and fingerprints. With regard to faces, the inverted
faces produced a delayed N170 relative to upright faces,

in both novices (t(3) = 7.64; p < 0.05) and experts

(t(3) = 3.58; p < 0.05). This replicates the existing litera-

ture and is consistent with configural processing of faces

by both sets of subjects. The left hemisphere (channel

T5) produced a significant latency difference only for

novices for faces (t(3) = 3.30; p < 0.05).

We now turn to fingerprints, which show a similar
pattern for experts but not novices. As shown by the

thick curves in Fig. 8, the experts show a reliable differ-

ence between the upright and inverted fingerprints that
begins as early as 130–140ms after stimulus onset. In

the right hemisphere (Channel T6), the inverted finger-

prints produce an N170 that is systematically delayed

(t(3) = 3.54; p < 0.05) relative to the upright fingerprints.

The left hemisphere produced a similar delay, but did
not reach significance (t(3) = 2.56; p = 0.083). The up-

right and inverted latencies for the novices are almost

identical, and there was no significant difference between

the latencies of upright and inverted N170 components

(t(3) < 1) for these observers. Indeed their two curves

follow the same trajectory until about 230ms after stim-

ulus onset. Thus the inversion effect with fingerprints is

limited to expert examiners.

3.3.1.3. Data from the categorization task. The data from

the categorization task mirrors that of the identification

task in almost every respect, as shown in Fig. 9. In the

right hemisphere, we find a latency difference for upright

vs. inverted faces for the experts (t(3) = 4.21; p < 0.05),

as well as for novices (t(3) = 5.41; p < 0.05).

The fingerprint data also replicates that from the
Identification task, as shown in Fig. 9. In the right hem-

isphere, the experts show a delayed N170 component for

the inverted fingerprints relative to upright fingerprints

(t(3) = 3.23; p < 0.05). The results in the left hemisphere
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vertical scales.
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produced a similar delay, but did not reach significance

(t(3) = 2.71; p = 0.073). The novices show virtually iden-

tical latencies for upright and inverted fingerprints in

both the right (t(3) = 1.6, n.s.) and left hemispheres
(t(3) = 1.97, n.s.). The data from the experts begins to

separate as early as 120ms, while the novice data re-

mains together until about 200ms.

No significant effects were found in any of the ampli-

tude data for either group of subjects. This is not sur-

prising given the inconsistency of amplitude effects in

the literature.

We chose not to analyze data at later time intervals.
The N170 component is thought to reflect elements of

perceptual processing, and establishing differences be-

tween experts and novices at the level of this component

demonstrates that at least part of the elements of exper-

tise lie in perception. This is an important conclusions

since the results of Experiment 1 could be linked to bet-

ter memories or strategies on the part of experts. While

later components also may show differences, it will likely
require experiments with additional conditions to fully

identify the nature of the differences, and thus the later

components are beyond the scope of the present article.
3.4. Discussion

The delayed N170 components for inverted finger-

prints seen only in experts are consistent with configural
processing of upright fingerprints. In particular, we find

that the delay effects with fingerprints is found in the

same general EEG components as those found with

faces, suggesting that some of the same neural processes

involved in expertise with faces may be recruited for fin-

gerprints. These effects occurred mainly in the right

hemisphere (where our face effects were also largest),

and is consisting with other cognitive neuroscience find-
ings that suggest that holistic processing and expertise

effects are often larger in the right hemisphere (Gauthier

et al., 2003; Gauthier & Tarr, 2002; Gauthier et al.,

1999, but see Rossion et al., 2002 for left-hemisphere

training effects). In conjunction with the mathematical

modeling results of Experiment 1, this research provides

converging evidence to suggest that experts have

adopted a different form of processing when viewing up-
right fingerprints. This representation appears to include

at least local relational information of the kind that pro-

duces dependencies between individual features such
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that they begin to be affected by the context in which

they are presented.

Several authors have proposed different models of the

nature of the representation that supports configural ef-

fects. Maurer et al. (2002) suggests that both first order

and second order relations are important, with the met-
ric information provided by spacing especially relevant

for faces. A slightly different view was proposed by Ros-

sion and Gauthier (2002), who stress distinctive local

relational information or an alternative model that relies

on local overlapping holistic templates. A single holistic

template that does not represent individual features

seems implausible.

The present study suggests that local feature relations
are sufficient to produce configural processing, since

Experiment 1 used fingerprint fragments rather than

whole fingerprints, and found evidence for configural ef-

fects with observers. More importantly, many of the

important features such as bifurcations and ridge end-

ings are found in idiosyncratic locations in the frag-

ments. Thus experts cannot have pre-manufactured

templates that code relational information as in tem-
plate match models. Instead, experts seem to possess

the ability to quickly encode novel relational informa-

tion once the features have been identified. This process

must occur relatively quickly, since the features were

only visible for 1s prior to the mask. In addition, the ex-

perts have the ability to maintain this relational infor-

mation in memory, which is hard since metric

information resists verbal redescriptions.
The delayed N170 to inverted stimuli has been argued

as a signature of configural processing in the literature

(see Rossion & Gauthier, 2002 for review), but this

raises the question of why the absence of configural

processing should produce a delayed N170. A more

appropriate interpretation might be that an upright

stimulus produces an earlier N170 component, through

either faster propagation of signals or more likely more
neurons become active simultaneously. Distinguishing

between advancement or delay hypotheses will require

additional data. However, regardless of the neural

mechanism, the latency differences for fingerprints with

our experts demonstrate that they process upright and

inverted stimuli differently, and the evidence from the

face literature suggest that experts process upright fin-

gerprints in a qualitatively different fashion, one in which
the image is viewed as a gestalt rather than as collections

of individual features. The present findings continue the

theme of the development of expertise through acquisi-

tion of configural processes.

Evidence for inversion effects producing qualitatively

different processing is based in part on interpretations of

the delayed N170 effect as described in the literature,

and links to behavioral work that suggests that upright
faces are processed configurally (Farah et al., 1998;

Freire, Lee, & Symons, 2000; Leder & Bruce, 2000;
McKone et al., 2001, 2003). Work with patients has also

suggested an isolated configural mechanism (Moscov-

itch, Winocur, & Behrmann, 1997). While a wide con-

sensus is evident in the literature in support of

configural processing in upright faces and the evidence

is viewed by many as overwhelming, two contradictory
views have recently been raised and should be noted.

Sekuler, Gaspar, Gold, and Bennett (2004) measured

classification images for upright and inverted faces in

an identification task, which treats individual pixels as

features and computes the regions that are most affected

by adding noise. These regions are then inferred to be

the features that are used by observers when making

identifications. This process assumes a linear template
that has no dependencies between features (pixels),

and therefore acts as a null hypothesis for non-linear

templates (i.e. configural processing). While perform-

ance was worse for inverted faces, the authors used the

relation between efficiency and classification images to

conclude that these differences were quantitative rather

than qualitative. Thus if there are configural effects, they

appear to be the same for upright and inverted faces.
These results may be a function of the specific paradigm

used in classification images, which involves only two

faces and tens of thousands of trials, during which the

observers may begin to process the images differently.

For instance, they may begin to treat both the upright

and inverted images as templates, processing both holis-

tically. This suggestion remains speculative, however.

A second critique of at least one of the paradigms
that have addressed holistic effects is by Wenger and

Ingvalson (2002, 2003). Using a multidimensional exten-

sion of signal detection theory, they were able to link

superior performance for upright faces reported by Far-

ah et al. (1998) to criterion shifts rather than improve-

ments in sensitivity when a feature is presented in its

correct context. This suggests that subjects are not

processing faces at a holistic level perceptually, but in-
stead are using information from other features to alter

their decision. Our delayed N170 component is thought

to represent a visual processing stage, and thus it is less

clear how decision biases might affect this process. How-

ever, there remains the intriguing possibility that the

biases may have a perceptual locus.

It is not clear how far either criticism generalizes to

the broad range of configural effects discussed in the lit-
erature, and clearly converging evidence may help delin-

eate the processes that underlie configural effects. One

issue that the two preceding examples illustrate is that

configural effects may depend on the task used to assess

them. Fingerprints may represent a fairly clean stimulus

set because novices lack familiarity while experts have

extensive training at the subordinate level. In addition,

our Experiment 1 paradigm had no contradicting cues
as in the Farah et al. (1998) designs and no inverted

stimuli, and our Experiment 2 data showed latency
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differences with both tasks with very early time-course

differences that are difficult to explain via decision mech-

anisms as in Wenger and Ingvalson (2002, 2003) unless

some form of rapid feedback from higher cortical areas

is involved (e.g. Ahissar & Hochstein, 2000). Thus the

criticisms raised by the above examples cannot directly
explain our results as less efficiency for inverted stimuli

or interactions at decision stages.

A recent debate has emerged in the literature as to

whether the delayed N170 effect supports a domain spe-

cific account of faces (Bentin & Carmel, 2002; Carmel &

Bentin, 2002) or represents subordinate-level expertise

and that any well-learned stimulus will produce the

effect (Rossion, Curran, et al., 2002). The central issue
seems to be whether the same neural substrates that

are used to process faces are also recruited for other

stimuli. Face-like responses have been observed in re-

sponse to training (e.g. Gauthier et al., 2000; Tanaka

& Curran, 2001) are sometimes found in similar but

not precisely the same regions that produce robust face

responses (Rossion et al., 2002). The most direct evi-

dence comes from Gauthier et al. (2003), who showed
interference between a face and a car task for experts,

suggesting that the same neural areas were subserved

by both. The Experiment 2 results lack the large number

of channels that are required to do precise localization,

but the fact that we observe N170 delayed response in

the same channel for both faces and fingerprints in ex-

perts suggests that similar neural mechanisms are at

work. It will probably require the specificity of single-
cell recording to fully resolve the issue of whether face

neurons can begin to represent other stimuli through

training. However, we find similar effects in the same

channel with faces and fingerprints (which are very un-

like faces), and we interpret this as more consistent with

a subordinate-level account. We are currently exploring

this issue with a larger EEG recording setup to identify

the precise locus of learning and the present conclusions
about domain specificity must be tentative.

A strength of EEG recording is that it has excellent

temporal acuity, and thus we have at least an upper

bound on when a process has completed. Given the data

shown in Figs. 8 and 9 for experts, we see that their

voltage data begins to show differences as early as

130–150ms and certainly by 180ms. This timecourse

places constraints on what kind of cognitive processes
might contribute to the N170 component. Surprising

events that require context updating often show large ef-

fects only at later components such as the P300 or N400.

This latency information, paired with the spatial locali-

zation of the N170 to the parietal/temporal region (Hen-

son et al., 2003; Horovitz et al., 2004; Itier, Taylor, &

Lobaugh, 2004; Rossion et al., 1999) suggests that the

N170 represents perceptual processing rather than later
decision mechanisms. This is particularly relevant to our

expert data, since it seems unlikely that our latency dif-
ferences result just from the experts noticing that the

stimuli are inverted (this would have produced latency

differences for our novices as well) or demand character-

istics on the part of our experts.
4. General discussion

The results from these two experiments provide

some initial evidence for the nature of expertise among

fingerprint experts. First, as one might expect, experts

perform much better than novices in the behavioral

task in Experiment 1. More surprising is their robust-

ness against the delay, and this suggests that one reason
they perform so well is that they are better able to en-

code the visual stimulus into a more durable storage

that resists decay over time. Part of this facility may

arise from a knowledge of which aspects of the features

are relevant. Note that our stimuli are constructed in a

way that paired similar features at test. Experts might

focus on that information that distinguishes individual

exemplars of a feature type, while novices might try
to remember the kind of feature presented (lacking

the ability to discriminate between features within a

type). Thus even though the experiment procedures

were described and the construction of test pairs was

explained to both groups of subjects, experts may have

been performing a within-class identification procedure

while novices may have inadvertently been performing

a between-feature classification task. The ability to en-
code and discriminate within-class exemplars is one

form of expertise and this principle may apply here as

well.

The evidence for configural processing as revealed by

multinomial modeling in Experiment 1 was supported

by the ERP results of Experiment 2, which also suggests

a perception component to the fingerprint expertise,

rather than just better memory or strategies on the part
of experts. While the data from both experiments is in

agreement with prior studies of expertise (Rossion

et al., 2002; Tanaka & Curran, 2001), the present work

suggests that if relational information subserves the con-

figural effects, then this relational information must be

quickly computed from features at idiosyncratic loca-

tions on the print. Within the literature there is some

question of whether the delayed N170 represent a signa-
ture of configural processing of the upright, well-learned

stimulus, or some other kind of expertise such as faster

processing of familiar stimuli. That is, well-learned stim-

uli need not be processed in a configural manner, and

there are some recent suggestions that the interactions

are taking place at the decision stage (Wenger & Ingval-

son, 2002, 2003). The combined evidence from Experi-

ments 1 and 2 point to a configural process that
underlies the delayed N170 effect, at least in our finger-

print experts.
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The data in support of configural processing in ex-

perts comes only from the noise-added conditions of

Experiment 1, while full clear images were used in

Experiment 2. These methodological changes were

made as a result of the procedural requirements of

the inversion test in EEG recordings. It is perhaps
not surprising, however, that experts show configural

processing when presented with noisy images, given

that latent prints are often corrupted by noise not

associated with the fingerprint texture. The fact that

we find configural processing even with fingerprint

fragments suggests that this is a robust phenomenon

among experts.

Our tasks were deliberately abstracted from the ac-
tual task of latent/tenprint matching, and care must be

taken to specify exactly how far we wish to generalize

our results to the actual task of fingerprint examina-

tions. One topic that is under current discussion in le-

gal settings is whether testimony from fingerprint

examiners should be allowed in court, or whether ju-

ries should simply be given fingerprint evidence for

evaluation and allowed to draw their own conclusions
(e.g. US vs. Byron Mitchell). Central to this debate is

whether fingerprint experts possess perceptual abilities

not found in novices. The results of both experiments

suggest that on tasks that are related to actual exam-

inations, experts do in fact show qualitative differences

as well as overall better performance on behavioral

tasks. These differences extend to the neural signature

of the perceptual processing of the stimuli. Whether
these differences translate to better accuracy when it

comes to actual fingerprint identifications is an open

question, since we did not test latent/tenprint matches.

However, it seems unlikely that the qualitatively differ-

ent processes exhibited by experts would make them

less accurate than novices at identifications, and there

are lots of plausible perceptual mechanisms that sug-

gest that experts would show improved identification
performance as a result of the differences revealed by

these experiments.

This research still leaves open the question of what

features, detail or information experts use when

matching fingerprints. That we have not addressed this

may not be surprising given that researchers in the

face recognition literature are still working on what

constitutes a feature or the basis functions that de-
scribe a face. In some sense the finding of configural

processing complicates matters, because configural

processing implies dependencies between features that

must be considered and a simple model that assumes

independence among features will likely fail at some

point. A complete approach will likely involve a com-

bination of behavioral testing, eyemovement recording,

cognitive neuroscience experiments and mathematical
modeling. These approaches remain active topics in

our research program.
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