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1. Iti~R00u~TloN 

Let G be a semi-simple, simply connected Chevalley group over a field K. 
Fix a maximal K-split torus T in G, a Bore1 subgroup BI> T. Let W be the 
Weyl group of G relative to T. Let Q be a parabolic subgroup (Z B) of 
classical type (cf. [ 121 or [ 13]), say Q = fly=, Pk,, where Pk,, 1 < t G d, is a 
maximal parabolic subgroup of classical type. For w E W;i W,, let X(w) 
(= BWQ (mod Q) with the canonical reduced structure of a scheme) 
denote the Schubert variety in G/Q, associated to NJ. Given 
m = (mk, , rnkl,..., mkJ) E (Z + )“, the notion of “standard Young diagrams” 
on X(w) of type m (or degree qz) was introduced in [13] (also see 11123 
and Section 2) and an explicit basis for @‘(X(w), L) (where 
L = Of-1 L;(:irl, L,,, 1 < t < d, being the ample generator of Pic(GjP,,)), 
indexed by standard Young diagrams of type m, was constructed in [13] 
(see also [ 123). If G = SL, and Q = B, then this notion, in fact, coincides 
with the classical Hodge-Young notion of standard Young diagrams on 
the flag manifold SL,,/B (cf. [S]). In [13], the classical notion was 
generalized to the notion of “weakly standard Young diagrams” on X(w) 
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(cf. Section 2). It should be remarked that Young diagrams standard o 
X(W) are weakly standard (cf. [13, Remark 12.21). It turns out that the 
two notions coincide on X(W) = G/B (or G/Q), G being of type A,, 
C,. But for G of type D,, one finds that even for the big cell X(W) - 
the two notions are different. In fact even for G of type Dq, I 
m = (1, 0, 1, l), one finds that dim p(G/B, L) = 350, while there 385 
weakly standard Young diagrams of type (1, 0, 1, 1). Again, one observes 
that even though for SLJB, the two notions coincide, it is not so for 
Schubert varieties in SLJB. As an example, if one considers X(W) c S 
where w= (312)(~S,), then one finds that if m = (1, l), 
dim P(X(w), L) = 5, while there are six weakly Standard Young diagrams 
of type (1, 1) on X(W). 

Now, one natural question that arises is the following: 

(*) Let G be of type A,, B,, or C,. Is it possible to characterize the 
Schubert varieties in G/B (or G/Q) for which the two notions of Young 
diagrams being standard coincide? (here it is irrelevant to consider D,, 
since, as remarked above, even for the big cell (G being of type D,) the two 
notions are different). 

One part of this paper is to answer (*). In [K], Kempf gives a 
desingularization of Schubert varieties in the Crassmannian by means of a 
certain class of smooth Schubert varieties in the fiag manifold SLJB. These 
Schubert varieties were generalized in [ 101 to the case of G/B, G being a 
classical group and B a Bore1 subgroup, and were called Kempf varieties. 
These were defined in [lo] by giving an explicit description of the 
corresponding w’s. These may be geometrically described as follows: Let 
B = P,, be the maximal parabolic subgroup of G obtaine 
(note that P is of the same type as G). A Schubert vari 
Kempf variety if and only if under the canonical morphism G/lB + 
morphism n lx: X -+ Im X is equidimensional and Xn P/B is a Kempf 
variety in lower rank. In Section 4, we prove (cf. Theorems 4.5 and 4.10) 
that G being of type A,, B,, or C,, on a given Schubert variety X(-(w) 
(in G/B), the two notions of Young diagrams being standard coi 
and only if X(W) is a Kempf variety. This leads to the notion of a 
variety in G/Q (Q being a parabolic subgroup), namely, call X(W) (m 
a Kempf variety, if the two notions of Young diagrams being stand 
coincide (cf. Definitions 4.6 and 4.11). 

The other part of this paper deals with proving the lexicographic 
shellability of certain partially ordered sets associated to Schubert varieties. 
Given a graded partially ordered set H (i.e., a frnite partially ordered set 
which has an unique maximal (resp. minimal) element and in which all 
maximal chains have the same length) the notion of lexicogra 
shellability for H (cf. [l] or [2]) consists in labelling the maximal chains 
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in H by elements of some partially ordered set SL such that certain proper- 
ties hold (cf. Section 3 or [ 1] or [Z]). Given w E W and a d-tuple, 

(k) = @I > h,..., kd), 1 <k, <k,< ... <k,<n (= rank of G), 

let 

Z$’ = { 7 g w(k,‘, 1 d t < d/z f projection of w on W/ Wk,} 

(here Wcko denotes the set of minimal representations (cf. Section 2) of 
W/W,(, where Wki is the Weyl group of the parabolic subgroup Pkl). We 
then define a partial order on Z, tk) (cf. Definition 2.7) and prove (cf. 
Theorems 3.12 and 3.14) that Z$) is lexicographic shellable. As an impor- 
tant consequence we obtain the result that the multicones over Kempf 
varieties in G/Q (G being of type A,, B, or C,) are Cohen-Macaulay 
(cf. Theorem 6.8). To prove this, one first deforms the ring 
Rv= @Lao @(X(w), L) (successively by flat deformations) using the 
explicit basis for R, as given in [ 133 (see also Section 2) and one arrives at 
Ref, which (for X(w) being a Kempf variety) turns out to be an algebra 
with straightening law (cf. [S] or [7]) on a partially ordered set Hf) (cf. 
Definition 6.4) (here (k) is given by (k) = (kl,..., kJ, where Q = nf=, Pk,) 
such that the simplicial complex A(@,?)) (of chains in Hi:)) is a subdivision 
of d(Zg)). Thus the problem of Cohen-Macaulayness for R,, is reduced to 
the problem of Cohen-Macaulayness for K{ZL?) (cf. Section 2; given a 
finite partially ordered set H, K(H) stands for K[x,, a E H]/(x,x~, tl and 
/I not comparable) and it is a general result (cf. [S] or [7,]) that a 
K-algebra B with straightening law over H is Cohen-Macaulay if K(H) is). 
Now one concludes the Cohen-Macaulayness for K(ZE)} using the 
lexicographic shellability property of Z$). 

For an arbitrary X(w) (in G/Q), even though Zz) turns out to be 
lexicographic shellable (cf. Theorems 3.12 and 3.14), this information does 
not help in concluding the Cohen-Macaulayness for R$% In fact, in [9], 
we tackle this problem by studying the ideal theoretic unions and intersec- 
tions in Rd,“f. 

The paper is organized as follows. 
In Section 2, we deal with preliminaries, wherein we recall results concer- 

ning the Weyl group, reduced expressions for elements of W, the two 
notions of Standard Young diagrams on X(w), algebras with straightening 
laws and lexicographic shellability. In Section 2, we also introduce the set 
z$, w E w. 

In Section 3, we prove the lexicographic shellability for Z$) (cf. 
Theorems 3.12 and 3.14). 

In Section 4, we prove that on a given X(w) in G/B, the two notions of 
Young diagrams being standard coincide if and only if w is a Kempf 
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element (G being of type A,, B,, or C,) (cf. Theorems 4.5 and 4.10). Then 
we introduce the definition of a Kempf variety in Gf , where Q is any 
parabolic subgroup (cf. Definitions 4.6 and 4.11). 

In Section 5, the deformation is carried out and R, is deformed into 
(by successive flat deformations). 

In Section 6, we define the partially ordered set Hi!) and we prove 
when X(w) is a Kempf variety in G/Q, 41:’ is an algebra with straighte 
law over HL!) ((k) = (k, ,..., kd) being given by Q = Of= 1 Pk, 
results of Section 3, we conclude that R$’ (and hence 
Macaulay. 

2. PRELIMINARIES 

Let G be a semi-simple, simply connected Chevalley group over K (K 
being the base field), T, a maximal K-split torus, and Is a 
containing T. Let 

W = Weyl group of G relative to T 

R = Root system of G relative to T 

S= System of simple roots of R relative to B. 

Throughout the paper we shall order the simple roots as in [33. 
We first start with recalling some generalities on W. 
The set WJ. For a subset Js S, let W, denote the subgroup of W 

generated by the reflections with respect to the simple roots belonging to J. 
Then the set of representatives of W/W, given by {NJ E W/Z(ws,) > t(w), 
LX E J> shall be called the set of minimal representatives of W/W, and shall 
be denoted by WJ. When J= S- {cli), for some @i E S, we shall denote aiso 

by W(j) and W, by Wi. 
Reduced expressions. For aj E S, let si denote the reflection with respect 

to ai. Then, W is generated by (si> 1CiGn, where n=rk(G) (cf. [34). For 
w E W, an expression w = silsiz .‘. sg is called reduced if w cannot be 
expressed as product of s (simple) reflections with s< Y. The number 
reflections in a reduced expression for w is called the length of w, denot 
by 4~). 

Schubert varieties. Given a parabolic subgroup Q 2 B and w E W/ WQ, 
let X(w) denote BwQ (mod Q) with the canonical reduced scheme struc- 
ture. The variety X(w) is called the Schubert variety in G/Q, associated to 
WE WfWQ. 
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Partial order on W/We. Given w, TE W/W,, call w>r, if X(w)=,X(z) 
(in G/Q). 

It can be easily seen that given w, r E W/W,, w >, r if and only if projec- 
tion of w on W/W, is 3 projection of z on W/W,, for every maximal 
parabolic subgroup P containing (2. 

Next, we want to interpret these results for W= W(SL,), W(Sp2J, etc. 
Weyl group of SL,. It is well known that Weyl group of SL, may be 

identified with S,. Ordering the set of simple roots as in [3], it can be 
easily seen that 

1 

(1) l<ii<i,< ..* <id<n 

(iI ,..., i,, id+ 1 ,..., i,) E S (2) (i d+ I,.*., i,) = C ( iI ,..., id} 
n in Cl,..., TZ} arranged in 

ascending order i 

(observe that for a w in W@’ as above, w(q) > 0, j# d, in fact, 
~(e,~-- ej+ i) = eii - e,,+l (cf. [ 141, for instance)). In particular, we see that 
Wed’ could be identified with { (iI,..., id)/1 6 ii < iz < . . . < id 6 FZ>. Under 
this identification the partial order in Wed’ is given by 

(iI>..., id) 3 ( j, ,..., j,) 

if and only if ik > j,, 1 d k < d. In particular, for two permutations 
~=(a, . ..a.), z=(b, . * . b,) in S,, we have w > z if and only if, for every d, 
1 <d<‘n - 1, the d-tuple (a, ,..., ad, arranged in ascending order) 3 the 
d-tuple (b, ,..., b, arranged in ascending order) (as elements of Wed’). 
(Observe that for 1 6 d < n - 1, the d-tuple (a, ,..., ad) gives the projection of 
w on W/W, under W-+ W/W,.) 

Weyl groups of Sp2,, and SOzn+ 1. If G = Sp2,, or SOz,+ 1, then W(G) 
can be identified with a subgroup of S,, (resp. Szn+ 1) as follows. Let 

El = 

1 

1 
-1 

-1 

-1 
2nx2n 



A CHARACTERIZATION OF KEMPF VARIETIES 57 

and 

Then Sp2n can be identified with {A E SL211/‘AE, A = E, ) and SOz,, 1 can 
be identified with {AESL,,+,/‘AE~A= E,} (cf. [143). Also, W(Sp2,) can 
be identified with 

{(a1a2... %)EJL/%+l-ii= 2n+1-aj,l<&n) 

and J@‘WL + 1 1 can be identified with 

i (4 ~..%7+1)E&,+1 1 
(1) 4+1 =n+l 
(2) a2n+,Pi=2n+2-a,, I Gi5Z.n I 

(cf. Cl411 

In particular we see immediately that W(Sp2,,)z W(SO,, + 1 )~ XE 
w = (a, . ’ . azn) E W(Sp2,) then it is obvious that (a,, 1,..., azn) is uniquely 
determined by {aI ,..., a,}. So, we may as well denote w by just (aI ... a,). 
Further we have 

PROPOSITION 2.1 (Cf. [ 15, Theorems 5A and 5BCJ). Under the above 
identification of W(Sp,,) (resp. W(SO,,,,)) with a subgroup of W(SL,,,), 
the partial order on W(Spzn) (resp. W(SO,,+ 1)) is that induced from the 
partial order on W(SL,,) (resp. W(SL,,+,)). 

Remark 2.1’. (a) From Proposition 2.1, we see that W(SQ,, + i ) 
together with the canonical partial order, may be identified with W(Sp2,) 
together with the natural partial order and in the following we shall use 
this identification. To be very precise, since our results (cf. the sets Z,, Zt!), 
the lexicographic shellability of Z,, Z,(,$), etc.) relate only to the partial 
order in W, proving them for W(Sp,,) would imply proving them for 
W~SO,n,l). 
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(b) If r = (ai ,..., a,), q6 = (b, ,..., b,) are two elements of W(&J, then 
r<q5 if and only if, for every l<i<n, {u , ,..., ai, arranged in ascending 
order) Q (bi,..., 6,, arranged in ascending order}. 

Remark 2.2. Under the above identification of W= W(Spzn) with 

UWW* a*n)ES2*/a2n+l-j=2n+l-Ui, l<idn} 

it can be easily seen that W’(d) (for 1 < d< n) can be identified with 

(1) l<i,<i,< ... <i,<2n 
(2) Ifke {i1, i2 ,..., id}, then2n+ 1 -kg {il, i, ,..., id) 

(this is because this set can be identified with 

{ (il . . . id jd+ 1 ’ . * j,) E W(Sp*,), where (il ,..., id) 

is as above and (j,, 1,..., j, ) = the first (n-d) elements in C (iI,..., i,, 
i; ,..., i;) in (1, 2 ,..., 2n) arranged in ascending order (where for 1 < Y < 2n, r’ 
denotes 2n + 1 - r). In particular, we have j,,, < ... <j, < FZ. Now if 
w E the latter set, then we have 

(1) w(ek-ek+l)>O, if k+l<dork>d-tl 

(2) w(2e,)(=2ejn) > 0, if d<n 

(note that if d < n, then j, < n so that w(2e,) > 0 (refer to [14, Sect. 31 for 
details); also note that if WJ = WCd), then J= S - {a,}, where 
~,=e,--e,+l, t dn - 1 and IX, = 2e, (cf. [3] or [ 143)). Thus such w’s 
belong to WCd) and conversely. 

Next we want to recall some results from [lo]. Let G be of type A,, B,, 
or C, and that 

U~=S,“‘Sj+,Si, if G is of type A, 
=Sj”‘S,_1S,“‘Si+lSj, if G is of type B, or C,. 

Then recall (cf. [lo, Propositions A.l, B.l, Cl, and A.181). 

PROPOSITION 2.3. Lt?t w E W. Then a reduced expression for w is given by 
w= W1W.2”‘W,, where wi, 1~ idn is either Id or a right (hand)-end 
segment of ui. 

Remark 2.4. Given w = w1 w2 .. . w, (as in Proposition 2.3 above), the 
projection of w on W/ Wi, 1 < i < n, is given by w1 w2.. . wi (obvious). 
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FROPQSITION 2.5 (i) Let G be of type A,. Then for 1 <d< II, 

(1) wj=Id, 

/ (2) Z(w,) d QWj+ 11, 

(ii) Let G be of type B, or C,. Then, for 1 < d< n, 

(1) w,=Id, j>d 

(2) ICwj) G ICwj+ 1) (or) l(Wj+ 1) + 1 according to whether 
Wj+l <S,“‘Sj+l (or)>s,...s,+l, respectively, 
16jdd-1. 

Proof (i) Let WE ?Vd), say w = (a, ,..., a,), where 1 G a, < a2 K . . < 
add N. Then it is easily seen that w = w1 w2.. . wd, where wk = sjk.. . sk + I sk 
(where ,jk = ak - 1) if ak > k and wk = Id, if (I~ = k, from which (i) follows. 

(ii) Let w E Wd), say w = (a, ... atl)(as in Remark 2.2). Then 
w=wl wz”’ wd, where wt, 1 < t < d, is given as follows. 

Let k be the largest integer <d such that ak <n. Then (as in (i)) it is 
easily seen that for t d k, w, = s,, _ 1 . . s, or Id according to whether a, > i 
or a, = t. Now let m be such that k <m <d, so tha.t a,,, = 8 for some I< p2 
(where r’ = 2n + 1 - r). Then it can be easily seen that, if a,- 1 < (r -I- 1 I’? 
then w,=s;~~s;~~s,; if a,,-,=(r+l)‘, a,_,=(r+2)‘,...,a,_,= 
(~+p)‘, amWp-, <(r+p+ l)‘, then w~=s,+~~~‘s;~‘s~, rvr-p< t6m, 
from which (ii) follows. 

Remark 2.6. (i) Let w E WC”‘, say w = w1 w2 I*. wd (as in Proposition 
2.5 above, G being of type A,,, B,, or C,). Then for t < d, wI w2.. ’ w, E WC”. 
(This following from Proposition 2.5.) 

(ii) Let w 6 WCd’ and assume W= W(SL,). Let w=w1w2”‘wd, 
where.w,=s,?...ss,+, I s or Id, 1 <r 6 d. Then as a d-tuple, w is given by 
w = ( j,j, ~ j,), where 

.j,=i,+ 1, if w,#Hd 

= r, if w,= Id. 

(A similar result can be stated for W(Sp2,) also.) 
The sets Ztk’ and Zc). Let G be of type A,,, B,, or C, and let the simple 

roots (or the maximal parabolic subgroups) be ordered as in [3]. Civen a 
d-tuple, (k) = (k, ,.‘., kd), 1 <k, <k, < . . < kd6 n, let 
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For w E W, let 

Z~)=(zEW (ki), 1 < t d dJz d projection of w on W/ Wki 

under W-, W/W!+). 

When (k) = (1,2,..., n), we shall denote Z@) (resp. Z’,“)) by just Z (resp. 
zv). 

DEFINITION 2.7. Given z, #E Z, say z = (ml ,..., m,), 4 = (tr ,..., t,), call 
r>,#,ifrdsandm,>t,, 1 f 1 f r (cf. [ 81). This obviously defines a partial 
order on Z. In terms of reduced expressions for z and C$ (cf. Proposition 
2.5), if r=zr’.‘z, and q%=qSi ... qS,, then r 3 4 (in Z) if and only if 
T1...T,>dl...gr ( as elements of W). In particular, if Y = s, this partial 
order is just the (canonical) partial order in WC”. Note that this partial 
order on Z gives rise to a partial order on Zfk’ and Z(w) (since Zy) c 
ZCk) c Z). 

Standard monomials on Schubert varieties (cfi [12] or [13]). Let Q be a 
parabolic subgroup of classical type in G (cf. [13], for definition of 
classical type parabolic subgroups). Further, let Q = Pk, n P,, n . . . n Pk, 
(1 dk, <k,< ... <k, < n), where Pk, is a maximal parabolic subgroup of 
classical type. (Recall (cf. [13]) that if G is a classical group, then every 
maximal parabolic (and hence every parabolic) subgroup of G is of 
classical type.) 

DEFINITION 2.8 (cf. [12] or [13]). Given m = (mki, mkz,..., rnkr) E 
(Z + )“, by a Young diagram of type m or multidegree m on G/Q (or W/We), 
we mean a pair (0, 6), where 8= (6,), 6 = (6,) and (e,, a,), iE {k, ,..., k,}, 
1 < j 6 mi, is an admissible pair in W/W,. (cf. [ 121 or [ 131 for definition of 
admissible pairs). (If m, = 0 for any t E (kI,..., k,), then the family 8,-, 6,- 
is assumed to be empty). 

DEFINITION 2.9. A Young diagram (0,6) is said to be a Young diagram 
on X(w) (or just w), where w E W/W, if 

w”‘>@~, ie {k, ,..., k,}, 1 < jdm,, 

where wCi) is the projection of w on W/ Wi under W/W, -+ W/ Wi, 

DEFINITION 2.10. A Young diagram (0,6) is said to be weakly standard 
if 

8 h3 >e >- 30 kll, kll/ k,2, >6 >8 >6 > . . . . klm, / k,ml .’ k21 y kll +. 

(as elements of Z (cf. Definition 2.7)). 
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DEFINITION 2.11. A Young diagram (0, 6) is said to be weakly ~~~~~~~~ 
on w, w E W/W,, if (0,6) is weakly standard and (8, 6) is a Young diagram 
on w. 

DEFINITION 2.12. A Young diagram (0, 6) is said to be standard if there 
exists a pair (a, p), which we call a dej%zg pair jiov (0, 6) such that 

(1) @=(a,j), B=(py), @ii, Pijg W/Wg, if5 (kl,..., k,), 1 Gjdmi. 
(2) Each c(~ (resp. /IV) is a lift for 0, (resp. 6,) under W/ WQ -+ W/W,. 

(3) c%,1>,8kil>~k,2> .‘. >~k,ml>flklml>~k21> .“(in w/w,). 

DEFINITION 2.13. A Young diagram (6, 6) is said to be standard on w, 
w E W/W,, if there exists a defining pair (a, /?) for (0, 6) with w 3 !$,l 
(in W/WQ). 

THEOREM 2.14 (cf. [12] or [13]). Let L=L;l@Lz@ ... @Lz, 
where Lk,, 1 < t < r, is the ample generator of l?ic(G/P,,). Given a Young 
diagram (Q,6) standard on w, w E W/W,, one can associate an element 
Pi?,6 E fw(W)> L) h?.s will be called a standard monomial on X(W)). 
Further, the standard monomials of deg y on X(w) form a K-basis for 
f-ww, L). 

Remark 2.15. Recall (cf. [13]) the following: 

(a) A Young diagram standard on w is weakly standard on w. 
(b) For X(w) = G/Q, G being of type A,, B,, C,, the two notions of 

being standard coincide. Also, for G = SL,, the weakly standard Young 
diagrams on G/B are nothing but the classical Hodge-Young standar 
diagrams (cf. [S]). 

(c) For G of type D,, even for the big cell G/B, the two notions are 
different. For instance, if G is of type D,, one linds that for m = (I, 0, 1, l), 
dim(p(G/B, L)) = 350, while there are 385 weakly standard Young 
diagrams of type (1, 0, 1, 1) on G/B. 

(d) Although for SLJB, the two notions of b ng standard coincide, 
the same is not true for Schubert varieties in SL, . For instance, if one 
considers X(w) (where w = (312)) in SL3/B, then one finds that if 
m = (1, 1), then dim H’(X(w), L) = 5, while there are six weakly standard 
Young diagrams of type (1, 1) on X(w). In fact one of the main results in 
this paper is the result (cf. Theorems 4.5 and 4.10) that G being of type A,, 
B,, or C,, on a given Schubert variety X(w) in G/B, the two notions of 
being standard coincide if and only if X(w) is a Kempf variety. 

Remark 2.16. Let (0,6) be a Young diagram on w. Further let (8, 6) be 
standard on G/Q. Let (CI-, p-) denote the (absolute) minimal defining pair 
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for (0,6) (cf. [ 13, Corollary 11.2’). Then it can be easily seen that (6, 6) is 
standard on w if and only if w > a; (note that X(a;) is the smallest 
Schubert variety on which (0,6) is standard). 

Algebras with straightening laws (cf. [IS] or [7]). Given a finite par- 
tially ordered set H and a base ring R, an ‘R-algebra B is said to be an 
algebra with straightening laws over H, if 

(1) B is Z+-graded with B,,= R. 

(2) B has a set of algebra generators {x~}~ E H 
(3) The monomials x,x~x,. . ., where cx 2 p > y > . . . (called the stan- 

dard monomials) form an R-basis for B. 

(4) Given a non-zero, non-standard monomial xzlxzz ... x7,, let 

(*I XT,&* -xTr=C ( )-G,&*..‘Xar 
(a) 

be the expression for xr,xr* . . . x,~ as sum of standard monomials. Then, for 
OE S, and for each (a) on the RHS of (*), (M~, a*,..., c(,) is 
lexicographically > ((I, CJ(Z~),..., ~(7,)). 

Whenever we are given an R-algebra B which is an algebra with 
straightening laws, then using the relations (*) in (4) (referred to as 
straightening relations), we can reduce B to the discrete algebra 

R(H) = R[x,, a E H]/(xolxp, CI and fl not comparable) 

by successive flat deformations (cf. [S] or [7]), so that it may be con- 
cluded that algebraic properties like B are normal, Cohen-Macaulay, etc., 
by knowing the same for R(H). For instance, if the base ring is Cohen- 
Macaulay and H has some nice properties (like shellability), one may con- 
clude that B is Cohen-Macaulay. 

3. LEXICOGRAPHIC SHELLABILITY 

Given a finite partially ordered set H which is graded (i.e., which has an 
unique maximal and an unique minimal element and in which all maximal 
chains (i.e., maximal totally ordered subsets of H) have the same length) 
the notion of lexicographic shellability for H may be defined as follows (cf. 
[l] or [23). The lexicographic shellability consists in labelling the maximal 
chains m in H, say A(m) = (A,(m), A,(m),..., A,(m)) (where r is the length of 
any maximal chain in H) by elements L,(m) belonging to some partially 
ordered set Q in such a way that the following two conditions hold: 

(Ll) If two maximal chains m and m’ coincide along their first d 
edges, where d is an integer, 1 d d< r, then A,(m) = A,(&), 1 d i < d. 
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(L2) For any interval [x, u]( = (z E H / x < z < JI I), together with a 
chain _c, going down from the unique maximal element in H to y, there is 
an unique maximal chain QZ, in [x, y] whose label is increasing, namely 
&(m,) < ml,) < . . < I,(gz,) (where t = length of [x, JJ]) (here the label 
for 3, is induced from the maximal chain of N consisting of_c, followed by 
WI,, followed by an arbitrary path from x to the unique minimal element of 
H) and if m is any other maximal chain in Ix, ~1, then A.(mo) is 
lexicographically <Qz). 

Our main result in this section is that the set 2::) (cf. Section 2) is 
lexicographic shellable. We first prove this result for’ the case G = SL,, 
(k) = (1, 2,..., n - l), w = the unique element of maximal length in I$‘. Next, 
we prove it for G = Spzn, (k) = (I, 2,..., n) and w = unique element of 
maximal length in W. Then we prove it for a general w and a general (k); 
the proof in the general case is quite analogous (but a little messy) to the 
case of w = the unique element of maximal length, the proof in the latter 
case being very explicit. 

THEOREM 3.1. Let G = SL,. Then the set Z = lJ;:/ IV@’ is lexicographic 
she&able (for the partial order on Z, as defined in Definition 2.7). 

Proof. Before proceeding to the proof of the above theorem, we shall 
show that Z looks like in the case of SL,. We shall exhibit Z by means of 
vertices and edges; the vertices are just the elements of Z and an edge is 
obtained by joining two vertices 4, T such that 4 covers 2, i.e., if q5 > T and 
there does not exist i E Z such that 4 > 3, > t. 

Z (in the case of SL,). 

W1)= ((0 (21, (3)) 
(23) (1) Wc2)= ((12): (13), (23)) 

1 As was pointed out by K. Baciowski, the proof of the lexicographic shellability in this case 
may be seen as a consequence of the corresponding poset being a distributive Lattice. But, 
nevertheless, we do give the details of the proof in this case, since the philosophy of the proof 
(for other cases) is explicit in this case. 

481/94/l-5 
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Covers in Z. Following [2], we shall denote a cover by Q -+ r (a cover 
will also be called an edge). A cover 4 -+ r in Z is either a cover in Wtd’ for 
some d (namely, when 4 and z both EW’~)) or of the form 
cj = (a, . . * ad) -+ z = (a1 . . .adn), where l<a,<a,< 1.. <ad<n. If $-+r is 

Cd) a cover in Z and if 4, r E W for some d, 1 <d < y1- 1, then this is 
equivalent to the condition that 4 > z (in WCd’) and I(r) = Z(4) - 1. (where 
forany8EW , (d) 1 < d 6 n - 1, Z(0) denotes the length of 0 considered as an 
element of W. Observe that Z(0) = dim X(0) (where X(0) C G/P,)). Now we 
embed Z inside W(SL, + 1) as follows. 

Define i: Z -+ W(SL, + r ) by sending 

(al . *. ad) --f (a, . ..a.(n+ 1) 6,..*b,) 

where (b, ,..., b,) = C (a, ,..., ad) in (l,..., n) arranged in descending order. In 
terms of reduced expressions, this could be described as follows. If 
W=WlW*“’ WdE fld), then i(w)= w1w2”. w&d+I”‘u,, where ui, 
l<i<n, is given by ui=sn..*s- z + r Si (in W(SL, + 1)) (cf. Section 2). The fact 
that the partially ordered set Z is bounded is clear, the unique maximal 
(resp. minimal) element in Z being (n) (resp. (123 . . . n - 1). The fact that 
any two maximal chains in Z have the same length can be easily seen. For 
instance, this fact may be concluded from the fact that a cover in Z con- 
tinues to be a cover in i(Z) and the fact that any two maximal chains in the 
interval [i((lZ... it - l)), i((n))] have the same length. (“A cover 4 -+ z in 
Z continues to be a cover in i(Z)” is obvious if 4, r E WCd) for some d, 
1 <d<n- 1; if I$E WCd) and ZE WCd+l), say ~$=(a,...a,), t= (a,...a,n), 
then i(4) = i(z) sd+, , where sd+ , is the transposition (d-t 1, d + 2) 
(in S,,,) and obviously i(4) covers i(z) in i(Z).) Now, proving 
lexicographic shellability for Z is equivalent to proving the same for i(Z). 

Lexicographic shellability for i(Z). Let w0 be the unique element of 
maximal length in W(SL, + r ) and let us take a reduced expression for w0 as 
wg=u~u*“‘u,. Now if v0 denotes i((n)), then it is clear that u0 = s,wO, 
so that a reduced expression for v0 may be taken to be 
vo= (se1 ~~~s2s1)u*u~~‘~u,. Starting with this reduced expression for vO, 
the maximal chains in i(Z) shall be labelled by the rule prescribed in [2] 
so that (Ll) is easily seen to be satisfied. 

Verification of (L2). Let ([z, $1,~) b e a rooted interval in i(Z). Further 
let r = i(zO), 4 = i(d,), where zO= (a, . ..a.), do= (b, ..* b4) for some 
q < j < n - 1 and a, < b,, 1 < t < q (in view of the partial order in Z, cf. Sec- 
tion 2). Then we have z=z~~~~z~u~+~~~~u,, ~=#l~.~~q~q+l*..~n, where 

rk = Id(namely if ak = k) or 

zk =sak-ll”sk+Isk (if a,>k), I<‘kdj 
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and 

#k = Id(namely if b, = k) or 

qGk=sbk-l~~~sk+lsk ifb,>k), 1 dkdq. 

(cf. Remark 2.6(ii)). In particular we have TV < 4k, 1 <k d n; in fact zk is a 
right-end segment of dk, 1 <k < n. Let then 4, = .si;). . ‘ $)$)z,, 1 < r <<i. 

Now going down from Q to 4 through the elements of i(Z) (in par- 
ticular, through the elements in _c) it is easily seen that we end up with the 
above reduced expression for 4. The required maximal chain in [T, c#] wit 
increasing label is given by 

where by w1 -+‘I w2 we mean w1 covers w2 and w1 = S, w2. (Here one shoul 
observe that all z[ ,’ E Z, in view of Proposition 2.5. Also, following [a], and 
edge 0 -+ Sz p is iabelled by the integer m, where m denotes the position of S, 
(in uO) that is dropped out in getting p from 0.) The fact that the above 
chain has increasing label is obvious. Now suppose k denotes the least 
integer such that zk < dk (observe that k < q + I), then in any other 
maximal chain, the first reflection that is dropped out occurs in 4, for some 
r > k. If Y > k, then at some point, one has to work with dropping out t 
reflections in dk and thus the corresponding label is not increasing and t 
corresponding label is (clearly) lexicographically > the above increasing 
label. Suppose r = k (we may assume, the corresponding chain has the first 
edge to be different from the first edge of the above chain with increasing 
label, by using induction on I( [z, b]), the proof for the starting point of 
induction, namely l(z) = E(d) - 1 (note that l( [z, 41) = 1(d) - i(z)) being 
trivial); then it can be easily seen that the element corresponding to the 
lirst edge has length <Z(d) - 1 and hence is not covered by 4. To make it 
very precise, if & = (b, . . . bk.. . b4) and zO = (a, ‘. aji), where a, = b,, 
Idt<k-I, a,<bk (in the case kbq) so that dk=~bk-l...~k, 
tk=Sak--l”‘Sk or Id (depending on whether ak > k 01 ak= k), tkae 
corresponding element is obtained by dropping out in bk for some 
m, k 6 m < bk - 1 and is not covered by 4 (observe (see mark 3.2 below) 
that a cover 0 -+ p in WC’), 1 d r < n - 1, looks like B = (cl ...rn... c,), 
p=(c,...(m-l).. . c,) for some m d n). If k = q + 1, the resulting element 
looks like (b, . b,x), where x < n (observe that b,, 1 = n + 1) and hence is 
not covered by 4. Thus the possibility that r = k does not exist. 

This completes the verification of (L2) and hence the proof of Theorem 
3.1. 
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Remark 3.2. If & = (b, ... b4) and zO = (ai .. . a,) then the unique 
maximal chain with increasing label is obtained by first reducing b, one by 
one till we arrive at a,, then reducing b, to a*, etc., and bi to ai (recall (cf. 
[15], for example) that a cover f3 -+p in W(QL,) is given by O=(ci.” 
Ck . . * c, . ..c.),p=(c,...c,...c,.. . cn), where ck > cl, for every j, k < j < 1, cj 
is either > ck or < cI and p = B(k, I). Hence a cover 0 + p in W@) for some 
i<n- 1 is given by 8= (ci “‘ck”’ ci), p= (ci ..‘c,...ci), where ck>c!, 
Z> i (I< i would imply ck $ cl) and p = 8(k, I)). (Note that 8 as an element 
of W is given by 8= (cl..~cici+i~~.c,), where (ci+i ,..., c,} =C (ci ,..., ci) in 
(L..., n) thrown in ascending order). Now, if ck = Y and cI =p, where 
p < r < IZ, then any t, p < t < r, t # { ci+ 1 ,..., c,- 1 > (since 4 E Wci), Cj < c, for 
j < m < i or i < j < m), t I$ {cl+ i ,..., en} (since z E W(j) and the Ith entry in z 
is r), t4 {ck + 1 ,...) c,) (since ck = r and 8 E Wci)) t # {cl ,..., ck- 1 > (since 
z E W(j) and the kth entry in z is p). Thus we obtain any t, p < t < r, 
t# {Cl,..., c,}. This is impossible unless p = r - 1. Thus a cover 8 + p in W(j) 
looks like 8=(a,..*r..*aj) and p=(q...r-l...a,) for some r<n (r 
being replaced by r - 1 in 0)). Returning to the description of the unique 
maximal chain in [Q, &J with increasing label, as described above one 
first reduces b, to a, (one by one), then b, to a,, etc., bi to a,; then 
(aI .* . ui) is allowed by (a, 0.. a,n) (E Wci’ ‘I) (observe that a, < n, since 
ai<aitl < . . . < uj < n. Also observe that (a, . *. ai) -+ (aI *. . u,rz) is a cover 
in 2). Then (a, *.. a,n) is followed by (ai 3. ’ a,n - l), (al . . . uin - 2),..., 
(a1 “‘“iui+l)9 which in turn is followed by (a, . . * uin - 1 ), 
(a, . ..uin--2)...., (u,~~~u,u,+,), which in turn is followed by 
(a, *.. ajuj+ 1 n) and so on. 

Remark 3.3. If 4 -+ z is a cover in i(Z), say 4 = i(q50), z = i(zO), where 
i = (b, . . . by) for some q < n - 1, then the label for the cover 4 -+ r depends 
only on (b, . .. b4) and not on any maximal chain _c of which 4 -+ z is an 
edge. In other words, the covers 4 + z in i(Z) have been given a global 
labelling. 

Next we want to prove the lexicographic shellability for Z, in the case of 
W= W(SPA or W(S% + 1 ). We start toward proving this with the dis- 
cussion of covers in W, Wci) and Z. 

Covers in W(G) (G being of type B, or C,). For the results on covers 
in W(G), one may refer [15] (cf. Corollaries SABCD). Since the ter- 
minology in [15] is different from our terminology, we want to discuss 
(and state the results on) the covers in W(G) in our terminology. We shall 
carry out the discussion for G being of type C,. The discussion for G of 
type B, is completely analogous. Let then 4 --f z be a cover in W, say 
~=k, where a is a positive root and l(r) = Z(d) - 1 (cf. [6, Proposition 
5-j). Now the POSitiVe rOOtS in G are giVen by (Cf. [3]) ek- et, ek + e,, 
1~ k < I < n, and 2e,, 1~ k < n; the corresponding reflections are given by 
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(cf. [14]) s, = (k, Z)(k’, I’), (k, rl)(l, k’), (k, k’), respectively (here, for 
16j<n, j’denotes2n+l-jandforany l<j<r<2n, (j,r)denotes 
transposition (in S,,) of the jth and the vth entries). Since 4 -+ z is a cover, 
we have l,,(r) = IsL(~) + m(d) - 2 -m(z) ( recall (cf. [14, Proposition 3.E]) 
that for any WE @‘(S&J, Z,,(w) = :(1&w) + m(w)), where VZ(W) = 
#{l<i<n/ if w=(Q!,... dTn), then dj>n)). Let #=(~,~..a,) (r 
Section 2), any w E W(Spn) may be denoted by the first YE entries in 
mutation representing w). Now, if a = ek -e,, then m(4) = 
l,,(z) = IsL(4) - 2. Further, we have uk > a, (which in turn implies ah < a;) 
and for any j, k < j < 1, aj is either >ak or <a,. 

If cI = ek + el, then we have m(d) = m(r), I,,(z) = IsL($) - 2; further, 
precisely one of (a,, al} is >n, uk > a; (and hence a,> a;). Further, for any 
j,k<j<l,ajiseither >akor <a;;ifl<j<n, thenaiiseither >akor <a; 
and aj is either >a, or <ah (these follow in view of the fact that in 
lV(SL,,), 4 --f $(k, I’) and &k, I’) + 4(k, l’)(l, k’) are covers). These con- 
ditions may be restated as follows (cf. [lS]). In the case c( = ek + e,, we 
have 

(1) for every j, kc jcl, aj>ak or <a;, an 
(2) for every j, /<j<n, lajl is either >max(ak, a[) or <max(ah, a;) 

(where for any I”, 1~ Y < 2n, by 1~1, we mean r or Y’ according as Y > p2 or 
Gn). 

Finally, if CI = 2ek, then m(z) = m(4) - 1, Z,,(z) = IsL(d) - 1. Further, 
have, ak > ah (in particular, ak > n) and for every j, k < j 6 n, aj is eit 
>a, 01 <a;. 

We shall now apply these results to obtain the covers in Wt4). 

Covers in Wcy). Let 4 -+ z be a cover in Wcy) for some q, 1 <q < n. 
Further let C# = (a, . . ay) (so that a, < a2 < . . < a,). Then, as an element 
in W, 4 is given by $J = (a, . . . a,), where (a, + 1 ,..., a,} = the set of first n - q 
elements in C {a, ,..., u4, a; ,..., a:) in (1,2 ,..., 2n) arranged in ascending 
order (since C$I E Wcy’). In particular aj d n, q -=c j 6 n)~ Let z = OS,. Then the 
cover 4 -+ z is one of the following four types of covers. 

(1) Let CI = ek - e,. First, we have k 6 q < /, necessarily (since 4 E Wcq)9 
ak $ a[, if k>q or I<q). Also, since z= (al...a,..~ 
aquq+l...ak...un)E Wcy), we have ak 6 YE, necessarily. Let then ak = Y and 
a, = p, where p < r < n. Also, since z E Wc4), we should have ak ~ 1 < p and 
r < a,, 1. This is equivalent to the condition that for every t, p < t < Y, 
f’ E i ak + 1 ,..., a,}. 

(2) Let a = ek + e,. Further let I< q. Since 4 --, C&T, is a cover, we have 
(from our discussion on covers in W), precisely one of (a,, a,) is >n. This 
together with the fact that ak < a, (since 4 E Wcq) an Id q) implies that 
ak= u<n and a,=~’ for some p<n. Further, ak> a; implies that r>p. 
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Now, for any j, n B j> q (note aj B n), we have aj > Y or a, < p (cf. the dis- 
cussion above on covers in W). Hence we conclude that, for any t, p < t < r, 
neither t nor t’E {al,..., ak--l) (since ak-l<P, as 7 E w(q)) 
nor E { ak + 1 ,..., al- 1 } (since ak = r and a,-, <r’, as ZE tiq); 
norE {a,,, ,..., a,> (since a,, 1 > p’), norE (aq+* ,..., a,> (since for j>q, 
a4 d IZ and aj is either >r or <p). But then this is impossible (unless 
p=r-1), since given, w=(d,... d,) E W, for any t, 1 < t d iz, either t or 
t’ E (dl,..., d,}. 

(3) Let CI = e,+e,. Further let q< Z<n. Observe that k<q (since 
$h E WCq) and ak r al). Now a, < n and hence a,+ > n (since precisely one of 
(ak, a,> is > n). Let ak = r’, for some r, r d n and let a, = p. Also uk > a; 
implies that r < p. Now, for any j, 1 <j < n, we have aj > al= p (since 
4 E tiq)) and for any j, q < 1, aj < r (since f E WCq)) and for any j, k < j < q, 
aj > ak = Y’. Further we have ak _ 1 < p’ (since z E I@“)). Hence we conclude 
that for any t, r < t < p, t E {al ,..., a& 1}. 

(4) Let cc=2e, ( w h ere k < q, for, otherwise += T (mod W,)). Now 
ak > ai implies ak > n, say ak = r’ for some r < II. For any j, n > j > q (note 
uj < n), we have uj < a; = r (cf. the discussion above on covers in W). For 
any k < j < q, aj > ak (and hence a; < r). For any j < k, aj < r (since z E W(q) 
and the kth entry in z is r). Thus we obtain, for all j, 1~ j < n, j # k, min 
aj, a;) <r. Now this implies r = n (obviously). 

Let us summarize these results in the following 

PFC~P~SITION 3.4. Let 4 E WCq), say 4 = (a1 *. . ak.. . a,). Then any couer 
4 + z in @4) is one of the following four types. 

(1) Let ak = r, for some r < n (and k 6 q). Let p be the largest integer 
<r such that neither p nor p’ E (aI ,..., a,} and such that for every t, p < t < r, 
t’ E (a, )...) a,}. Then z= (a,...~ . . . aq) is obtained by replacing r by p in 4. 

(2) Let ak= r for some rdn and al= (r- l)‘, where k< I<q.Then 
7 = (a,. . . (y - l), . . r’ . . . a4) is obtained by simultaneously replacing r and 
(r - 1)’ (in 4) by (r - 1) and r’, respectively. 

(3) Let uk = r’for some Y < n (and k < q). Let p be the smallest integer 
> r such that neither p nor p’ E {a, ,..., a,} and such that for every t, r < t <p, 
tE {a,,..., a,}. Then ~=(a,...p’... aq) is obtained by replacing r’ by p’ in 4. 

(4) Let ak=n+l (for some k6q). Then z=(al...n...aq) is 
obtained by replacing n + 1 by n in 4. 

Covevs in Z. Let # + r be a cover in Z. If 4 and z E W(q), then q$ + T is 
as in Proposition 3.4. If 4 E W(q) and z E WC4 + ‘1, it can be easily seen that 
there exists a r < n, such that q5 = (12.. . (r - 1) a,. . *. a,), where a, > r and 
7=(12...(r--l)a;.. a,r’) (note that there can not exist FEZ such that 
7<8<(b). 
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Remark 3.5. The set of 1~5’s as above can be identified with 

the smallest r in C (al ,..., a4, a; ,...) a;) 
(4 . . . aq), 1< 4 6 n - 1 

i’ 
in (1,2 ,..., 2n) has the property that . 
ak=k, 1 <k<r- I 1 

We shall refer to such 4’s as special edge points. We also want to remark 
that if (a,. . ay) is a special edge point, so is (a, ... ayp 1 )~ Also, sta 
with a special edge point 4 = (a, ... a,), the special edge points in 
lying below 4 may be obtained by reducing a, by one, r < t < q (one at a 
time) following the rules (to obtain a cover) described in ~ropos~ti~~ 3. 

Next we want to prove the following 

PROPOSITION 3.6. The poset Z is graded (i.e., Z has an unique maximal 
and unique minimal element and all the maximal chains in Z have the same 
length). 

Proof The fact that Z has an unique maximal (resp. minimal) element 
is obvious, the unique maximal (resp. minimal) element in Z being 
by (2~2) E u/(l) (resp. (12.. . n) E I#“‘). 

Next, to prove that all maximal chains in Z have the same length, we 
proceed as follows. Given a maximal chain _c, let @)(-c) --f ~(‘+~‘k), 
1 < r 6 n - 1 denote those edges for which B”‘(c) E IV”’ and 
per+ “cc) E IV”+ I). To _c, we associate a “formal weight” m(c) as follows. 
Let m,.(c) = dim X(0(“(c)) (in G/P,), 16 r d n- 1. Let N be a positive 
integer, sufficiently large (say N> dim G/B). Define m@) = (m,(_c), 
m,CcL..., m,- lk)) in the N-adic representation, i.e., rnk) = 
C::: m,(c) N”-‘. If _c and _c’ are two maximal chains in Z, with O(‘)(_c) = 
B”‘(J), 1 d r d II - 1, then_c and< have the same lengths (since in any inter- 
val in W(‘), 1 < id n, all maximal chains have the same length (well 
known)). Hence, as far as the discussion of lengths of maximal chains in Z 
goes, we may identify _c and _c’ if O(“@) = B”)@‘), 1~ r < n - 1 (observe that 
,u(I+ “‘(J) is uniquely determined by @“Cc), 1 < Y <n - 1). Let g, be the 
chain such that B(‘)kO) = (12.. r), 1 < r < n - 1. It can be easily seen that 
so has length n* + n. Now we prove Proposition 3.6 by proving the follow- 
ing 

LEMMA 3.7. Notations as above, length of any chain 5 = length of _c,. 

Proof (By increasing induction on mk)). If rnf-c) = (O,..., 0) then _c = co5 
in which case the result follows trivially. Let m(-c) = (O,..., 0, 1) (ie., 
m(c) = N). Now e(‘)(c) = B(‘)(cO), r # n - 1 and @‘)k) = (12.. (n - 2) n), 
r = n - 1 (note that dim X(0 (“-“(c))=1, since S(‘)(-c)=(12.~. 
(n - 2) II n - 1) as an element in IV). Hence we may assume, _c and so 
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have the same edges till @n-2’~) (= (12 *. . n - 2)). Now $-l(c) = 
(12... n - 2 n + 2). We shall now write down the remaining edges for _c and 
_co* 

Remaining edges for _c. 

(12... n-2n+2)+(12...n-2n+l)+(12...n-2n) 

II II 
P (n- “Cc) W”@) 

+ (12.. .n-22nn2) 

II 
P(“‘cC) 

--t (12.*. n-2n-ln+l)+(12~~~n-ln). 

Remaining edges for go. 

(12...n-2n+2)+(12*..n-2n+l)+(12.~.n-2n) 

II 
P 

(n - “Cco) 
+ (12 ..*n-2n-1) 

8’” - “f-c,) 

+ (12 . ..n-2n-ln+l)-+(12+..n-ln) 

I( P%o). 
Hence, length of _c = length of go (since the number of remaining edges in _c 
and -co are the same) and thus the result is true in this case. Now let 
m(c) > N. Fix an r, 1 < Y 6 n - 1, such that 0(‘)(c) > projection of 8” + ‘)@) 
on W/W, (under W -+ W/W,) (such an r clearly exists since m@) > 
(0 ,..., 0, 1)). Let @“&) = (cr ,..., c,) and 0(“1)@)= (k, ,..., k,+I), so that 
(Cl... c,) > (k, . . . k,). Now (k, . * * k,) is a special edge point (cf. Remark 
3.5). Define the chain _c’ as follows. 

eye’) = fYyc), tfr 

= k . . . k,), t = r. 
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We may assume that _c’ passes through B(‘)(c) and _c passes through 
,&+ l)(&) (observe that Pi’) < L9qc) < p(“~‘) ( = p”‘(c)) and 
8(‘+‘)Cc)<~(‘+‘)Cc’)<~L(‘+l) (c); (note that, since (k, . k,) < (c, I. I c,) and 
both of them being special edge points, we have pCr+ “(-c’) < p”“‘Cc))). 
other words, the part where _c and _c’ differ is the part from B”‘&) to 
pCr+ ‘I@‘). The following diagram will help in visualizing the situation. 

Now from Remark 3.5, it is clear that the part of _c from p(‘+ *I@) to 
P (r+ “cc’) has the same length as the part of< going from @Cc) to @Cc’). As 
already remarked, the chains _c and _c’ differ only in this part. Thus _c and _c’ 
have the same length. On the other hand, m@‘) <ok) (the first place 
where they differ, is the rth place, where we have 

m,@‘) (= dim X(@‘@‘))) <m,(c) (= dim X(6”‘&))) 

and we are through by the induction hypothesis on mk). 
This completes the proof of Lemma 3.7 and hence that of Proposition 

3.6. 
Lexicographic shellability for Z. Embed i: Z -+ W(SL2,, + 1) by sending 

(a,...&) (1 d&n) to (a,...a,(2n+ l)ad+2...a2n+l), WhU-e 

(ad+2,..., a2n+ *> = C (a,,..., ad) in (1, 2,..., 2n) arranged in descending order. 
Then i(Z) may be identified with 

I 
there exists a Q’, 1 < d< n, such that 
(1) a,<a,< ... <a,<2n 

(at..*a2n+l)Es2n+t 
(2) ai+uj#2n+ 1, 1 <i<j<cZ 

(3) a d+l=2n+B 
(4) (a df2,...> Q~+,)=C (a, ,..., ali) in (1, 2 ,..., 2n) 

arranged in descending order. 
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In terms of reduced expressions (for elements in W(SL,,+ 1)), i(Z) may be 
identified with 

\ 

: 

there exists d (1~ d < n) such that 
(1) wi=uj,j>d+l (cf. Section2for 

definition of z+) 
\ 

! 

w=w1 “‘w2nE w(sL,,+,) (2) l(Wj)6I(wj+,), l<j~d- 1 
(3) There do not exist i, j, 1~ i < j < d, 

such that w~=s,_~.+..s~+~s~ and 
Wi=S2n-t”‘S,+1S,“‘Sj 

(where t <n) / 

Corresponding to the live types of covers in Z, we obtain five types of 
covers in i(Z) and we proceed to describe them (in terms of reduced 
expressions). Let 4 --f r be a cover in i(Z). Further, let q5 = i($,), r = i(zO). 

(1) Let qSO=(a,*..a,... a,), where ak = Y (for some r 6 n). Let p be 
the largest integer <Y such that p or p’ 4 (al ,..., a,} and such that for every 
t,p<t<r, t’e(ak+l,...,aq}. Let zo=(al...p...a,). If d=q51q52...Qj2n, 
then r=r1r2.-.r2n, where 

zj= 4ji, jfk 

=spp,“‘sk, j=k 

(observe that q5k = s,- I . . * sk). 
(2) Let ~O=(a,~~~a,~~~a,~~~ a,), where ak = Y and a, = (r - l)‘, for 

some r6n and zo=(a,...(r-l)...r’...a4). If q5=q51q42...q52n, then 
2=2122”‘Z&, where 

zj= 4jj, j#k, 1 

=sr-22”sk, j=k 

=S2”-r”‘S,“‘S,, j=l 

(observe that J$~=s,-~...s~ and ~I=~2n+1--r...~,...~I). 
(3) Let q50=(aI~~~a,*~~a,), where ak=r’, for some r<n. Let p be 

the smallest integer > r such that neither p nor p’ E {al . . . a,} and such 
that for every t, r<t<p, te {aI ,..., ak-,>. Let ~~=(a,..~p’...a,). If 
I$=$~...&,,, then z=z~z~‘~Y~~, where 

Tj= #jj, jfk 

=s2n--p "'S,"'Sk, j=k 

(observe that IJ!J~ = s2n _ r. . .s,. . . sk). 
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(4) Let do = (a1 . . . ak.. . a4) where ak = n + 1 and zO = (a, . n.. a4). 
If $=d1qS2...qJn and r=rl~z..‘~Zn, then 

'tJ= #j"i, j#k 

=snpl”.sk, j=k 

(observe that I$~ = 8,. . sk). 

(5) Let qSO= (12...v-- 1 a,. . ay), where a, > Y (for some P d n) (i.e., 
q$, is a special edge point) and zO = (12 .I. Y - I a, ... a,r’) (note that 
&E WY) and Z,,E WCYtl)). If q5=y51q52...q5Zn, then z=z~‘..z~~, where 

Tji= dj, j#q+l 

=S*n-r.“‘S,“‘S;+l, j=q+l 

(observe that qSy+,=~y+l (= s~~...s,...s~+~)). 

Labelling of the maximal chains in i(Z). Let u. = i(2n) ( = (2n 2n + 1 
2n - I . . 1)). Let us fix the reduced expression for uO as given by q, = 

(S2n-l...S1S1)U*U~...U2n. Let 4 + z be a cover in i(Z). Let q5 = i(&), where 
q50=(q’..uk... a,) for some q dn. Then 4 = q5r &. . . dzn, where 4, = u,, 
m>q and qSm=~b,.~.~,+I~, if a, >m and ~+5, = Id, if a,=m (where 
b, = a, - 1, I <m ~4). Now coming down from uO to 4 through any path 
consisting of elements of i(Z), it is clear that starting with the above 
reduced expression for q,, we end up with the reduced expression 
b1 & . . . qS2n for 4. In particular, for any chain _c of which q5 -+ z is an edge, 
we are going to give a label (that is independent of_c) as follows. (In other 
words, we are going to give a global labelling for covers in i(Z)). We shal 
label the covers by n-tuples. Now, 4 + z is one of the five types of cover 
described before. For each type, we shall describe the corresponding 
n-tuple. Let Q = d1 . . . c&. Further let q5 = i(q$,), where q50 = (al . .. a4) for 
some q,<n. 

(1) Let dk=~I+l...~k (for some k<q and u<n) and s~=s~-~‘..s~ 
(where p is as in (1) of Proposition 3.4), so that z is obtained from q5 by 
dropping the reflections s,- 1, sIpz,..., sp in qSk simultaneously. Let xi”, 
1 d j d 2n, j d t d 2n, denote the position of s, in uj (appearing in vO). The 
corresponding n-tuple is given by (XI? r, ~!k)~,..., xa), ~a!..., xr)) (of 
course, +I+ 1 =x:?~, k+ 1 <t<2n). 

(2) ‘Let q5k=~,-1...~k, ~I=~2n+i~r...~,‘..~I, for some ktl,<q 
and rbn and z~=s,-~“‘s~, , so that z is obtaine 
from q5 by simultaneously dropping out the r ections s,_ I in q5k and 
szn + 1 or in 4,. The corresponding n-tuple is given by (x!? 1, xi;+ i pl, 
xi;+ 1 -r9..., xi;+ I- .) (the notation xi’), 1~ j d 2n, j d t d 2n, being as in (1) 
above ). 



74 HUNEKE AND LAKSHMIBAI 

(3) Let f~S~=s~~--r..s,... sk (for some kdq and rbn) and rk = 
S2n-p’~‘S,‘~‘Sk, so that r is obtained from q5 by simultaneously dropping 
the reflections s2n - ,., s2,, _ r- i ,..., s2n + I PP in qSk. The corresponding n-tuple 
is given by (xi:)-,, xii)-,- r ,..., XC“) 2n+l--p, 

X(ki 
2n+ l--p,..., 

X(k) 
2n+l-p 1. 

(4) Let $hk=s,“’ sk (for some k<q) and Tk=s,_l”‘Sk, so that r is 
obtained from $ by dropping the reflection s, in i#k. The corresponding 
n-tuple is given by (xl(l), xkk),..., xp)). 

(5) Let qSj=Id, jfr-1, qSj>IId for jar for some r<n. (in other 
words, C$ = i(&), where q$, = (12.e. r - 1 a;..a,), where a, > r for some 
r<n. Let z~+~=s~~--~*.s~+~, so that z is obtained from q5 by dropping 
out the reflections s2,,, s2,, ~ i ,..., s2n + 1 _ I in qS,+ i simultaneously (note that 
q5 is a special edge point). The corresponding n-tuple is given by 
(x:4,+ l), xk”;‘,..., x(q+ l) 2n+l--r, 

x(q+ 1) 2n+l-?.,“‘, XkylL,,. 

THEOREM 3.8. Let G be of type B, or C,. Then Z= lJ;= 1 W(j) is 
lexicographically shellable. 

Proof. Labelling the covers in Z (or i(Z)) by n-tuples as described 
above, condition (Ll) is immediately verified. 

Verification of (L2). Let [r, $1 be any interval in i(Z) (since the covers 
have been labelled globally, enough to consider [r, $1 rather than a rooted 
interval ([r, qS],_c), where _c is some chain going down from u,, to 4). Let 
Z=TlZ2”‘T*n and $=di&... ~,,.AlsoletqJ=(b,~~~bq)andr=(a,~~~aj), 
q < j 6 n. Further, let k be the smallest integer such that rk < #k (note that 
kQq+l and that r,<$,, 1 <m G 2n). A maximal chain in [z, qG] with 
increasing label may be obtained by starting with q5k and dropping the 
reflections in $k one after the other from left to right until we end up with 
rk, bearing in mind the fact that if at any step the element under con- 
sideration looks like 8 = 8, . . . 6,. . .dSn ( = i( 6,), where 8, = (cl c2. . . c,)), 
where %,=r,, l<t<k-1 and O,>r,: 

(1) if 6k=SznPr”‘S,“‘~k, for some r <n and p is the smallest 
integer > r such that neither p nor p’ E { c1 ,..., c,} and such that for every t, 
r < t < p, t E {cl ,..., c& 1}, then the reflections Sag--, s2+- i ,..., sZn+ i -p in 
8, will be simultaneously dropped out; 

(2) ek=Sr-l”‘Sk, for some r d IZ and cI = (r - 1)’ for some 1 
(k < If q), then the reflections s,- 1 in 8, and szn + 1--r in 6, will be 
simultaneously dropped out, if a, < (r - 1)‘. If a, = (r - 1)’ and if p is the 
largest integer <r such that neither p nor p’ E (cl,.,,, c,> and such that for 
every t, p < t < r, t’ E { ck + i ,..., cq}, then the reflections s,- i, s, _ 2 ,..., sP in 
ok will be simultaneously dropped out. (Here we want to observe that 
ak < p. This will follow if we show that for every t, p < t < r, if s is the 
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integer such that c, = I’, then II, = I’. This we shall prove by induction on 
I’ - I, the starting point of induction being r - I = 1, in which case the result 
is true, since c, = (r - 1)’ = CI,. Now, let r - t > 1 and assume the induction 
hypothesis. Let c, = t’ for some S. s < q (by the assumption on p, for every 
1. p < f < r. t’E {ck +, ,..., c,}). Also, we have .F > I (since C, = (r - I )’ < I’ and 
0 = (c, cc,) E Iv”‘). Hence a,y > II (since a,=(r- 1)’ and 
?=(a,” .G,)E IV”‘). Also U, ,< t’ (since r 6 (1) and U, > (r - 1)’ (since 
u, > N, = (r - 1 )‘). If a, is not = t’. then N, = ~1’ for some m, ( <m < I’ -- I. Ii 
I7 is the integer such that c,) =m’ (observe that t <m < r < 1 implies 
m’ E if’/; ! , ,...: fy ) ) then a,, = m’ (by the induction hypothesis). Then, h # .I‘. 
since c,, ( = m’) # C, ( = t’). Thus a, cannot bc m’ for any m, I < m < r - i. 
This together with the fact that (r - 1)’ < a, 6 (’ impiies that c, = r’. Thus. 
for every 1: p < f < r, t’E (oX- + ,:..., N,). This, together with the fact that 
!7x <cl, (= r) implies that uk 6 p. as required. 

Proceeding thus. we first reduce $k to sk, then dk _, to TV. , ,.... #<, to sy. 
In terms of permutations. this corresponds to reducing (h,,..., h4) to 
((1 , ,.... a,,) by first reducing h, to L(,? then hz to (I,...., h, to ~1, (keeping in 

mind the two facts mentioned above). To bc very precise, as before, let k be 
the smallest integer such that 4, > ‘I~ (note that li <q + I I. At any step let 
(I=((,, ‘.’ c,,). Then if 

(a) cI = r’ for some r < n and p is as in ( 1) above, then r’ will be 
replaced by p’ (and we will take the corresponding cover). 

(b) cI,=r for some r<n and c,=(r- 1)’ for some 1 (k<I<q) then 
c,< and c, will be simultaneously replaced by I’ -- 1 and r’ respectively. if 
a, < (r - 1)‘. If u, = (r - 1)’ and if p is the integer as in (2) above, then r wil! 
be rcplaccd by p (and WC will take the corresponding cover). 

After (h, .. hy) has been reduced to (a, ... ay) (as above), the remaining 
path from (b, .“ay) to (a, ‘.‘aq .. a,) (in case q < j) is obtained as follows. 
Now let (N! . cl(,) = (12 . . r - I a,. . a,,) for some r 6 n (where 0, > r). 
Then since (a, u,, . a,) E IV’ j), we have u, < r’. Hence u, <r’ for I <j. 
This in particular implies that (a, .. Us,) is a special edge point. Hence 
i(o, . ..a.,) -has the reduced expression T,T,. , “‘r,, u,, . i .“u~,, (note that 
under the assumption (a! . . a,) = ( 12 . . r - I (1, . a,), we have T,,, = Id. 
m < r - 1). Sow the reflections sZnr So,, 1 . . . . . s>,! , _) in u,,+ , shall be drop- 
pcd out simultaneously to obtain the cover (I ... r .. 1 a, .. ‘a(,) -+ 
(1.. ‘r - In;. .a,~‘). Then we reduce (N,...u,I.‘) to (LJ~...~I~,~,,;,) by 
reducing r’ one by one. keeping in mind the fact that if at any step, the 
clement 0 under consideration looks like (a, I. ~~,f’), for some I< n, and p 
is the smallest integer >I such that neither (, nor I)‘E {lz ,..... u,) and such 
that for every 1. I< t < p: t E {LIP . . . . . a (,).: then the corresponding cover to be 
taken is (a, . ..a.,/‘)-+ (u, . ..a.,~‘). (This amounts to dropping out the 
reflections .s 2n /3 ,J?,, I , :...t s ‘“I! ,’ in O,-, I = .SJ,! , . .S(, + ] ) 
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simultaneously.) One proceeds thus, finally ending up with r. Obviously 
this chain has an increasing label. 

Any other chain is obtained by starting with q5,, for some m 3 k (recall, k 
is the smallest integer such that rk $ dk). Suppose m > k, then at some 
point, one has to work with dropping out the reflections in q5k and thus the 
corresponding label is not increasing and the corresponding label is 
(clearly) lexicographically > the above increasing label. Suppose m = k; 
one may assume the corresponding chain has the first edge to be different 
from the first edge of the above chain with increasing label by using induc- 
tion on I[(t, c$)] ( = I,,(#,,) - I,s,,(~,), where q$, and r0 are given by i(&,) = q4 
i(t,) = r, the proof for the starting point of induction, namely /Jr,) = 
I,(&,) - 1, being trivial); but then (as happened in the case of SL, (cf. 
Theorem 3.1)), the element 0 (= i(6),,)) corresponding to the first edge is 
such that 0, is not covered by &, in Z. Thus the possibility m = k does not 
exist. 

This completes the verification of (L2) and hence the proof of Theorem 
3.8. 

Next we want to prove the lexicographic shellability for Z,, and also for 
Z(:) (cf. Section 2) 11: E IV. We shall treat the two cases, namely G = SL, or 
SP2”, separately. 

First, let G = SL,,. For any 12; E W, recall (cf. Section 2) 

z,,.= {TE w (q), 1 < q 6 n - 1 :‘r < projection of u’ on W/W, 

under W+ W/W,}. 

Cooers in Z,. A cover 4 + r in Z,. is either of the form 

(1) +rl where d, r+z W’Y’, for some qdn- 1, or 
(2) c+3 + 7, where 4 E W’“‘, 7 E Wty + I’, for some y < iz - 2. 

To bc very precise, in (2), let w = (h, ... h,) (as a permutation). For 
1 ,< q < n - 1, let { x(Iy’, ,$‘I ,..., .I$“’ ) = {h, ,..., b,, arranged in ascending 
order 1. Then it can be easily seen that 4 and 7 look as follows: 

r = (c, ,...: L“,, .Y~,~J,‘,‘)) and q5 = (c, ,..., c’,), where (c, ,..., cy) 

d (h, ,..., h,, arranged in ascending order) 

PROI'OSITION 3.9. The pose! Z,, is pudrd. 

Proof The fact that Z, has an unique maximal and minimal element is 
obvious, namely, they are given by (h,) E W(l) and (12.. . n - I ) E W’” ‘I. 
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Next, we want to prove that all maximal chains in Z, have the same 
length. We prove this in the same spirit as the proof of Proposition 3.6. 

Given a maximal chain _c, let @“(-c) --f ,u(“+ “‘(-c), 1 < Y < n - 2, denote 
those edges for which #“Cc) E IV(‘) and ,u(‘+ “cc) E IV + I. Tog, we associate 
a “formal weight” m(c) as follows. Let m,.@) = dim X(Q(‘)k)) (in G/P,), 
1 < r<n-2. Let N be a positive integer sufficiently large (say 
N> dim G/B). Define m(c) = (m,@), m,@),..., m,_,@)), in the N-adic 
representation, i.e., m(c) = C;:f m,@) IV”-‘- I. If_c and c’ are two maximal 
chains in Z,V, with Q(“@) = 8”‘@‘), 1 <r 6 n - 2, then _c and _c’ have the 
same lengths (since in any interval in W (i), 1 < i 6 n - 2, all maximal chains 
have the same length). Hence for the discussion of lengths of maximal 
chains in Z,,, we may identify _c and _c’ if 6(“@) = B”‘&), 1~ r 6 M - 2 
(observe that ,u(‘+‘) c IS uniquely determined by eC”(c). In fact, if O”‘@) = 
(cl . . c,), then ,u( r +(T! . @) = (cl . .. c,xK+fil)), from our discussion above on 
covers in Z,). Let s, be the chain (in Z,.) such that #‘j’c,) = (12 ... r): 
I <r < n - 2. Now we prove Proposition 3.9 by proving the following 

kEMMA 3.10. Notations as above, length of any chain _c in Z, = length qf 
Lo. 

Proof (By increasing induction on m@)). If rn(-c) = (O,..., 0), then_c =x0, 
in which case the result follows trivially. If m(c) = (0, O,..., 0, I) (is., 
m@) = N), then e(“(-c) = B(‘)~O), Y # n - 2, and B(“~2)~) = (12.. n - 3 
n - 1) (since by our assumption on m(c), dim X(6C”-2)(c)) = 1). This in 
titular implies xp:z2’ 3 n - 1 (where (recall) for I < 4 < FZ - 1, AC?) = 
max(h,,..., b,), (b, ..‘b,) being the permutation representing w) Also, by 
our assumption on m@), _c and _c, have the same edges until 0’“- 2’(c) (and 
hence till ,U (n-2)(c)) We shall now describe the remaining edges of _c an . 
x0. For this, we need to distinguish the two cases, xj,‘cz2) = n or y1- 1 
(respectively). 

Remaining edges of c. 

(12...n-3n)4(12...n-3n-l)-t(12...n-3n--an)--,(12...n-2n) 

~1 
‘&) 

II 
I/ ii 

P tW2’@) p’” ~ “f-c) 

+ (12... n-2n-1). 
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Remaining edges of go. 

(12 . ..n-3n)-+(12...n-3n-1)-+(12...n-3n-2) 

II il 
P cn ~ *‘(co) e(n-*)k,) 

-+ (12 . ..n-3n-2n)-+(12...n-2n-l). 

II 
$- ‘Ccd 

Let xFrz2) = n - 1. 
Remaining edges of _c. 

(12~~~n-3n-1)-+(12~~~n-3n-1n)-+(12~~~n--3n-2n) 

II 

0’” - *‘cc). 
--f (12...n-2n- 1) 

(It may be assumed that x:-1 l) = n. For, if $:i’) # n, then xprll) = n - 1, 
in which case b, = n and w E W(SL,_ i) and we may use induction on n.) 

Remaining edges of -co. 

(12...n-3n-1)+(12...n-3n-2)+(12...n-2?2) 

II II II 
e(-*)fc,) P cn - “i-c,). 

-+ (12 . ..n-2n-1). 

In either case, we find that the number of remaining edges is the same for 
both _c and _c,. Thus the result is true in this case. 

Now let m(c) > N. Fix a r, 1 < r < n - 2, such that @“(-c) > projection of 
e(r+Q) on W/W,, under W -+ WI W,. (Such an r clearly exists since 
m@) > (0, O,..., 0, 1)). Let @“Cc) = (ci . +. c,) and 0(‘+ r)(c) = (k, . . . k,, 1), so 
that (ci . . . c,) > (k, . . . k,). Define the chain s’ as follows 

eyd) = e(t)@), tfr 

= (k, . . . k,), t = r. 
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We may assume that _c’ passes through 0(‘)@) and _r passes through 
p(,‘+ “(g’) (observe that B”‘@‘) < 0(“(c) < y(“k’) ( = p”Q)) anti 
6(‘+‘)~)<~“(r+‘)~‘)<~L(‘+1)~) (note that ~(‘+“k’)=k~ ...k,.~j~.‘,l~)< 
(Cl . . . crx~;+l”) = #I+ 1) cc))). In other words, the part where c and L’ direr 
is the part from SC”@) to ,u(‘+ ‘) @‘). The following diagram will help in 
visualizing the situation 

(C1.y.)=eyc) :. . 

1 

’ . . . ’ . * . 
(C1..‘C,X,+1 (‘+U)=p(‘+‘)~) . . . . . ‘. *. . 

I 
U”‘k’) = (k, .“k,) 

* . . . . . * . . . 1 .* pi’ - ‘)(_c’)= (r;-, . ..k.,$“#-;‘!) 

Now, it is clear that the part of _c going from ,u” ’ “CC) to p” ’ I’&‘) has 
the same length as the part of& going from O(“k) to O”“&‘). As aiready 
remarked _c and _c’ differ only in this part. Thus 1 and g’ have the same 
length. On the other hand, F-H@‘) <m(c) (the first place where they differ 
is the rth place, where we have m,(J) = (dim X(H”‘k’))) < m,&) 
( = dim X(0(“@))) and we are through by the induction hypothesis on 
mCc). 

This completes the proof of Lemma 3.10 and hcncc that of Proposition 
3.9. 

THEOREM 3.11. The poset 2, is lexicographical!,: sheiiuhle. 

Lahelling of maximal chains in Z,. Now Z, c Z and a cover I$ --) T in 
Z, continues to be a cover in Z, if both 4 and z E WC’) for some ,j < n - 1. 
In the alternate case, a cover I$ --f 7 in Z, need not be a cover in Z (for 
example, in SL,, consider w = (3124); then, (1) :.-: (13) is a cover in 
Z,, but is not a cover in Z). Let N be a positive integer sufficiently large 
(say N> rk(Z) (= length of any maximal chain in Z)). We shall now iabcl 
the covers in Z,. by N-tuples as follows. 

Given a cover 16 ---t T in Z,, consider the unique chain in Z going from 4 
to T with increasing label (cf. Theorem 3.1) (note that this unique chair, 
does not depend on the path chosen to come down from L’“, the unique 
maximal element in Z to 4, because of the global nature of the iabellings of 
covers in Z (cf. Remark 3.3)). Let us denote this chain by 4 = 4,) -+‘I: 
qj! +“2 d2 4 . ‘. +“< 4, = z (where r < N). Now label the cover C/J --) r by the 

4x, 44 I-6 
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N-tuple (ItI, n2 ,..., Iz,, n, ,..., n,). (observe that because the labellings of 
covers in Z are global (cf. Remark 3.3), the labellings of covers in Z, are 
also global, so (Ll) follows immediately. To make the labelling very 
precise, if 4, r E WCq), for some q 6 n - 1, then 4 + z is a cover in Z also 
and if m is the label for the cover 4 -+ r in 2, then n, = n2 = . . . = n, = m; in 
the alternate case, 4 E: WCy) and z E WC4+ ‘), say, 4 = (a, . .. a,), 
r= (a, . ..a.~~~~‘)) (where xjp,+,‘)=max{b,,..., b,,,}, bj’s being given by 
w=(b,...b,)). If i(~)=~,...~,u,+,...u,, i(z)=~~...z~+~u~$-~...u, 
(recall i: Z + W(SL,+ i) (cf. Proof of Theorem 3.1)), then zk = dk, k # q + 1 
and 7q+1 = Id or S, . . . sq+ 1 according as xp2i1) = q + 1 or > q + 1 (and 
t=xp++i’)-- 1). Then n1 = yLq+l), n2 = ~$2~‘) (= n, + l), etc., where @, 
1 < j< n, j< k < it, denotes the position of sk appearing in uj (in 
vo=i((n))=(~,~1...~1)~2~3...~,). 

Verification of (L2). Now let [zO, &] be any interval in Z,. The fact 
that there exists a chain in Z, going from &, to r0 whose label is increasing 
is immediate. In fact, if &, = (ci. +. c,), r0 = (a,. . . aj), q < j d n - 1 (it may 
be assumed q < j, since for q = j, the result follows from [2]. Observe that 
in this case, the above labelling is the same as the labelling described in 
[2]), one first considers the unique chain in Z with increasing label going 
from $0=f9,=(c,...cq) to (al:. . aq) = 0, (observe that since (cl 1. . cq) and 
(a1 ‘. uq) both belong to WCq) and (a,. . . u4) < (ci . . . cq) < projection of w 
on W/W,, the elements of the above unique chain (in Z) in fact, belong to 
Z,). Now this chain is followed by (ai.. . a,) --f (a, +. . a,xb4,+,‘)). The label 
for this cover is (nl ,..., n,, n, ,..., n,) say; then it is > the label for (3-i -+ 8, 
(the latter label looks like (m, m,..., m), where m = vi:), k being the largest 
integer 6q such that uk < ck (if ak = ck for all 1 <k 6 q, then 
c&, = (a,,..., a,) -+ (a,,..., aq, x?,?~“) is the first edge in the required chain) 
(here the notation yij) is as above)). Now from our description of 

2 ,,.., nI, nI ,..., nl) it is clear that m <n, so that the label for 13~ 1 -+ 0, 
i” ‘(z, )...) a,)) is < that for (a, ,..., uq) --* (a, ,..., aq, xIp,+,‘)). Now &, = e0 -+ 
01-t ... --+ 0, -+ (a,,..., U4’ x,, 1 (q+ ‘)) is followed by the unique chain in Z 
going from (a,,..., a4, xlp+i’)) to (a,,..., uq, aq+ 1) whose label is increasing 
and so on. 

Let i(zo)=z=zl.~~~zjuj+l~~~u,, i(do)=~=~l...~q~q+l...~,, where 
for every t, 16 t < ‘2, z, is a right-end segment of 4,. Let k be the smallest 
integer such that rk < c$~ (note that k < q + 1). Now, in any other maximal 
chain, the first reflection that is dropped out occurs in 4r for some r > k. If 
r > k, then, at some point one has to work with dropping out the reflec- 
tions in #k and thus the corresponding label is not increasing and the 
corresponding label is (clearly) lexicographically > the above increasing 
label. Suppose r = k (may assume the corresponding chain has the first 
edge to be different from the first edge in the above chain with increasing 
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label, by using induction on I( [ro, CJ~,]) (in Z,,.), the proof for the starting 
point of induction being trivial), then the element p. corresponding to the 
first cdgc is not covered by d in Z,, (this is obvious if X- < y. If li = ~7 + i. 
then /j,, looks like (c, . ..c.J’) where 1’ $ x:,“.-+~~ (recall b,)= (c, .“c,,) and 
sJ,~+-,I ’ = max ( b, l.., h, _ , ) , where (h , . . h,) = 11.)). Thus the possibility r = k 
does not exist. 

This completes the verification of (LZ) and hence the proof of Theorem 
.?.I!. 

THEoREkf 3.12. Let G = .sI;,, und ( j) = ( j, . . . . . j, ) hc m r-ticpie 
(r 6 12 - I ): 1 <.j, < . < j, 6 n - 1 undfor m1.i’ w E W. let 

Zi,” = 12 I5 E wfJt'i:r < projection of M) on U’! W,A under W + W; I+‘,& 1 

Then XI,” is lexicogruphicully shelluble. 

Proof: First we shall prove this for )L’(,, the unique element of maximai 
length in IV. Now a cover d, --P r in Z”) ( = Z’,.;)) continues to be a cover in 
Z if d r E W’iL’ for some k-, 1 <k 6 r. In the alternate case? we have. 
d, ; &I. TSE WCns’); and if I$= (a ,,..., (I,;), then r = (a! ,..., a,,. 
n + I - t . . . . . n - I, n), where t = j, - , - jk. In this case one considers the uni- 
que chain in Z going from 4 to r whose label is increasing, say, 

Now one labels the cover #J + T in Z”) by the X-tup!c (n,, nz,..., IZ,, 
n ,), ? . . . n,,,) (where N is a positive integer sufliciently large, say N> rank of 
Z). With this labelling, one can check (proceeding as in the proof of 
Theorem 3.11 ) that Z ( j) is lexicographic shellable. 

The discussion for ZIJ’ is completely analogous. We shall just mention 
what a cover ~4 -+ T in Zl,” looks like. A cover 4 -+ T in Zi,lj continues to be 
a cover in Z, if 4, T E W C/k, for some k. 1 6 k d r. In the alternate case, we 
have C$E W’li), SE W’ji-l’. If c$=(cz,..,cI,~), then r=(a,...~,;. 
(’ ,, ,. I ‘.... (‘I: , )3 where {c,, ,,..., c;~ ,i = the first jk, , - jl, numbers in 
( b, 1.... h,k , ) arranged in descending order}. 

THEOREM 3.13. Let G = .Spz, and let w E W. Then the set Z, i.s 
iexicographically shellable. 

Proof: The proof is analogous to the proof of Theorem 3.1 I. WC shall 
first describe what the covers in Z,, look like and how they are labelled. Let 
1\‘= (h, .. . h,,... h,,). For 1 < j<n. let ,Y:‘)= maxjh ,,...: h,]. Now a cover 
4- s continues to be a cover in Z, if c$, T E CV’y’ for some q d n. In the ahcr- 



82 HUNEKEAND LAKSHMIBAI 

nating case, if d=(a,...a,), then ~=(a,...a,a,,,), where aq+l is the 
hxgest integer <x$YI1) such that neither ay+ 1 nor a’,,, E {a,,..., a,} (to be 
very precise, if xq+ I (q+r) <n, then we have a,< x?++~‘) and ~$++r~)=xlP,i-,~). If 
xP++~~) > n, say xP++~~) = r’, for some r d n, then, if k is the smallest integer 
> r such that neither k nor k’ E {aI ,..., u,} and such that for every 

t, r<t<k, tE (al ,..., a4), then a4 + r = k’). Then as in the proof of Theorem 
3.11, to get the label for the cover 4 + r in Z,, one considers the unique 
chain in 2 going from 4 to z with increasing label, say 

(where each mr is an n-tuple and m, < m, < . . . cm,). Now one labels the 
cover 4 -+ z by the Wtuple (ml, m2 ,,.,, m,, IJZ, ,..., m,) (where N is a positive 
integer sufficiently large, say N = n . rk( 2)). 

Now if [z, 41 is an interval in Z,, say z = (a1 *.. a,), C$ = (c, ... c,), 
4 < j 6 n (it may be assumed 9 <j; for, if q = j, then the elements in the 
unique chain in Z, going from 4 to z, whose label is increasing, all EZ,, 
since they are all <# and 4 E Z,). Then the required chain with increasing 
label is obtained by first taking the unique chain in 2 going from (cr . *. c4) 
to (0, *. . aq), say 8, = (cr . . . cq) -+ 8, -+ . . . + 8, = (a, . . u4). Then this is 
followed by (a,...a,)-,(u,...a,d,+, ) (the cover as described above) and 
then, this is followed by the unique chain in Z going from (al *. . a,d, + 1) to 
(al...ayaq+l ) whose label is increasing and so on. Clearly this chain 
(in Z,) has an increasing label. 

The verification of (L2) is done in the same spirit as in the proof of 
Theorem 3.11. 

THEOREM 3.14. Given an r-tuple (j,,...,j,)(rdn) 1 <j, <j, < *.. < 
j, <n, and w E W, Z(,j) is lexicographically shellable. 

Proof is analogous to that of Theorem 3.12. 

4. KEMPF VARIETIES 

In this section our main result is that G being of type A,, B,, or C,, on a 
given Schubert variety X(w) c G/B, the two notions of monomials being 
standard (cf. Section 2) coincide if and only if X(w) is a Kempf variety. 
First we recall the definition of Kempf varieties (cf. [lo J) for G being of 
type A,, and prove the result mentioned above and then we do it for G of 
type B, or C,. 
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DEFINITION 4.1. Let G be of type A, and let w E IV, say w = w1 w2 . . . w,, 
where wi (1 < i < n) is a right-end segment of U, ( = s, ~ . . si+ I si) (cf. [lo] ). 
Call w a Kempf element (and X(w), a Kempfvariety) if 

l(wi) d l(w,+ 1) + l whenever wi+l<ui+l, l<i<n-1. 

We give below another characterization of Kempf elements (cf. Proposition 
4.3 below). We first start with the following 

PROPOSITION 4.2. Let w be a Kempf element. Then for any z E W, w 3 z 
ifandonly$wi>zi, l<i<d, wherew=n’,...~,,z=f~...z,andMi~(resp. 
zi) is a right-end segment of ui, 1 d i < n. 

Pro05 The proof of the implication c is obvious, since w = w1 . . w, 
(resp. T = z1 . . . zn) is a reduced expression for w (resp. z) and the charac- 
terization of the partial order in W in terms of reduced expressions (recall 
(cf. [4]) that given 8, p E W(G), G being of any type, B 3 p, if and only if a 
reduced expression of 8 contains a subexpression which is a reduce 
expression of p). 

Now let w 3 z. If possible, let w,. 3 z, for some Y, rd n. This implies 
w,<z (since w, and z, 
W,&S. 

are both right-end segments of u,). Let 
,+ls, (resp. Id) and z,.=s~..‘s~+~s~, where k>l (req. k>r). 

The length condition for a Kempf element, together with Proposit 
implies that the projection of w on W/W,, as an (increasing) r-tuple 
entry m at the rth place, where m = I + 1 (req. <r) while the projection of 
t on W/W,, as an (increasing) r-tuple has the entry at the rth place to 
>k + 1 (identifying W with S n + I ). Thus projection of u’ on W/W,. is 

ejection of z on W/W,. Hence w 2 z (cf. Se on 2, partial order on W), 
ich contradicts the hypothesis that WJ 3 z. ence our assumption that 

wi & 5, (for some r) is wrong. 
This completes the proof of Proposition 4.2. 

PROPOSITION 4.3. The set {w/for any T<-w, Tk<Wk, Ibkdn! is 
precisely the set of Kempf elements. 

ProofI The inclusion 2 follows from Proposition 4.2. Let now N’ be 
such that for any r < w, zx- < wk, 1 d k < n. We claim: w is a Kempf element. 

If not let wk=si...sk+isk and w~+~=s~“‘s~+,~ for some k<iz- I 
(here k+l<j<i). Now, w>s~~~~s~+~=z say. Mow T=T~“‘T,,, where 
z,=Id, I#k+l and z~+~=s~.‘.s~+~. Thus w>z; but We, i & TV., i 
(since, by assumption j< i). (If wk+ 1 = Id and wk = si. ’ * sk- , .sl, where 
i>k+l, then taking z=s~+~, we obtam war, but wk+: & 7k _ , .) This 
completes the proof of Proposition 4.3. 
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Remark 4.4. Just for the sake of interest we would like to mention one 
example here. Consider w = (s3szs1)(s2)(s3) and z = (sl)(s~sz) in W(SL,). 
We have, w > r, but w2 & z2 (observe that w is not a Kempf element). 

THEOREM 4.5. Let WE W(SL,+,). Th en on w (or X(w)), the two notions 
of Young diagrams being standard coincide if and only if w is a Kempf 
element. 

ProoJ Let w=w1w2... w, be a Kempf element. Since on any X(p), 
p E W, any Young diagram standard on X(p) is weakly standard (cf. [ 13]), 
proving the required result is equivalent to proving the result that any 
Young diagram weakly standard on X(w) is in fact standard. Let then 
8 = (0,) be a Young diagram of type 5 = (m,,..., m,) weakly standard on 
X(w), so that, we have 1!9~ E W(j), 8, > eii+ r, t!Iimi > f3,+ 1 1 (as elements of Z) 
and w>O,, ldi<n, 1 d j< mi. To make it very precise, let 
0, = ,py) . . . ,(n (reduced expression for eii, where t$) is a right-end 
segment of uk =‘s, . . . sk+ isk (cf. Proposition 2.3)). Then Bij> 8,+ i (in the 
usual sense, i.e., as elements of W). And eimz > Qi+ 1 1, in Z, is equivalent to 
the condition that yi’~i)yf%). . . $m) is >uf+ 1 l)u$+ 1 1). . . ,ji+ 11) (cf. 
Definition 2.7). Define A = (A,), where 1, = @I.. . ~~%~i,f,~ ‘)v(‘+‘2* l). . . u: l) 
(= 8,pi, say) (where vifl) is taken to be Id, if for all s z t, m, = 0 and 0:’ I) is 
taken to be VI” l), if m, = 0 and s is the least integer > t such that m, # 0). 
The fact that a, < w follows from the fact that w > 8,, 1~ Y 6 n, 1 <s 6 m,, 
and Proposition 4.2. The fact that /2, > A,+ 1 follows from the fact 8, > 8,+ 1 
(note that I, = tliiui and A,, 1 = Bij+ ini; also note that 8,pi and 8,, i,ui are 
reduced (cf. Proposition 2.3)). The fact that ljmI > i,, 1 i follows from the 
fact that Oimi>v(li+l ~)uY+~ l)+.+~i’+l l) (note that &=8,,pj and 

&+, , = ,y+ 1 qg+ 11). . . u;i,‘,’ q&t; 1). . . $I 1) 

= ,y+ 11). . . &+ 11) 
I PiI. 

Thus we have w>/2,i>&3 ... 31,,,>1,,> ... a&,,, (in W), where 
1, is a lift for eii under W -+ W/ Wi. In other words a is a defining pair for 0 
on X(w) (cf. 121 or [13]) and thus 8 is standard on X(w). 

Conversely, let w = w1 w2 ... w, (E W) such that all weakly standard 
Young diagrams on w are in fact standard. WC shall now show that w is a 
Kempf element. If w is not a Kempf element, let d be the smallest integer 
such that Z(wd) & Z(wd+i)+ 1, say w~=s~*.*s~+~s~, iad+ 1 and w~+~= 
s”“sd+2sd+l I (j< i) or Id. Now, identifying W with S,, 1, let 
T=w,w*“‘w&,= (Cl...Cn+l ) (as a permutation). Now for t 3 d, zs, 
remains reduced and hence I(rs,) (= Z(r)+ I) is >l(r). Hence ~(a,)> 0, 
where CI, is the root e,-e,+ 1 (cf. [ll, Proposition 1.41). In particular, we 
have, ck<c,, d<k<mbn+l (since Z(ek-ek+l)=erk-eck+l>O, so that 
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ck < ck+ 1 and so on). For any k, 1 <k 6 n, let wik’ denote the projection of 
W, (note that wck) is just w1 w2 .. wk)). Now 

W(d)=ZWd=(CI~.YY n+1)(12...d-1 is 1 ri...i...tr- I) 

=(c1...cd-lcj+l) 

and 

Ww+ 1) - 
-(C1~~~Cd-lCi+lCd) if W‘, . , = id 

= (Cl Cd- 1 cj+ , Cj) if w,, . , = 5, .Y d -. I 

(note that d+ 1 d j< i). Now consider the weakly standard diagram 01: 

dd+l 
X(w) of type (0,O ,..., 1, 1 , 0 ... 0) given by 

(assume IV,,-, # Id) 

(note that the d-tuples (cl ,..., cd- 1, ci) and (cl ,..., c<,- ]. c,. c,- ,) may not be 
in the ascending order; nevertheless, it is easily seen tha[ 

tc 1 ,...> cd- 1, ci, arranged in ascending order) 

> (Cl,..., c & 1, cj, ci+ 1, arranged in ascending order since c, > c,). 

Also, they are both < w. In fact (cl . . . cd- 1 ci) (resp. (c, . cd i c,c, , f has 
the reduced expression w1 ... w~~~(.Y-~ . ..sd) (resp. IV, ... M‘~.- ,sj , ... 
s&i’ ’ . sd+ 1), where (cl cd- 1 ci) as an element in W ( = S, .~ , ; is identified 
with the permutation (cl . . cd- 1 cixi+ 1 . . . x,+ I). where {.Y, , , . . . . . x,, + i J = 
C (cl ,..., cdel, cj) in (1, 2 ,..., n + 1) arranged in ascending order. A similar 
remark holds for c1 . . cd- 1 cici+ 1)). Let (al ,.“, a,,; (resp. (h, ,..., h,,,. , )) be 
(cl ,..., cd- 1, ci> (resp. (c,;..~, cd- 1, c,, c,, ci+,>) arranged in ascending 
order. Now the smallest A on which (*) is standard is given by the smallest 
element in W, which has the projection (a, ‘.. ad) on W!W,, and which is 
>@l”‘bd+i ) (cf. Remark 2.16 and [13, Corollary 11.2’1). Now (*) is 
standard on w if and only if w 3 I (cf. Remark 2.16). But now 11’ B i,, since 
projection of it’ on W/W,+ 1 3 projection of A on W::W‘, _ , (note that pro- 
jection of w (resp. n) on W/W,+ 1 is (c, ,.... c,, , . c,, c, , , ) (rcsp. 
CL., z..., L’d 1, c,: c,,. ,)) arranged in ascending order and also note that 
c, < c, < c, , : ). If WJ+ 1 = Id, we carry out the same argument replacing c, bq 
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cd. To be very precise, one takes (*) to be the weakly standard Young 
diagram 

Now the smallest /I on which this is standard has the projection on 
W/W,-, to be (c, ... cd _, cici+ ,) (arranged in ascending order), while the 
corresponding projection for IL’ is (c, . . . cd- , ~‘~c; + , ) (arranged in ascending 
order). Thus ,v(~+‘, & itd+,, (note that ibd+ 1, so that c,,<c,). 

Thus in either case 121 > i. and hence (*) is not standard on ,t’ con- 
tradicting the hypothesis that on 1~ all weakly standard diagrams are stan- 
dard. Hence such a ti as above, namely I(M.~) > [(,v,_ ,) + 1 does not exist. 
Thus for all d, 1 < d d n - 1, I( ,v~) < I( M.‘(, , , ) + 1, and hence IV is a Kempf 
element. 

This completes the proof of Theorem 4.5. 
Now, Theorem 4.5 leads to the following 

DEFINITION 4.6. Let Q be any parabolic subgroup of G. Then a 
Schubert variety X(,1,) in G/Q will bc called a Kempf tiuriefy if X(w) has the 
property that all weakly standard Young diagrams on X(,V) are in fact 
standard. 

WC next prove the result (analogous to Theorem 4.5) for Kempf varieties 
in the case G is of type B, or C,. We first recall the definition 
of a Kempf variety in G!B (G being of type B, or C,). Let 
24, = si ‘. . s ” ,S,“‘S,+,. ,. F Then (recall cf. [ 10, Propositions B.l and C. 11) 
any ,V E W has a reduced expression M’ = ,c, it’*. . . IV,,, where tri is a right- 
end segment of u;, I d id n. 

DEFINITION 4.7. Given IV= ,v, ... ,v, call kc’ a Kempf clement if the 
following holds. Let 1 d id n - 1. 

If IV,+, =u,+ ‘3 then ~1, is arbitrary. 
If Ivi~,=.s,“‘s,, ,, i+ I <r<n- 1, then ,t‘,<s;...si+,s,. 
If u’,, ,=.s;~~.s,;~~.F~, ,, i+ 1 <r<n, then ,t‘,<.s, 2..‘s ,-,. yi. 
If ,vi ( , = Id, then ,c‘~< s,. 

PROPOSITION 4.8. Let )I: he a Kempf element. Then fur any T E W, we 
haoe w > T if and only if‘ M‘, > T,, 1 < r < n, where w = w, . . w,, and 
?=7,“‘T,. 

Proof: The proof of the implication = is obvious. Now let war. If 
possible let ,v~ < TV, for some k, I ,< k <n. This implies in particular that 
Wk # Uk (= Sk ... S”“’ sk). Now we distinguish the following two cases. 
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Case 1. Let wk=s,“‘sk+lsk for SOEX r<n-1, so that 
Tk>S,+l.“Sk+lSk. Now identifying W with W(Sp,,) the projection of w 
on w/w,, as an (increasing) k-tuple has the entry at the kth place to be 
r+l (since w is a Kempf element, we have w,<s;~~s,+~s,, t<k) while 
the projection of z on W/W,, as an (increasing) k-tuple has the entry at the 
kth place to be >r + 2 (since zk 2 s,, I ‘.. sk+ l~k)~ Hence w’/‘) 3 T”’ 
(where for any p E Wand t, 1~ t < IZ, p(‘) (E WC’)) denotes the projection of 
p on W/W,). Thus w 3 z, which contradicts the hypothesis that w > 5. 
Thus, this case does not exist. (The same argument holds in the case 
wk = Id. To be very precise, if wk = Id, then rk b Sk and now, wfa’ has the 
entry at the kth place to be Y where r < k (since w is a Kempf element, 
Wf<Sk-l.‘.SI, t 6 k - 1 ), while r (k) has the entry at the kth place to be 
>k+ 1 (since rk>s,). Thus w (k) & ~(~1, which in turn implies that II’ 3 ? 
contradicting the hypothesis that w 3 z. Thus this possibility again does no! 
exist.) 

&se 2. Let wk=s,“‘s,“‘sk+lsk, k < r 6 n, and let sk = s, . .s,! .sl. 
where t < Y (since wk < zk and both wk and zk are right-end segments of 
Sk . . . s, . . . sk)~ Now w is a Kempf element, implies that wi < S, z . . .Y, , , .s!: 
i<k-I. ence we obtain wCk) has the entry at the kth place to be 
r’ ( = 2n + 1 -r), while, r@) has the entry at the kth place to be 
>2n+ 1 - t (since zk = S, ... S, ... sk). Hence w@) 3 rCk) (since r’ < 1’ (:s 
t < Y)). Thus w & z, contradicting the hypothesis that w 3 5. 

Thus both the cases lead to contradictions. ence our assumption 
wk 2 zk is wrong. Thus wk 3 zk for all 1 <k d n. 

PROPOSITION 4.9. The set (w E W/for any z < w, zk < wk, ! 6 k d n I is 
precisely the set of Kempf elements. 

ProoJ The inclusion 2 follows from Pro osition 4.X. Let M’ be such 
that for any zdw, zk,<wk, l<k<n. 

Claim. w is a Kempf ‘element. 
If not, let k be such that wk and wk+ I do not satisfy the condition in 

Definition 4.7. In particular we have w’k + I f uk + 1 ( = Sk + 1 . ’ . s,, .si, + , i. 
We distinguish the following five cases. 

case 1. %el wk=si”‘sk+lsk and wk+l=sj”‘sk+l, k+ l<.i<i<ti. 
Consider z = z I . . z,, where 

zI = Id, I#k+d 

=Si”‘Sk+l, l=k+l. 

Now War, but wk+r k r’k+r. 
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Case 2. Let wk=sI...s;..skandw,+,=si...s,+,, i<n-1 andt>k. 
Consider z = z i z2 . . . z,, where 

zI = Id, I#k+ 1 

= s, * . .s,. . * ,y k+l, Z=k+l. 

Now W>T, but wk+i 3 rk+r. 

Case 3. Let wk=s;..sk, t<n-1 and w~+~=s~~~~s;~~s~+~, 
r-l<t. 

Consider r=r1r2...r,, where 

zI = Id, I#k+l 

=s,~1s,“‘s,“‘sk+1, Z=k+ 1. 

Now w22, but wk+i 3 rk+i. 

case 4. Let wk=sz”‘s,“‘sk, t>k and wk+l=s,~~~s,~~~.~~~,, 
r>k+ 1. (r>k+ 1, since w,+,#u,+,). Consider z=z1z2~~~r,,, where 

zI = Id, l#k+l 

=s,-lsr”‘s,“‘sk+l, l=k+l. 

Now W>T, but wk+l 3 rk+i. 

Case 5. Let wk>sk+isk and wktl=Id. 
Consider r = z i . . . r, , where 

zl = Id, Z#k+l 

=sk+l> Z=k+ 1. 

Now W>Z, but i’“k+r % rk+l. 
Thus all possible cases contradict the hypothesis. Hence such a k does 

not exist, which implies that w is a Kempf element. 

THEOREM 4.10. Let w E W (G being of type B, or C,). Then, on X(w) the 
two notions of Young diagrams being standard coincide if and only if w is a 
Kempf element. 

ProoJ: The proof of the implication e is completely analogous to the 
proof of the corresponding implication in Theorem 4.5 (one uses 
Proposition 4.8, etc.). 

Let now X(w) be such that on X(w) a weakly standard Young diagram 
is in fact standard. Let w = wr w2 . . . w,. Claim: w is a Kempf element. If 
not, let d be the smallest integer such that the conditions relating wd and 
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Wd+ 1 (cf. Definition 4.7) are not satisfied (in particular this implies 
wd+l<“d+l (= sd+l”‘s,~,-l”‘sd+l )). Then we have the following five 
possible cases. We shall now show that all the possible cases lead to con- 
tradictions, from which the claim will follow. (Xn the following proof, for a 
w E IV, we shall repeatedly use, both its reduced expression (in terms of the 
simple reflections, cf. Proposition 2.3) and its representation as a per- 
mutation identifying W with W(Sp2,). To be very precise, given a Young 
diagram 8 weakly standard on G/B, to see Q is a diagram on X(w) (cf. 

efinition 2.9) we use the reduced expression for w and to get the smallest 
Schubert variety X(A) on which 8 is standard (cf. Remark 2.16), we use the 
permutation forms of elements of W). 

Before discussing the various cases, we want to observe the following: 
(i) The element s,“‘s d+ 1 sd (where r < n - I ) as a permutation 

d d+l ... r+l 
=(12...d-1 r+l d d+l ... r r+2...~) 

(ii) The element S, . . S, . . sd (where d < t < n) as a permutation 

ddsl... t 
=(12.,.d-l t’ d d+l...t-I t+l...N): where t’=2n+l-t. 

We also need the following lemma for our discussion. 

LEMMA 4.11. Let W= W(SL,) andlet WE WCd), say w=wlwa...wdfor 
some d, 1 < d 6 n (CT Proposition 2.5). Further let w = (aI . . . adad+ 1 an), 
where 1 da, < a2 < ... <a,<n and l<ad+l <a,+,< ... <a,,<E. Then 
for 1 di<n-d, 

a dfi=d+i, if I(wJ < i 

=k+i-I, where k is the smallest integer such that I(wk) 3 i. 

ProoJ: (By decreasing induction on i and decreasing induction on I(w j.) 
Starting point of induction. i=n-d. Then d+i=n. We need to show 

a, = n. Suppose I(wd) < n - d, this implies in particular that w,< s, ~ 7. . . 
sd+ 1 sd and hence ad < n - 1 (cf. Remark 2.6(n)). Hence n E i a,, ;. : ,..., a,, 1 
and in fact a, = n (since ad+ 1 < ad+ 2 < . . . < a,). 

I(w) (= dim G/P,) = d(n -d). In this case we have l( 13.~) = n -- d. 
1 <k<d, and w = (n- d+ 1, n-d+2 ,..., n, 1, 2, 3 ,..., pz- (I). In particular 
we have ad+i= i, l<i<n--d.Now,foreveryi, l~idPZ--d.l(ll’,)~i,and 
hence the smallest k such that Z(wk) 3 i is given by k = 1. Hence k + i - 1 = 
i=ad+i, as required. 

Now let i < n - d and w arbitrary. If l(wd) < I’, then wd d sJ+ L ~ z. I~+, .sj 
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(recall (cf. Section 2) that wi is Id or a right-end segment of s, , ... sd 
(where W= S,)) and hence u,dd+ i- 1 (cf. Remark 2.6(n)). Hence d+ iE 
iad+ I,“‘> 41 ( since ~,<a,< ... <ad). In fact d+i, d+i+l,...,n~ 
{u,,; , ,..., a,} and the fact that a, , , < ad+ z < . . . < a,,, implies ud+, = d + j, 
idjdn -d. Now let f(~~,)bi and let k bc the least integer such that 
f(w,)>i. Now, I(y)<i, j<k. implies ~v,<.s~+~ z~‘.s,+,,s,, j<k and 
hence ai=j+i-1 <k+i- 1. Also, ~t’~>/.s~+~.. ,..‘.sk+,.sk (since I(t~,)>i) 
implies ux (and hence u,, k < j d d) is >, k + i. Hence we obtain that k + i - 
1 E { ud+ 1 ,..., a, ). Now consider T E W’“‘, ? = T, 's2.. . TV, where 

Tji= M‘,’ .i#k- 1 

=Sk,, Z”‘ShSk , 

Then T > M: (since T/, , > LC’~ r, by our assumption on k). Now if 
~=(b,...b~...b,,), then hJ+,= k + i- 2 (by induction hypothesis on I(T)). 

Hence u (, , i3 k + i - 2 (observe that, since T 3 16, (h, ,..., h,,) 3 (a, ,...) N(,) 
equivalently (hd _ , ,..., h,) f (ad : , . . . . . u,,)). Claim. a,, , , = k + i - I. 

For, we have 

(1 ,,.c,+I=ti+i+l, if /(tc,)<i+ 1 

=k’+i, where k’ is the least integer such that I(w,,) >, i + 1 

(by induction hypothesis on i). Now k’ > k and hence in either cast (I,,- !, , 
is 3 k + i. This together with the fact that ad +, >, k + i - 2 and the fact that 
k+i- I E {a, ,-,,..., a,,} implies that a‘, ,. , = k + i - I, as required. 

COROI.I.ARY 4.12. Let 1%’ E W’“‘, suy 1~ = (a, . ad. a,). Let r > d bc 
such that a,(= x) is <r. Then M:>/s,s,+, “‘s,-,. 

Proqf. Write i = r - d. Then, since u, < r, we have Q~v,,) > i and 
u, = k + i - 1, where k is the least integer such that I(M.~) > i (by Lemma 
4.11 above). lvow bl’/i 3 sk, ; , . . . .F /, , , .sk (since I( ktvk ) b i). Hence for every j, 
k d j d d, kvl > s , , I 1 ” .s, , 13, (cf. Proposition 2.5). In particular 
M‘d~Sd~i~,~~~Sd+lS~,=.s,~,~~~Sd+lSd (note that r=d+i). Thus 
M‘ ( = lb-, . 12’k . w,,) contains the subexpression 1 I:=, s, , i , = 
s,s, _ I . . s‘,, as required. 

Return to the proof of’ Theorem 4.10. 

Cuse A. w,/, I=s,.~~~.s,~~~sd+,, where r>d+ 1 (since ~L’~,+,<u~+,= 
s,], , ~~~.s;~‘.s~ +, and w,, 1 <m 6 n, is either Id or a right-end segment of 
u,, (cf. Proposition 2.3)). 
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Let w1 . . wd- 1 = (a, . . ad- 1 . . a,). NOW, for k, d<kdn, 
WlW2’ . . wd- isk is reduced (cf. Proposition 2.3) and hence ak < aj, d d k < 
jdn-1, and ak<n, d<k<n (because, if z=w,.“~?~~~, t 
d< k<n, implies ~(a~) >O, d< kdn, and z(M~) = eak 
Xk=ek-ek+,, k<n-1, and ~(a,)=2e,~ (cf. [14, Sect.31)). Thus 
lad, a d+ l>..‘> a,> = C (a, ,..., ad- 1) in (1, 2 ,..., n) arranged in as g order 
(note that ak < ~1, for k < d- 1, since by our assumption on d, ndition 
in Definition 4.7, relating wk- 1 and wk is satisfied for k 6 d an 
Wd~S,,- 1 . . . sd). In particular we have a, < m, for d< m < n. Let a,+ 1 = x. 

Observe that x > 1 (for x = 1 would imply r - 1 = d, whcb is not true, 
since r>d+ 1). Let 

ux =S.xSx+ 1 “‘SIP1, if x<r--l 

= Id, if x=r-1. 

Then w I . MJ~~ 1 contains ox as a subexpression (cf. Corollary 4.12) 
YxSr- 1 M’cf+ 1 6 w (since w,[=sr”‘s(/+ls(j where t>r-1). 
v,s,~, wd+ I by 6. Let 

p=~,-l”‘Sd+lSd, if x&d+1 

=sr-l”‘s&lsd, if x6d 

(note that x > 1, as already observed). Now p d w; for, if x 3 d+ 1, then 
p 6 wd (since ~1~ = s, . . sd+, sd, where tar-1 3x); if x<d, (one may 
assume w, _ i > Id, for if w,~ 1 = Id, then w E IJV(S~~(~-~ + r)) and one may 
use induction on the rank of G; thus in fact, we may assume wI > Id, which 
implies that wk > Id, k < d, since the condition in Definition 4.7, relating 
Wk-1 and wk is satisfied for k 6 d (by our assumption)), then 
w>sx-lsx~~~s&lsd(= p). 

Now I’?(= s,s~+l~~~s,~2s,~Is,~~~s,~~~s~+l)~~ (as element of Z) In 
fact as permutations 0 and ,U are given by 

d+ld+2 ... X 

6= (1 ... x’ d+ I d+2...x- 1 x+ 1 . ..n). if x>d+l 

x x+1... d dtl 

=(l...x+lx+2 ‘.. d+l x’ d+2...n), if x<d 

and 
fYd+1... x 

p=(l...x d ... x-l x+l...n), if x>d+I 

x-l x ‘.. d d-t-l 
=(l... x x+1 d+ 1 x- 1 d+2~..n), if x<d 

and B < p (as elements of Z). Thus 
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(*) 0 < ~1 is a weakly standard Young diagram on X(W) (since both 0 
and p d u’ as already observed). Now the smallest X0.) on which (*) is 
standard is such that Jtd+r) (projection of i on W;i W,, ,) as an increasing 
(d-t I)-tuplc has the entry at the (d+ 1 )th place to be (x- 1)’ whereas 
I<(“+ ‘) has the entry at the (d+ 1)th place to be .x’ (for w(‘I+ ‘)E 
((I, “‘U&, .. . a,,) \vdbl~d+ 1 (mod Wd+ , )I. 

d d+l...t+l 
Recall, Wd(resp.u~,+,)=(l..~d-lI+l d ... f t+2...n) 

d+ 1 d+2... r 

(resp. 1 . . . d r’ d-t 1 “‘r- 1 r+ l...n)) 

= (a, ...a d ,a,+,u: I”’ ) (note that d+2<r<t+ 1) 

=(u,...ud-,u,+,x’...) 

(where a,<n, 1 dkdd- I and also for k=t+ 1). 
Thus H.(~ I- ‘) & i’” ‘I and hence u’ & i;, which implies that (*) cannot be 

standard on X(~C). This contradicts the hypothesis that all weakly standard 
diagrams on X(W) are in fact standard. 

Case B. 

w dtI=S, “‘s,,“‘sd+, (where r>d+ 1) 

Wd=S,“‘S,“‘Sd, d<t<n. 

Let k be the smallest integer <d such that We >, s,, ... sx- (recall (cf. 
Proposition 2.3) that for 1 <m d n, w, is either Id or a right-end segment 
of U, = s, . . . s, .. 3,). Then, we have, W, <s,, , . . s,, for m <k - 1 and 
W, = u,, for k + 1 6 m <d (since by our assumption on d, the condition in 
Definition 4.7. which we shall henceforth refer to as the Kempf condition 
relating it’,,, , and w,,, is satisfied for m 6 d). Now for k <m < n, TS,~ is 
reduced and hence T(z,) > 0, k d m <n. This implies that for k d m < j d n, 
a,, < a, < n (since 

if xl,8 = em - e,,, c 1 (mdn- I) 

if xnl = 2e,“. 

Also, a,, d n, for m < k - 1 (since for m ,< k - 1, bt‘,, d S, _ , . . s,,, etc.). Thus 
(uk ,..., u,)=C (u ,,..., uk ,) in (I,..., n) arranged in ascending order. For 
1 < t < n, let w(‘) denote the projection of w on W/W, (observe that w(” = 
W,W2” . IV, (cf. Remark 2.4)). Now writing w(” ’ ‘J and w”‘) as increasing 
d-tuples, we have 
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WCd+‘)=(l) (Cl )...) C~~~,a;,a;,a&~, )...) a;), if Wk = zk/( 

= c2) (cl,..., ck- 1, ai, & a;- 1,..., a;), if Wk = 3,. I ’ 3, ‘. Sk 

wherek<t<d 

= (3) (cl,..., ck-1, 4, 4,a&-,,..., 41, if d< t < Y (wk as in (2)) 

= (4) (cl ,..., ckpl, a:, a:-,, a&- ,,..., a;), if t> r (wk as in (2)) 

where (Cl ,..., c&-l) = {aI ,..., a&,} arranged in ascending order) and 

wed) = (1) (cl ,..., ck- 1, a;, a;- l,~.., ah) 

= (2) (cl ,..., ck- 1, a;, a;- 1, . . . . a;) 

= (3) (cl ,..., ckpl, a;, a;- I ,...: aa) 

= (4) (cl,..., ck- 1, a;, a;- 1,-‘, a;) 

respectively. Now consider the weakly standard Young diagram (p, Q), on 
X(W), where p E WCd) and 6, E W(df’), p and B being defined as follows. 

Q = )p+ 1) (in all the four cases) 
and 

p=(l) (c1,-., ck-l, a>+,, &-., ak+r) 

=c2) (C1,...rCk~l,a;+,,a;,...,ah+l) 

=(3) ca) (C1,...,Ck~1,a:,a;,...,a6+1), if t>d 

(b) (cl,..., ck-l, a;,,, a;,..., 4+lh if t=d 

= (4) (cl,-., ck- 1, a:? 6 a&-l,-, a;+l), 

Observe that 6’ < p (as elements of 2 (in fact in cases (l)-(3) 0 and ,u have 
the same entries in the first d places, except the k th place, where the entries 
are given by ai (resp. a;,,) in the first two cases; ai (resp. a:) in (3(a); a: 
Crew. 4, i ) in (3(b)); in (4), &’ d h an ,B ave the same entries in the first d 
places except the (k + 1)th place where the entries are given by ai- 1 an 
a;, respectively. And we have, a: < a&+ 1, a:- 1 <a;, ai < ai (in (3(a)) etc., 
(since a, > ad+ 1, a, > a,, (when r> t) by o work on w1”‘wk-l= 
(al”‘ak--lak ... a,,), in the beginning of case . Aiso, ,M < w@) (obvious) 
and 0 = wCdi- I). Thus (p, 6) is weakly standard on X(w). Now the smallest 
X(A) on which (II, 0) is standard is given by 

/I= (1) (Cl,..., ck - 1, al+ 1, &-, ai + 1 , ab. 1 

= (2) (Cl,..., ck- i, a&+ 1, a&,-., ah + 1, ah,.- ) 

= (3) (a) (cl,-? ck-19 a:, a&,-, ah+ I, ~k~-~~ if t>d 

(b) (Cl,-, ck- 1, a&+ 1, 4,..., al+ 1, 4,-L if t=d 

= (4) (cl ,..., ckpl, a;, a;, a ,..., aktl, a; ,... ). 
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In all cases, one finds that w cdtl) 3 ACd+l) (for in (l)(3), the entry at the 
kth place in w (d+ ‘1 3 the entry in the kth place in ACd+‘), since ai < a&+ i 
(in (1) and (2)), ai < ai (in (3(a))), a: < a;+ I (in (3(b))); in (4), the entry 
in the (k+ 1)th place in wCd+‘) Jz the corresponding entry in 3LCd+‘) (since 
4-l < al)). Thus w 3 i and hence (p, 0) cannot be standard on X(W) con- 
tradicting the hypothesis that all Young diagrams weakly standard on 
X(w) are in fact standard. 

It should be remarked that for the above argument to be valid, one 
requires d> k. Suppose d= k. The above argument holds in (1 ), (2), and 
(3b)) only. (In (3(a)) and (4), the d-tuple (corresponding to p) as a set is 
G the (d+ 1)-tuple corresponding to 0). Hence (11, 0) in fact remains stan- 
dard (a defining pair for (p, 0) may be taken to be (A, A), where 

A=(c l>...> Ck-1,4,4) in case (3(a)) 

= CC 1 >...> Ck ~ 1, 4, a:- 1) in case (4). 

Nevertheless, in (3(a)) and (4), we consider the weakly standard Young 
diagram ($, O’), where 

$ = t”l ,..., ud- 1, &), if t<r 

= (a 1 ,..., ad& 1, a,- 1 1 , if r<t 

and 

e’= (ul,-., ad-l, a,-,, a;), if t=cr 

= (a 1 ,..., ud-l? ar-2, &l 1 , if r<t 

(observe that 8’<$ (as element of Z), since a,+, <a,, arp2<a,p, (recall 
that for k=d<m<jdn, u,<ujand that t-l>dand r-2>din (3(a)) 
and (4)); also, observe that, 0’ < wCd+‘) and $ d wCd). Thus (p’, 0’) is 
wekaly standard on X(w)). Now the smallest X(1’) on which (p’, (3’) is 
standard is such that ACd+ ‘) 4 wCd+ ‘) (The (d+ 1)th entry in ACd+ ‘) is a;, 1 
(resp. u:-~) while the corresponding entry in wCd+l) is a: (resp. a:-i)). 
Thus ($, 0’) can not be standard on X(w) contradicting the hypothesis 
that on X(w), all weakly standard Young diagrams are in fact standard. 

Case C. 

wd+ 1 = s,. . . Sd+ 1, d+l<r<n 

wd=st”‘sd, r+l<t<n. 

For k<d, we have wk<s;.+ sk (by our assumption on d). The discussion 
in this case is completely analogous to the proof of Theorem 4.5. 
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Case ID. 

The discussion in this case is very much analogous to that of Case 
k be the smallest integer dd such that, wk > s,,_ 1 . . sk. Now the Ke 
condition in Definition 4.7 implies that w, <s,- 1 . . . s,,, m < k - 1 
w, = U,) k+l<m<d. Let 5=w1...wk~1=(a,...a,_,ck,...a,). Then, 
for k<m <n - 1, we have a, <a,+, <n (since zs,, m > k remains 
reduced, we have $a,) > 0 (and 

z(%J = earn-earn+,, if m<~-l 

= 2ean, if m=n :’ ’ 

Hence 

wfd+l)= (1) (cl ,..., ck, a; ,..., a;), 

= t2) tcl ,..., ck, &-., ah>, 

if wk=uk 

if wk = s, . s, . ~. sk 
where k<f<d 

= (3) (cl,..., ck, 4, ai- l,..., ak), if d<l<r+l 
(Wk as in (2)) 

= (4) (cl ,..., ck, ai, 6, ,-., ai), if la-v-!-l 
(wk as in (2)) 

where {cl ,..., ck} = {al ,..., akpl, a,,,, arranged in ascending order} in 
(l)-(3) (rev. {al,-., ak-l, a, arranged in ascending order) in (4)), and 

w’“‘=(l) (bl )...) bk&,,a; )... ~a;) 

= (2) (b, ,..., b,- I, U& ,..., a;) 

= (3) (b, ,..., bk- 1, a:, a;- 1 ,...) ak) 

= (4) (6, ,..., b,- t, a:, a;-. L,..., a;) 

where {b, ,..., b,-,) = (al ,..., ak-1, arranged in ascending order). Now 
consider the weakly standard Young diagram (p, 0) on X(w), where 
,IJ E WCd) and 8 E Wed+ I), p and 8 being defined as follows: 

15 = wCd+ ‘) (in all the four cases) and 

P=(l) (~l,...,bk~1,a;+l,a&,...,~;+l~ 

=(2) (bl,...,bk-ll,a~+l,~~,...,a~+l~ 

= (3) (a) (bl,..., bk- 1, a:, ah, a>- 1 ,-, aK + 1 j, if ;>d 

(b) (b, ,..., bk- 1, 4 + 1, 4, a&- 1 ,..., 4 + 1 1, if r=d 

=(4) (b1,...,bk~1,a:,a;,a;-l,...,a6+l). 

481/94/l-7 
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Observe that 0 <cc (as elements of Z) and p < IV’“‘. Thus (p, 0) is weakly 
standard on X(w). Now the smallest i on which (p, 6) is standard has the 
projection 3.(d+ ‘) on W/W,,., to be 

Led+“=(l) (b ,,..., 6, ,, ~;+,,a; ,..., u;) 

= (2) (b,,..., b,- 1, a;, ,, a;, . . . . 4) 

= (3) (a) (b,,..., bk ,, 4, 4, . . . . ui), if t>d 

(b) (b,,..., b, ,: 4 , , , &..., u;), if t=d 

= (4) (b ,,..., h, ,, a;, a; ,..., a;). 

In all (four) cases, one finds that w(“ I+‘) % i.(“+ ‘) (for the simple reason 
that the k th entry in ltJ+ ‘) > n, while the corresponding entry in r&‘+ ‘) is 
<n (recall that a, d n, for k <m d n). 

As happened in Case R, the above argument holds in (1) (3) without 
any condition on k and in (3(a)) and (4), one requires d> k. Let us then 
consider cases (3(a)) and (4) when k= d. In this case, one considers 
(p’, O’), where 

p’ = (a,,..., U‘/L , , u,) 

and 

0’ = (a, ,‘.., U‘/ I, a, , ,4), if t<r+l 

= (u, ,...3 Ud 1 > a,, a:), if r+ 1 d t. 

Now a, , <u, and a, <a, (when r + 1 d t) (since u,, <u,, for k = d < m < 
j< n and both t - 1 and r>, d (since t > d in (3(a)). Thus 8’<$ (as 
elements of Z). Also. it is easily seen that 8’ d w’~+ ” (note that u, , (rcsp. 
a,.) is <a, : , (rcsp. u,) in (3(a)) (resp. (4))) and 11’ < \ccd’. Thus ($, 0’) is 
weakly standard on X(W). Now the smallest X(%‘) on which (p’? 0’) is stan- 
dard is such that %(d+‘) 4 w((‘+ ‘I. for, the entry at the (d-t l)th place in 1 
jsCd+ 1) is 01 , while the corresponding entry in w((” ‘) is u; and u:-, > a; 
(since u, , <II, (recall that for k=dbm< jbn, u,,<u, and that t -1 >d, 
in (3(a)) and (4)). Thus (p’: H’) can not be standard on X(w) contradicting 
the hypothesis that on X(W), all weakly standard Young diagrams are in 
fact standard. 

Case E. 

IV,,+, = Id and lc‘(/ 2 SJ ( , .s+ 

If bbvd=S,....ydfor some t<n- 1, then we have w,,,<s, ,“‘.s,, form<d 
and the discussion is completely analogous to the proof of Theorem 4.5. 
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If ).Vd = s, . s, . s,,, d< t <n, then the discussion in Case D (with r t I 
replaced by d+ 1) goes through verbatim (one may observe that if I< = ii 
and wci+ I = Id, then (3(a)) does not exist). 

Thus all possible cases contradict the hypothesis that on X(M.) ail weakly 
standard Young diagrams arc in fact standard. Hence our assumption on d 
is wrong. Thus the condition in Definition 4.7 relating bjl:(, and M“,, , is 
satisfied, 1 < d6 n - 1. In other words, under the hypothesis that on X(W) 
all weakly standard Young diagrams are in fact standard, we have proved 
that 11’ has to be necessarily a Kempf element. 

This completes the proof of Theorem 4.10. 
Now. Theorem 4.10 leads to be following 

DIYFINITIOS 4.11. Let Q be any paraboiic subgroup of G. Then a 
Schubert variety X(M,) in G/Q will be called a KmzPlf‘~:uri~t~~ if X( ir.) has the 
property that all weakly standard Young diagrams on X(I~,) arc in fat! 
standard. 

In this section G will denote a group of type A,,: II,,, or c‘,, and WC shall 
identify U’(G) with W(SL,, , ,) (resp. W(Sp,,,)) if G is of type A,, (resp. H,, 
or C,,). Let Q be a parabolic subgroup of G. say, Q = P,, n P,, n . n P,,(. 
1 6 k, <A, < < k,, < n, where P,!. 1 6 t < ci, is a maximal parabolic sub- 
group of G. Given c = (m,,, m,.,.... m,,) E (Z T )” and a Young diagram 
(0. ri) of type m standard on A’( I<) (cf. Definition 2. I3 ): recall (cf. Theorem 
2.14) that the standard monomials pu,n E /I(‘( A’( ht.), f.) form a K-basis for 
If”(X(1~~). L) (K being the bases field), where L = L;‘,: 0 L;i; 0 0 L;;?;i 
and L,,. 1 <I< 0, is the ample generator of Pic(G::P,,,) (here-u.E W:W,,). 
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ProoJ Choose a minimal element, say CI~, among { ~;/p,;,~, occurs as 
the first factor in some term on the RHS of *}. Let 8 = (0,3 19~ > . . * > be 
the maximal defining pair on X(W) (cf. [ 13, Corollary 11.21) for the stan- 
dard diagram a,>P13a,>B23 ... >a,>P,>y,>6,3 . . . . Now 
restricting (*) to X(8,), any term on the RI-IS either vanishes (namely if 
a,> a,) or remains standard on X(0,) (by the choice of c~i and 0) and there 
is at least one term whose restriction to X(0,) is not zero, namely pn,,BI . . . . 
Thus the RHS of (*) when restricted to X(0,) is a non-zero sum of stan- 
dard monomials on X(0,). Hence the restriction of LHS to X(Q,) should be 
#O, from which we obtain zi < CI~ ( = the projection of 8, on W/W,,). Now 
any other a; is 3 some minimal CI~ and hence is 32,. 

If zi (say zi) is such that z1 =ai, for some a, (this in particular implies 
that a, is in fact the minimal among (a;}), then on X(0,) we have 

(**) Pal,& Pr*,d* . . . PT,,qb Pi,,@, . . . PA&~ 

= ( 1 Pal,/31 Pa2,82. . . + ( ) Pal,& Pm;,& ‘. . + . . . . 

(note that the first factor in every term on the RHS looks like por,,( ,). Now 
choose a minimal, say pi among {pi}. Let 8, > (3; 3 ..= be the maximal 
defining pair on X(8,) for the standard diagram a, 2 pi 3 . . . on X(0,). 
Now multiplying (**) by pal,pl, we have 

Pa, J&-TQ; PC&62 . . . ( ) Poll ’ Pp, PorzJ32 . . . +( )Pa,Jlp_nlPa;P,,,e;... + ... 

up to Il. (recall (cf. [13, Proposition 6.11) that on X(z), ZE W/W,, 

p, 3 d = -tp, . ~6 and P~,~, P+ = + p,dpx). Now cancelling pa, and con- 
sidering the maximal defining pair (11 3 c2 > ... } on X(0,) for the stan- 
dard diagram {/Ii 3 CQ > f12 3 . . } on X(0,) and restricting to X((i), we 
obtain that the RHS is a non-trivial linear combination of standard 
monomials on X(tl). Further, each term on the RHS starts with pp, (recall 
(cf. [13, Proposition 6.11) that on X(pi), 

&iiGY$ B ;; g;q. 
Ir ;, 

Hence, restriction of the LHS to X(ti) should be different from zero. Thus 
/?i (= the projection of [i on W/W,,) is >#i, z2, q52,.... Now if $i =pi, 

then d= = pa, ; if di = p1 for some i > 1, then the corresponding zi is 
=pl (since bi 3zi>#& in which case we have pTi,B,=pPl,P, = pp,. Thus in 
either case pb, appears on the LHS and each term on the RHS (of the 
restriction to X(tr)) starts with pa, (as already observed). Now cancelling 
pp,, the LHS becomes a monomial of degree one less than that of F. Hence 
using induction on degree of F, we obtain (CQ, p2 ,..., IX,, fl,., yi, 6,) y2, S2 ,...) 
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is lexicographically >(p(rz), p(&), . . . . p(r,), p(#,), O(i.,). @pi) ,... *...). where 
p e S1, 2, 0 E STsr etc., from which the required result follows (since 
( CY, , [jr) has been proved to be lexicographically >, (T I, 4, ) and r , >, 4 I ), the 
proof for the starting point of induction, namely dcg F= 2, goes on the 
same lines as the proof above in the general case. In fact, we obtain 
something stronger in this case; to make it very precise if 

IS the expression for the non-standard binomial y,,&,/~),,,~ in terms of stan- 
dard binomials. (the degree of the binomial being of the type 
(0, 0 )..., 0, 1, 0 . . . . . 0, 1, 0 ,...) 0) or (0: 0 . . . . . 0, 2, 0 ,...) 0)) then the above proof 
shows that for each term on the RHS, x > r; if CY = r, then /I 1. 4. 

This completes the proof of Proposition S.!. 

DEFINITION 5.2. Given WE W/W<.,. define J,, ( R ,i (where 
R=R,,=Ci31.,o H’(X(I~), L)) as follows: 

1 

’ there exists a straightening relation in which 

J,,..( Rj = a c .Z!,“l 1 
there is a term on the RHS involving SL (strictly) i 

I more. number of times than the number of times x 1 

\ i appears on the LHS i 

(here (k) denotes (k, ,.... k,.) where Q = Pk, n Pk. n ... n P,,; by a 
straightening relation, WC mean a relation in the K-algebra R, which 
expresses a (non-zero) non-standard monomial in K as sum of standard 
monomials). 

Now we want to deform R (by successive flat deformations) so that for 
the deformed algebra Rdef, we have J,,.( Rd”‘) = g and then using the results 
of Sections 3 and 4, we shall show that Rder is Cohen Macau!ay if :I’ is a 
Kempf clement, thus proving R to be Cohen Macaulay. To arrive ai Rr’c’, 
..vz proceed as follows. We fix a maximal clement, say x in J,(R) and con- 
sider I: the ideal in R generated by P,,,~ ‘s and P.,.~‘s (r: being fixed). Then we 
have the following (In the .fiA/ou’ing WC shall denote pr,n IIF ,j~tst (2. ,G)). 

I’rooJ: For any monomial T, let I‘, = {/I. appearing in r:/? > X) and 
TX’= i/l. appearing in r.i/ L x}. Now let T E il. If T is not standard, iet 
T= x a, Tj be the expression for T as sum of standard monomials (whcrc 
each T, is standard). Now consrder any T, appearing on the RHS and con- 
sider a /j appearing in T,, where (3 3 iy. Now the maximality assumption 
on x implies that number of times /j appears in T is > the number of times 
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/I’ appears in any T, on the RHS (in particular, the number of times /I 
appears in T,). Now the lexicographic condition (cf. Proposition 5.1) 
implies that such a /I appears the same number of times in T and T,. Hence 
the lexicographic condition in Proposition 5.1 implies that SI has to appear 
in Tj at least as many times as it does in T. Hence r has to appear at !cast j 
times in Ti (since it does so in T. as TEI~) which implies the required 
result. 

Let a = ... Rr*@ Rt@R@Ir- ‘QI*t *@ .... Observe that 3 is a K[t] 
algebra with algebra generators given by 

I 
M 7)3 (1) p, -jEZ$) 
(a, b)t --’ (2) (I and 7 are different from r 
(y, r)t --I (x, having been fixed as above) i 

. 

Let R’ = B/(f) ( = R/I@ [!I’ @ . .). Then using Proposition 5.3, we obtain 

hWPOSITlo~ 5.4. R’ is a K-algebra with algebra generators giwn by 
((/3, y)‘, (where 8,~ E Z!$) and (fl, s) is an admissible pair) such that the stan- 
dard monomials in these generators form u K-basis and such that J,.( R’) G 
J,.(R) - {zf. Further, 23 is a flar deformation whose special fiber (I = 0) is R’ 
and whose gene& fiber (t, i~wertihle) is R. 

Continuing thus we obtain 

PROPOSITIOS 5.5. There exists a sequence ( Ri ) 0 <, $ ,n of K-ulgebras and 
a .sequence (% ) Cl <, G ,n , of flat deformations such that 

(1) R,, 0 d i < m has u set qf ulgehra generators indexed by { (1,~) 
where ,!l, 7 E Zi!’ and (p, 7) is an admissible puir} such that the standurd 
monomiuls in these gmerators jbrm u K-basis for R, 

(2) R,=R. 

(3) J,,.(h) c= Jt,(R, 1). 
(4) J,,.(K) = 0. 
(5) Ri is a generic libcr and R,, ,, the special fiber of .%i. 

COROLI.AKY 5.6. Lcf us denote R,,, by Rdcr. Then we huve if Rdcr is 
Cohen MacaulaJt so is R. 

Remark 5.7. Now J, ( Rd”) = 0 implies that a monomial in RIier is zero, 
either if the z’s in it are not totally ordered (as elements of Z!,“)) or if the IZ’S 
arc totally ordered but the corresponding weakly standard monomial is not 
standard: in the alternating case, namely, when the corresponding weakly 
standard monomial is in fact standard, then it is =u, the corresponding 
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unique standard monomial, where a~ K (in Proposition 5.8 below, WC shall 
show that a= _+l, if G is of type B, or C, and II‘ is a Kempf clement). If G 
is of type A, (then all admissible pairs (r, 4) being trivial. i.e., T = 4): we 
obtain that in Rdcf if there is any non-zero? non-standard monomial. say 
F= Z IJ~, ’ IJ~, PO, . .Pd, P>.,. I’;, ’ ‘* then there is oniy one term on the 
RHS and that is F itsclfr in other words, in R”“:. there can not be any non- 
zero? non-standard monomial. Thus in Rd”, all nonstandard monomials 
are in fact 0. 

PROPOSITION 5.8. Ler G he of‘ type B,, or C, und let X()L’) h u Kemp/ 
caricr?~ in GiQ. Let F hr a non-zero, non-stmxiurd monomial OII X( 11.). .MJ. 

F= ~71.9, ~r:.e: . ~r..o, P/.,+. ‘P,..;,. 

where T’S and 4’s E Wchi:‘; i.‘s and p’s E W’“;:‘, etc. ( 1 6 t, < t, < . < d) and 
(71. 4,, T23 dz ,.... t,? d,: i.,. p,: . . . . A,, p, . ...) is totally ordered (after some 
rcarranacment) in 
@P 1 ,A+ 

Z(k) , say (a(r,), a(d,), G(T2). o(&) ,.... a(r,). r/cn:i: 
()(A,), &~,,),..l’) is totallly ordered in Z!“’ (where ci E Sir, (‘i E S,,. 

etc.). Then in the expression for F as a sum of standard monomials. the 
monomial P~(~,).~~~,)~ . . I)~(~,).~(~,) P~(~,~.~~~,,~, P~(~.,,.~~,,,,~. occurs with cd- 
ficient _+ 1 (observe that in view of Theorems 4.5 and 4.10 and Definitions 
4.6 and 4.1 1 the weakly standard monomial ~~~~~~~~~~~~~ .“i)n,i ,,,” (0,., 
PS(>., j.N/r~ 1 . /‘O(i,j.ll(p,] ’ ’ . on X(W) is in fact standard). 

Proof: The result follows essentially from [S]. In fact Theorem 4.1(b) 
and Definition 1.2 of [5] imply that 

(observe that T’S and $‘s E W’“:’ for some 1. 1 6 t 6 tl (where Q = P x, r: 
PA, n ‘.’ n P,,)). Now, if P:;,~; “‘py,,s, is any term in F, then we obtain 
(5;. 4; . . . . . s:., 4:) is lexicographically ~(G(T,). cr($,), . . . . 0(r,). fl(d,)) (cf. 
[5]. DcIinition 1.2). Similarly writing p ,l.,tI I’;,;.,(:. “P,,.,t. = ~Po,,, i.o,,:l: “. 

~J~,,j,,I o,ll , A- other terms and so on, we obtain 

F= f~n:r:r.a,l,, .. .~ac:,,,nco,)pn!,,,.r,r,r,l. ~‘i)oi,,,.~~;,,.~. +- G‘: 

where in G (after straightening if necessary ), any term P:;,~; p:;,,; p,, ./,, . 
P;.#;. . . is such that (r’,, d;,..., r;, (b:, j.‘, . IL’, . . . . . j.‘,. p,t . ...) is lexicographically 
h (4T: I. a($, L a(~,), a(d,), e(j-,), U(,uc,),..., Wi,). O!p.,)....) 

This completes the proof of Proposition 5.8. 
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6. ARITHMETIC COHEN-MACAULAYNESS FOR 
MULTICONES OVER KEMPF VARIETIES 

DEFINITION 6.1 (cf. [ 51). Let w E W. For j, 1 d j < II, define 

: 

(1) (q, pi) is an admissible 
pair on X( @I)( c G/P .) 

z=((a,,P1),(a,,P2),...,(a,,P,)) (2) a13P1>a,>P22 *.*I 
(3) (pi, cxi+ 1) is not an 

admissible pair on X( w(“) 

(refer [ 121 or [ 131 for definition of admissible pairs on X(O), 6 E W/W,). 
Here w(j), 1 <j< ~1, denotes the projection of w on W/Wj under 
w-+ W/Wj. 

Remark 6.2. If G = SL, then H,,j is nothing but chains in {WV’} 
(where WV) = { 8 E W(j)/0 < wci)}. 

DEFINITION 6.3. Given zi, z2 E H,, j, say 

t1 = ((Ty), zy’), (zp, zp) )...) (q’, +y 1)) 

z2 = ((2’12’, z&2’), (zi2’, T$2’) )...) (ZE’, zg! 1)) 

define r1 3 z2, if for any (~(~1 I , ritl), i= 1, 3, 5 ,..., m, there exists a (zj!‘), zjyl) c2) 
such that r!‘) >T!~)>T~?~ >z,!yi (note that this delines a partial order on 
Hw,j). ’ ’ 

DEFINITION 6.4. Given (k) = (k,, k, ,..., kd), where 1 <k, <k, < . . . < 
kd < n, define 

ffc’= Czil, ziz2...’ zi,) (4) If 7. = ((~(lii, z(id 

i 

(1) (4, i 2,..., it> z {k,, k2,..., kd} 
(2) i,<i,< *.. <i, 
(3) Zj,EH,,j,, 1 <I< t 

1 <Ii< t, then 
2 ,“., (,(i/’ z(‘/) n, 9 n,+ l)h 

z$!,>z(,“+l), l<l<t-1, 
as elements of 2:) 

Remark 6.5. If G = SL,, then HE) is just the set of all chains in Zkk). 

DEFINITION 6.6. Given z, 4 E Hc), say T= (zi,, zi *,..., TV,) and 
4 = (bj,, dj2>*..,djJj,,, call z 2 (6, if (jl, j2,..., j,} c { il, i2,..., it} and dim d rj,,,, 
1 <m <s, as elements of H,,, (note that this defines a partial order on 
HF)). 
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THEOREM 6.7. Let X(w) be a Kempf variety in G/Q, G being of type A,, 
B,, or C,. Then 

(1) IfG is of type A,, then Rd,“’ is an algebra with straightening law 
(cf Section 2; see also [S] and [7]) on Z,. 

(2) rf G is of type B, or C,, then R “,“’ is an algebra with straightening 
law on Hi!), where (k) = (k, ,..., kd) is given by = c-l:‘=, Ph. 

Proof Now (1) follows from Remark 5.7. In fact, Rd,“f is the discrete 
algebra (cf. [5, Definition 1.4 and Remark 3.1]) with straightening Iaw on 
-TV 

The proof of (2) follows from Proposition 5.8 and Definitions 6.4 and 
6.6. In fact, given a chain z > 4 > 19 > . . in I$:!), say 

where 

etc., we can associate an element P, P, P, . . . E Rd,Ff, namely P, = p$~),~(:i~). 1 
ps>l (+I / .‘nl+l’ P,, P,, etc., being defined in a similar way. Now, in view of the 
partial order on H$) (cf. Definition 6.6) we see that 

is totally ordered in ZE) and one can associate an unique standard 
monomial in the pbS,, ((p, 0.) being an admissible pair in I?@,) for some t, 
1 d t d d) and in fact this unique monomial is = &- P,P, PO . . (in view of 
Remark 5.7 and Proposition 5.8). Conversely given a standard monomial F 
in the pbJ,, , it is easily seen that there exists an unique chain z > 6, > 8 > . . 
in HL?) such that F = ) P, P, P, . . . (in view of Remark 5.7 and Proposition 
5.8). (to obtain the chain z > 4 > 8 > ..., one follows the rule of associating 
a standard monomial P,, P,, . P,, (where z1 > z2 > ... > z, is a chain in 
H,,,; for some iE {k, ,..., kd} ), to a standard monomial in ~b~.~, (p, a)‘s being 
admissible pairs in Wi) (= (5 E W(‘)/t <projection of w on TyylWj) ), as 
described in the proof of Proposition 3.4 of [5]). Thus Rzf is K-algebra 
with a set of algebra generators indexed by the elements of H!‘<): such that 
the standard monomials P, P, P, . . . (where z>d>B.,. in H(,&l) form a 
K-basis for Rdef. Further, the fact that the straightening relations satisfy the 
required lexicographic condition (cf. Section 2 or [S] or [7]) can be seen 
quite easily (using Definition 6.6). 

This completes the proof of Theorem 6.7. 



104 HUNEKE AND LAKSHMIBAI 

THEOREM 6.8. Let X(w) be a Kempf variety in G/Q. Then the ring 
R,= 0~20 H”(X( w), L) is Cohen-Macaulay. 

Proof: In view of Corollary 5.6, enough to show that Rd,“’ is Cohen- 
Macaulay. For the case of G being of type A,, this is immediate; because, 
by Theorem 6.7, Rzf is a K-algebra (K being the base field) with straighten- 
ing law on 22) and by Theorem 3.12, Zc) is lexicographic shellable. Hence 
Z$) is shellable (cf. [ 11 or [2]) and hence any K-algebra with straighten- 
ing law over ZF) is Cohen-Macaulay. In particular Rzf is Cohen- 
Macaulay (when a poset H (or the associated simplicial complex d(H), of 
chains in H) is shellable (refer [l] for definition of shellability) using 
Mayer-Viotoris sequence or [16] one may conclude the Cohen- 
Macaulayness for the discrete algebra K(H) ( = K[x,,,.~]/(x,x~, CI, /? non 
comparable)) and now the Cohen-Macaulayness for K(H) implies the 
Cohen-Macaulayness for any K-algebra with straightening law over H (as 
discussed in Section 2 or [S] or [7]). 

If G is of type B, or C,, then by Theorem 6.7, we have that Rd,“’ is a 
K-algebra with straightening law over H, . ck) It can be easily seen that the 
simplicial complex A(H$) of chains in HF) is a subdivision of A(Z$)) and 
hence the discrete algebra K{Hc)} over Hc) is Cohen-Macaulay if and 
only if the discrete algebra K(H) (cf. [ 161) is. And now the lexicographic 
shellability of ZF) (cf. Theorem 3.14) implies the Cohen-Macaulayness of 
K{.ZF)} and hence that of K{HLk)}. Hence Rd,“’ (and R,) is Cohen- 
Macaulay. 

This completes the proof of Theorem 6.8. 
Using the result of [4] that Schubert varieties are non-singular in 

codimension 1 and Theorem 6.8. we obtain 

THEOREM 6.9 (see also [ 13, Theorem 6.21). Let X(w) be a Kempf 
variety in G/Q. Then the ring R, is normal. 
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