urothelial cancer; and patients with weak immune system caused by cancer, AIDS, or bedridden patients. Oral candidiasis can lead to ulcer, burning sensation of buccal cavity particularly in premature infants, geriatric patients, and patients with AIDS.

Methods: For the purpose of this study, we enrolled all patients who were treated with Fluconazole by two different regimens in the time period from inception till Jan 2014. We compared health coverage features, oncology coverage decisions, and reached the target (10,000 mammography examinations annually). Most of the mammography centres are not able to comply with professional guideline.

Conclusion: Malignant melanoma is found to be a rare but deadly disease in Taiwan. One reason for low survival probability was that farmers delayed the diagnosis to old age. It is suggested to screen farmers in early age.

PCN46

TIME TO REIMBURSEMENT FOR ONCOLOGY AGENTS FROM EMA MARKETING AUTHORIZATION TO INDUSTRY APPROVAL AS “C(NN)” CLASS VERSUS AIFA APPROVAL AS “A” OR “H” CLASS

Monsson J1, Martin de Bustamante MA2, Beckerman R1

1CBPartners, New York, NY, USA; 2CBPartners, San Francisco, CA, USA

Objective: The purpose of this study was to evaluate the reduction in average market entry timelines for oncology agents in Italy if approved by AIFA as “C(NN)” class (non-negotiated class under the 189/2012 law) as compared to “A” (fully reimbursed) or “H” (hospital reimbursement). Methods: For the purpose of this study, only the approval of the agents’ first indications were taken into consideration. Included in this study were C(n) oncology agents approved between May 27, 2013 and February 27, 2014 (afibetuximab, pertuzumab, enzalutamide, vismodegib, daratumumab, daratumumab-poda, and radegast; radicicol, trastuzumumab emtansine) and class “A”/“H” agents approved between May 27, 2010 and December 2, 2013 (everolimus®, denosumab, pazopanib, cabazitaxel, daratumumab, abemaciclib, vemurafenib, veltuzumab, varizyme). In the analysis, market entry was defined as the time point when approval was calculated as the average difference between the date of issue of EMA marketing authorization and the determination date (“determino”) in the Italian “Gazzetta Ufficiale”. Results: The average reimbursement timeline for the 7 agents from EMA marketing authorization to AIFA approval as “C(NN)” class was estimated as 111.3±39.9 days (n=12), while the average time to reimbursement as either “A” or “H” class was estimated as 428.3±100.9 days (n=9). This represents a significant reduction of 75% in the process (unpaired t-test, p<0.01), where on average, the C(n) approval process is faster by 317 days. Conclusions: This study shows that time to reimbursement for oncology agents from EMA marketing authorization to AIFA approval is significantly expedited through the use of “C(NN)” classification, reducing market entry timelines by nearly a full year (317 days) compared to the regular “A” or “H” class approval process. Pharmaceutical companies seeking expedited market entry into Italy for a newly approved oncology therapy targeting an area of high unmet need should therefore consider applying for C(n) class.

PCN47

QUALITY CONTROL OF THE HUNGARIAN NATIONWIDE MAMMOGRAPHY SCREENING PROGRAMME

Boncz I1, Endrei D2, Agoston I1, Vajda R1, Csákvári T2, Kovács G3, Sebestyén A4

1University of Pécs, Pécs, Hungary; 2University of Pécs, Pécs, Hungary; 3University of Pécs, Pécs, Zalaegerszeg, Hungary; 4Északnyugati Üniv. Szak- és Egészségügyi Útdoktori Ismeretek, Győr, Hungary; 5National Health Insurance Fund Administration, Budapest, Hungary

Objective: Organised, nationwide screening for breast cancer with mammography screening coverage features in the age group 45-65 years with 2 years screening interval started in Hungary in January 2002. According to the Hungarian guideline on mammography screening, an accredited mammography screening centre should perform 10,000 examinations annually. The aim of this study is to analyze the quality control indicators of this mammography programme. Methods: The data derive from the financial database of the National Health Insurance Fund Administration (NHIFA) covering the period 2002-2010 year. We analysed 3 selected years: 2002, 2005 and 2010. The main indicator was the number of mammography screening examinations performed by the mammography screening programme. Results: The annual number of mammography examinations was 323537 in 2002, 247045 in 2005 and 242601 in 2010. The number of accredited mammography screening centres were 51 (2002), 41 (2005) and 40 (2010). The average number of mammography examinations were 6344 (2002), 6025 (2005) and 6065 (2010) per year. In 2002, 14 mammography centres performed 10,000 examinations in a range from 10314 to 25940. In 2005 only 4 mammography centres achieved more than 10,000 examinations per year (range: 10294-17845). In 2010 again only 4 mammography centres achieved more than 10,000 examinations per year (range: 10239-17295). Conclusions: Only a few mammography centres met the recommendation of the Hungarian mammography screening guideline and reached the target (10000 mammography examinations annually). Most of the mammography centres are not able to comply with professional guideline.

DIABETES/ENDOCRINE DISORDERS – Clinical Outcomes Studies

FDI81

INCRE Tin THERAPY AND RISK OF PANCreatITIS IN TYPE 2 DIABETES MELLITUS: SYSTEMATIC REVIEW OF RANdomized AND NON-RANdomized STUDIES

Lu L1, Shen Y2, Bala MT3, Russe NW4, Ebrahim S5, Vandvik PO6, Risoo LF7, Malaga G8, Wong PS9, Solini Z10, Gyllay GH11, Sun X12

11University of Iowa, Iowa City, IA, USA; 2Chulalongkorn University, Bangkok, Thailand; 3University of Melbourne, Parkville, Victoria, Australia; 4Aarhus University, Aarhus, Denmark; 5University of Oxford, Oxford, UK; 6Oxford University, Oxford, UK; 7University of Oslo, Oslo, Norway; 8I2P2, Madrid, Spain; 9University of Manchester, Manchester, UK; 10University of Bern, Bern, Switzerland; 11Geisinger Health System, Danville, PA, USA; 12University of Melbourne, Melbourne, Victoria, Australia

Objective: To update the incidence, prevalence, and survival probability in the whole population in Taiwan. Methods: This study utilized the 2005 to 2011 National Health Insurance Research Database to study the disease. Inclusion criterion was that patients had at least two outpatient visits or one inpatient stay for influenza (ICD-9 code: 487). Patients’ medical orders for outpatient visits and inpa-