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1. INTRODUCTION

Let G be a semi-simple, simply connected Chevalley group over a field K.
Fix a maximal K-split torus T in G, a Borel subgroup B> T. Let W be the
Weyl group of G relative to T. Let Q be a parabolic subgroup (2 B) of
classical type (cf. [12] or [13]),say Q=¢_, P,,, where P, , 1 <t<d,isa
maximal parabolic subgroup of classical type. For we W/W,, let X(w)
(=BWQ (mod Q) with the canonical reduced structure of a scheme)
denote the Schubert variety in G/Q, associated to w. Given
m=(my,, My,,..., my,)€(Z* )% the notion of “standard Young diagrams™
on X(w) of type m (or degree m) was introduced in [13] (also see {12]
and Section 2) and an explicit basis for H%X(w), L) (where
L=®9_, Ly, L, 1<t<d, being the ample generator of Pic(G/P,)),
indexed by standard Young diagrams of type m, was constructed in [13]
(see also [12]). If G=SL, and Q = B, then this notion, in fact, coincides
with the classical Hodge-Young notion of standard Young diagrams on
the flag manifold SL,/B (cf. [8]). In [13], the classical notion was
generalized to the notion of “weakly standard Young diagrams” on X(w)
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(cf. Section 2). It should be remarked that Young diagrams standard on
X{w) are weakly standard (cf. [13, Remark 12.27). It turns out that the
two notions coincide on X(w)=G/B (or G/Q), G being of type 4,, B, or
C,. But for G of type D, one finds that even for the big cell X{w)=_G/B,
the two notions are different. In fact even for G of type D,, if
m=(1,0,1,1), one finds that dim H°(G/B, L)=350, while there 385
weakly standard Young diagrams of type (1,0, 1, 1}. Again, one observes
that even though for SL,/B, the two notions coincide, it is not so for
Schubert varieties in SL,/B. As an example, if one considers X{w) < SL,/5,
where w=(312)(eS;), then one finds that if m={(1,1), then
dim H°(X(w), L) =5, while there are six weakly Standard Young diagrams
of type {1, 1) on X(w).
Now, one natural question that arises is the following:

(*) Let G be of type 4,, B,, or C,. Is it possible to characterize the
Schubert varieties in G/B (or G/Q) for which the two notions of Young
diagrams being standard coincide? (here it is irrelevant to consider D,
since, as remarked above, even for the big cell (G being of type D, ) the two
notions are different).

One part of this paper is to answer (*). In [K], Kempf gives a
desingularization of Schubert varieties in the Grassmannian by means of a
certain class of smooth Schubert varieties in the flag manifold SL,/B. These
Schubert varieties were generalized in [10] to the case of G/B, G being a
classical group and B a Borel subgroup, and were called Kempf varieties.
These were defined in [10] by giving an explicit description of the
corresponding w’s. These may be geometrically described as follows: Let
P =P, be the maximal parabolic subgroup of G obtained by omitting «,
(note that P is of the same type as G). A Schubert variety X in G/B is a
Kempf variety if and only if under the canonical morphism G/B — G/P, the
morphism 7} X - ImX is equidimensional and X P/B is a Kempf
variety in lower rank. In Section 4, we prove (cf. Theorems 4.5 and 4.10)
that ¢ being of type 4,, B,, or C,, on a given Schubert variety X{w)
(in G/B), the two notions of Young diagrams being standard coincide if
and only if X(w) is a Kempf variety. This leads to the notion of a Kemp{
variety in G/Q (Q being a parabolic subgroup), namely, call X{w) (in G/Q)
a Kempf variety, if the two notions of Young diagrams being standard
coincide {cf. Definitions 4.6 and 4.11).

The other part of this paper deals with proving the lexicographic
shellability of certain partially ordered sets associated to Schubert varieties.
Given a graded partially ordered set H (ie., a finite partially ordered set
which has an unique maximal (resp. minimal) element and in which all
maximal chains have the same length) the notion of lexicographic
shellability for H (cf. [1] or [27) consists in labelling the maximal chains
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in H by elements of some partially ordered set € such that certain proper-
ties hold (cf. Section 3 or [1] or [2]). Given we W and a d-tuple,

K)=(k(, kyyn k), 1<k <k,< - <ky<n (= rank of G),

let

ZW = {re W), 1 <t < djt < projection of w on W/W, }

(here W) denotes the set of minimal representations (cf. Section 2) of
W/W,,, where W, is the Weyl group of the parabolic subgroup P, ) We
then define a partial order on Z¥ (cf. Definition 2.7) and prove (cf.
Theorems 3.12 and 3.14) that Z% is lexicographic shellable. As an impor-
tant consequence we obtain the result that the multicones over Kempf
varieties in G/Q (G being of type 4,, B, or C,) are Cohen-Macaulay
(cf. Theorem 68). To prove this, one first deforms the ring
R,=@® ;-0 H(X(w), L) (successively by flat deformations) using the
explicit basis for R, as given in [13] (see also Section 2) and one arrives at
RY¥L which (for X(w) being a Kempf variety) turns out to be an algebra
with straightening law (cf. [5] or [7]) on a partially ordered set H® (cf.
Definition 6.4) (here (k) is given by (k) = (ky,.., k,), where Q=\7_, P,)
such that the simplicial complex A(H®) (of chains in H®)) is a subdivision
of 4(Z®)., Thus the problem of Cohen-Macaulayness for R, is reduced to
the problem of Cohen—-Macaulayness for K{Z®} (cf. Section 2; given a
finite partially ordered set H, K{H} stands for K[x,, xe H]/(x,x;, « and
B not comparable) and it is a general result (cf. [5] or [7]) that a
K-algebra B with straightening law over H is Cohen—-Macaulay if K{H} is).
Now one concludes the Cohen-Macaulayness for K{Z®} using the
lexicographic shellability property of Z%).

For an arbitrary X(w) (in G/Q), even though Z® turns out to be
lexicographic shellable (cf. Theorems 3.12 and 3.14), this information does
not help in concluding the Cohen-Macaulayness for R4 In fact, in [9],
we tackle this problem by studying the ideal theoretic unions and intersec-
tions in RYs,

The paper is organized as follows.

" In Section 2, we deal with preliminaries, wherein we recall results concer-
ning the Weyl group, reduced expressions for elements of W, the two
notions of Standard Young diagrams on X(w), algebras with straightening
laws and lexicographic shellability. In Section 2, we also introduce the set
Z® we W.

In Section3, we prove the lexicographic shellability for Z%) (cf.
Theorems 3.12 and 3.14).

In Section 4, we prove that on a given X(w) in G/B, the two notions of
Young diagrams being standard coincide if and only if w is a Kempf
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element (G being of type 4,, B,, or C,) (cf. Theorems 4.5 and 4.10). Then
we introduce the definition of a Kempf variety in G/Q, where Q is any
parabolic subgroup (cf. Definitions 4.6 and 4.11).

In Section 5, the deformation is carried out and R, is deformed into R
(by successive flat deformations).

In Section 6, we define the partially ordered set H*) and we prove that
when X(w) is a Kempf variety in G/Q, R is an algebra with straightening
law over HY® ((k)= (k... k,) being given by 0 = (¢_, P, ), and using the
results of Section 3, we conclude that RS (and hence R,) is Cohen—
Macaulay.

2. PRELIMINARIES

Let G be a semi-simple, simply connected Chevalley group over K (K
being the base field), 7, a maximal K-split torus, and B a Borel subgroup
containing 7. Let

W = Weyl group of G relative to T
R =Root system of G relative to T

S =System of simple roots of R relative to B.

Throughout the paper we shall order the simple roots as in [3].
We first start with recalling some generalities on W.

The set W’. For a subset J= S, let W, denote the subgroup of W
generated by the reflections with respect to the simple roots belonging to J.
Then the set of representatives of W/W, given by {we W/l(ws,)> l(w),
aeJ} shall be called the set of minimal representatives of W/W , and shall
be denoted by W”/. When J= S — {«,}, for some a,€ S, we shall denote also
W’ by W9 and W, by W..

Reduced expressions. For a,;€ S, let s; denote the reflection with respect
to «,. Then, W is generated by {s,}<;<,, Where n=rk(G) (cf. [3]). For
we W, an expression w=s,s, s, is called reduced if w cannot be
expressed as product of s (simple) reflections with s<r. The number of
reflections in a reduced expression for w is called the length of w, denoted
by H{w).

Schubert varieties. Given a parabolic subgroup Qo8B and we W/W,,
let X(w) denote BwQ (mod Q) with the canonical reduced scheme struc-
ture. The variety X(w) is called the Schubert variety in G/Q, associated to
we W/W,.
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Partial order on W/W,. Given w, te W/W,, call w1, if X(w)2X(1)
(in G/Q).

It can be easily seen that given w, 1€ W/W,, w >t if and only if projec-
tion of w on W/W, is = projection of t on W/W,, for every maximal
parabolic subgroup P containing Q.

Next, we want to interpret these results for W= W(SL ), W(Sp,,), etc.

Weyl group of SL,. It is well known that Weyl group of SL, may be
identified with S,. Ordering the set of simple roots as in [37], it can be
easily seen that

(1) 1<l]<i2< e <id<n

(d)= . . . . (2) (id+ 19eees ln) =C {i17"'5 Zd}

W (s fas Ta15ees Tn) € S, in {1,..,n} arranged in
ascending order

(observe that for a w in W as above, w(a,)>0, j#d; in fact,
wle,—e; ) =e;—e;,, (cf [14], for instance)). In partlcular we see that
W could be identified with {(11, wig)/1<iy<iy< -+ <iy<n}. Under
this identification the partial order in W@ is given by

(Etses 8) Z (J1s0ees Ja)

if and only if i,2j,, 1<k<d In particular, for two permutations
w={(a, *-a,), 7=(b; -b,)in S,, we have w > 7 if and only if, for every d,
1<d<n—1, the d-tuple (a,,.., a;, arranged in ascending order) > the
d-tuple (by,.., b, arranged in ascending order) (as elements of W%
(Observe that for 1 <d<n—1, the d-tuple (a,,..., a,) gives the projection of
won W/W,under W W/W,.)

Weyl groups of Sp,, and SO,, . ,. If G=Sp,, or SO,,,, then W(G)
can be identified with a subgroup of S,, (resp. S,,. ) as follows. Let
( 1
1

—1
—1

_ J 2nx2n
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and

1 )
L 2n+1x2n+1

Then Sp,, can be identified with {4 e SL,,/'AE;A=E,} and SO,,,, can
be identified with {4 e SL,,, /' AE,A=E,} (cf. [14]). Also, W(Sp,,) can
be identified with

{layay - ay) €8y, /a5, ;=2n+1—a, I1<i<n}
and W(S0,, . ) can be identified with

(1) a,,=n+1
(2) asyiq_;i=2n+2-—a,1<i<n

{(al"'aan)ESan/ } (cf. [14])

In particular we see immediately that W(Sp,,)xW(S0O,, ;). I
w=(a, " a,,) € W(Sp,,) then it is obvious that {a,, {,.., a5,} is uniquely
determined by {a,,.., a,}. So, we may as well denote w by just (a,---a,).
Further we have

ProrosiTiON 2.1 (Cf. [15, Theorems 5A and SBC). Under the above
identification of W(Sp,,) (resp. W(SO,, . })) with a subgroup of W(SL,,).
the partial order on W(Sp,,) (resp. W(SO,,, .)) is that induced from the
partial order on W(SL,,) (resp. W(SL,, . {)).

Remark 2.1'. (a) From Proposition 2.1, we see that W(SO,,.,)
together with the canonical partial order, may be identified with W(Sp,,)
together with the natural partial order and in the following we shall use
this identification. To be very precise, since our results (cf. the sets Z,,, Z%),
the lexicographic shellability of Z,,, Z*), etc.) relate only to the partial
order in W, proving them for W(Sp,,) would imply proving them for
W(SO s 1).
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(b) r=(a,,..,a,), ¢=_(b,.,b,) are two elements of W(Sp,,), then
1< ¢ if and only if, for every 1<i<n, {a,,..,a;, arranged in ascending
order} < {by,.., b;, arranged in ascending order}.

Remark 2.2. Under the above identification of W= W{(Sp,,) with

{(a1a;" " 03,) € S2n/A2s 41 ;=214 1—a;, 1<i<n}

it can be easily seen that W9 (for 1 <d<n) can be identified with

P Q2) Xk € {igy ippes i), then 2n 4+ L —k ¢ (i}, issuy iy}

(this is because this set can be identified with

{(i1 lgfavi Jn) € W(SP2), where  (ij,..., i)

is as above and (j,,i,..j,)=the first (n—d) elements in C(i,.., i,
14 1) 10 (1, 2,..., 2n) arranged in ascending order (where for 1 <r<2n, v
denotes 2n+1—r). In particular, we have j, ,< - <j,<n Now if
w & the latter set, then we have

(1) wlex—ex,1)>0,  if k+i1<dork>d+1
(2) w(2e,)(=2¢,)>0, if d<n

{note that if d<n, then j,<n so that w(2e,) >0 (refer to [14, Sect. 3] for
details); also note that if W/=W9, then J=S-{a,}, where
o, =e,—e,,.q, t<n—1 and o,=2e, (cf. [3] or [14])). Thus such w’s
belong to W“ and conversely.

Next we want to recall some results from [107]. Let G be of type 4, B,
or C, and that

Wy=15,""" 5415 if Gisoftype 4,
=8 S 18, 84150 if Gis of type B, or C,,.

Then recall (cf. [10, Propositions A.1, B.1, C.1, and A.18]).
ProrosiTioN 2.3. Lét we W. Then a reduced expression for w is given by

w=ww, - w,, where w,, 1<i<n is either 1d or a right (hand)-end
segment of u;.

Remark 2.4. Given w=ww, - w, (as in Proposition 2.3 above), the
projection of w on W/W,, 1<i<n, is given by w,w, - w, (obvious).
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ProOPOSITION 2.5 (i) Let G be of type A,. Then for 1 <d<n,
W(d):{w/(l) w,=1d, j>d }
@) tw)<itn, ), 1<j<d—1
(i1) Let G be of type B,, or C,. Then, for 1 <d<n,
(1) w=Id, j>d
(2) Aw)<lw; 1) (or) l(w; )+ 1 according to whether

W1 <8, 8 (or)=s, 5, respectively,
I<j<d—- 1

W -

Proof. (i) Let we W, say w=(a,,.., a,), where 1<a,<a,< - <
ay;<n. Then it is easily seen that w=w,w,- - w,, where w, =5, """ 5, ;5
(where j,=a,—1}if a, >k and w,=1d, if ¢, =k, from which (i} follows.

(ii) Let we WY, say w=(a, --ay)(as in Remark 2.2). Then
w=w,w, - w, where w,, 1 <1<d, is given as follows.

Let k be the largest integer <d such that q, <n Then (as in (i)} it is
easily seen that for r<k, w,=s, _, -5, or Id according to whether a,> ¢
of a,=t. Now let m be such that k <m <d, so that a,,=r" for some r<n
(where ¥’ =2n+1-—r). Then it can be easily seen that, if a,, , <(r+ 17,
then w,,=s, "5, " S,; if a,_=F+1), a, ,=(F+2)..a, ,=
(r+p), Gpm_, <(r+p+1), then w,=s,. 5,5, m—p<i<m,
from which (ii) follows.

Remark 26. (i) Let we W', say w=w,w, - w, (as in Proposition
2.5 above, G being of type 4, B,, or C,). Then for t<d, w w, - w,e W
(This following from Proposition 2.5.)

(ii) Let we W2 and assume W= W(SL,). Let w=w,w, - w,,
where.w,=s, **s,,,8, or Id, 1<r<d. Then as a d-tuple, w is given by
w= (2" ja) Where

jo=i 41, if w,#£Id
=7, if w,=Id

(A similar result can be stated for W(Sp,,) also.)

The sets Z* and Z®). Let G be of type 4,,, B,, or C, and let the simple
roots (or the maximal parabolic subgroups) be ordered as in [3]. Given a
d-tuple, (k)= (kq,, k), 1<k, <k, < - <k, <n, let

d
Z0 =) w,

t=1
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For we W, let
Z® = {re WH), 1 < r<djr < projection of w on W/W,,
under W — W/W, }.

When (k)=(1, 2,.., n), we shall denote Z® (resp. Z¥)) by just Z (resp.
zZ,).

DerINITION 2.7. Given z, ¢ Z, say 7= (M., M, ), ¢ = (L1, t,), call
=g, ifr<sand m; =1, 1 <I<r (cf. [8]). This obviously defines a partial
order on Z. In terms of reduced expressions for ¢ and ¢ (cf. Proposition
2.5), if t=1,--'1, and ¢=¢, - ¢,, then t1=¢ (in Z) if and only if
Ty 1,26, @, (as elements of W). In particular, if r=s, this partial
order is just the (canonical) partial order in W), Note that this partial
order on Z gives rise to a partial order on Z% and Z® (since Z®W <
Z® < 7).

Standard monomials on Schubert varieties (cf. [12] or [137]). Let Q be a
parabolic subgroup of classical type in G (cf. [13], for definition of
classical type parabolic subgroups). Further, let Q=P, " P,n - NP,
(1<k,<k,< - <k,<n), where P, is a maximal parabolic subgroup of
classical type. (Recall (cf. [13]) that if G is a classical group, then every
maximal parabolic (and hence every parabolic) subgroup of G is of
classical type.)

DermnrTioN 2.8 (cf. [12] or [13]). Given m=(mg, my,,..,m;)e
(Z7Y, by a Young diagram of type m or multidegree m on G/Q (or W/W ),
we mean a pair (6, §), where 0=(0), d=(d;) and (8, 9,), i€ {ky,.. k,},
1 <j<m;, is an admissible pair in W/W, (cf. [12] or [13] for definition of
admissible pairs). (If m,=0 for any t€ {k;,..., k,}, then the family 6,_, 6,_
is assumed to be empty).

DEFINITION 2.9. A Young diagram (6, d) is said to be a Young diagram
on X{w) (or just w), where we W/W, if

wD>0,, ie k.. k}, 1<j<m,

where w'” is the projection of w on W/W, under W/W,— W/W,.

DerFiNtTION 2.10. A Young diagram (8, §) is said to be weakly standard
if

9k11 = 5k11 2 0k12 =2 9k1m1 = 5k1m1 = 0k21 2 5k21 =

(as elements of Z (cf. Definition 2.7)).
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DermviTioN 2.11. A Young diagram (6, §) is said to be weakly standard
onw, we W/W,, if (0, 6) is weakly standard and (6, 6) is a Young diagram
on w.

DervtTiON 2.12. A Young diagram (6, 6) is said to be standard if there
exists a pair (z, ), which we call a defining pair for (0, 6) such that

(1) a=(ay), B=(By), ay, Bye WWy, i€ k.. k. }, I<j<m,
(2) Each a, (resp. ;) is a lift for 8, (resp. 6;,) under W/W, — W/W ..
(3) Oyt 2 ﬂkn B2 T Z Wy 2 ﬁkmq Zlp 2 {in W/V‘/Q)-

DeriNiTION 2.13. A Young diagram (6, 9} is said to be standard on w,
we W/W,, if there exists a defining pair (o, f) for (6, 6) with w>a,
(in W/W ).

THeoREM 214 (cf. [12] or [13]). Let L=L'QLII® - ®LY,
where L, , 1<t<r, is the ample generator of Pic(G/P, ). Given a Young
diagram (0, ) standard on w, we W/W,, one can associate an element
Pos € HYX(w), L) (pos will be called a standard monomial on X(w)).
Further, the standard monomials of degm on X(w) form a K-basis for

H(X(w), L).
Remark 2.15. Recall (cf. [13]) the following:

(a}) A Young diagram standard on w is weakly standard on w.

{(b) For X(w)=G/Q, G being of type 4, B,, C,, the two notions of
being standard coincide. Also, for G =SL,, the weakly standard Young
diagrams on G/B are nothing but the classical Hodge-Young standard
diagrams (cf. [8]).

(¢) For G of type D,, even for the big cell G/B, the two notions are
different. For instance, if G is of type D,, one finds that for m= (1,0, I, 1),
dim(H®(G/B, L)) =350, while there are 385 weakly standard Young
diagrams of type (1,0,1, 1) on G/B.

(d) Although for SL,/B, the two notions of being standard coincide,
the same is not true for Schubert varieties in SL,/B. For instance, if one
considers X(w) (where w=(312)) in SL;/B, then one finds that if
m=(1, 1), then dim H°(X(w), L)= 5, while there are six weakly standard
Young diagrams of type (1, 1) on X(w). In fact one of the main results in
this paper is the result (cf. Theorems 4.5 and 4.10) that G being of type 4,,,
B,, or C,, on a given Schubert variety X(w) in G/B, the two notions of
being standard coincide if and only if X(w) is a Kempf variety.

Remark 2.16. Let (6, 8) be a Young diagram on w. Further let (6, ¢) be
standard on G/Q. Let (a~, ) denote the (absolute) minimal defining pair
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for (0, 8) (cf. [13, Corollary 11.27). Then it can be easily seen that (0, 8) is
standard on w if and only if w>a; (note that X(o;;) is the smallest
Schubert variety on which (8, §) is standard).

Algebras with straightening laws (cf. [5] or [7]). Given a finite par-
tially ordered set H and a base ring R, an’'R-algebra B is said to be an
algebra with straightening laws over H, if

(1) Bis Z*-graded with B,=R.
(2) B has a set of algebra generators {x,},cx

(3) The monomials x,xzx, -, where a > >y > -+ (called the stan-
dard monomials) form an R-basis for B.

(4) Given a non-zero, non-standard monomial x, x,, " x.,, let

(*) xrlx-tz”'x‘r,:z ( )xal'xaz.”xar
(@)
be the expression for x., x,,--- x, as sum of standard monomials. Then, for
ogeS, and for each (a) on the RHS of (*), (o, ,.,%,) i
lexicographically > (a(1,), 6(73),..., 6(1,)).
Whenever we are given an R-algebra B which is an algebra with
straightening laws, then using the relations (*) in (4) (referred to as
straightening relations), we can reduce B to the discrete algebra

R{H} = R[x,, ae H]/(x,x4, o and B not comparable)

by successive flat deformations (cf. [5] or [7]), so that it may be con-
cluded that algebraic properties like B are normal, Cohen—Macaulay, etc.,
by knowing the same for R{H}. For instance, if the base ring is Cohen-
Macaulay and H has some nice properties (like shellability), one may con-
clude that B is Cohen-Macaulay.

3. LEXICOGRAPHIC SHELLABILITY

Given a finite partially ordered set H which is graded (i.e., which has an
unique maximal and an unique minimal element and in which all maximal
chains (i.e, maximal totally ordered subsets of H) have the same length)
the notion of lexicographic shellability for H may be defined as follows (cf.
[1] or [27). The lexicographic shellability consists in labelling the maximal
chains m in H, say A(m)= (1,(m), A»(m),..., A,(m)) (where r is the length of
any maximal chain in H) by elements 4,(m) belonging to some partially
ordered set £ in such a way that the following two conditions hold:

(L1) If two maximal chains m and m’' coincide along their first d
edges, where d is an integer, 1 <d<r, then A (m)=A(w'), 1<i<d
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(L2) For any interval [x, y](={re H|x<t<y}), together with a
chain ¢, going down from the unique maximal element in H to y, there is
an unigue maximal chain mq in [x, y] whose label is increasing, namely
Amg)y < Ay(mg) < -+ < A,(mg) (where 71=length of [x, y1} (here the label
for m, is induced from the maximal chain of H consisting of ¢, followed by
mg, followed by an arbitrary path from x to the unique minimal element of
H) and if m is any other maximal chain in [x,y], then A(m,) is
lexicographically <A(m).

Our main result in this section is that the set Z!¥) (c¢f. Section 2} is
lexicographic shellable. We first prove this result for' the case G=SL,,
(k)=(1, 2,.., n—1), w=the unique element of maximal length in W. Next,
we prove it for G=Sp,,, (k)=(l,2,.,n}) and w=unique element of
maximal length in W. Then we prove it for a general w and a general {k};
the proof in the general case is quite analogous {but a little messy) to the
case of w=the unique element of maximal length, the proof in the latter
case being very explicit.

THEOREM 3.1. Let G=SL,. Then the set Z=\J1Z} W' is lexicographic
shellable ( for the partial order on Z, as defined in Definition 2.7).

Proof. Before proceeding to the proof of the above theorem, we shall
show that Z looks like in the case of SL,. We shall exhibit Z by means of
vertices and edges; the vertices are just the elements of Z and an edge is
obtained by joining two vertices ¢, T such that ¢ covers 1, ie., if ¢ >1 and
there does not exist A€ Z such that ¢ > /1> 1.

Z (in the case of SL,).

3)

W ={(1),(2), (3}}

(23) (1) W = {(12), (13), (23)}

(12)

! As was pointed out by K. Baclowski, the proof of the lexicographic shellability in this case
may be seen as a consequence of the corresponding poset being a distributive lattice. But,
nevertheless, we do give the details of the proof in this case, since the philosophy of the proof
(for other cases) is explicit in this case.

481/94/1-5
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Covers in Z. Following [2], we shail denote a cover by ¢ — 1 (a cover
will also be called an edge). A cover ¢ — 7 in Z is either a cover in W for
some d (namely, when ¢ and t both eW'®) or of the form
$=(a, " ay)y~>1t=(a, " ayn), where 1 <a,<a,< - <az<nlf¢-1is
a cover in Z and if ¢, te W for some d, 1<d<n~—1, then this is
equivalent to the condition that ¢ > (in W'?¥) and /() =I(¢) — 1. (where
for any e W9, 1 <d<n—1, () denotes the length of  considered as an
element of W. Observe that /(8) = dim X(6) (where X(0) = G/P,)). Now we
embed Z inside W(SL, ) as follows.

Define i: Z -» W(SL, ) by sending

(ay-raz)—(ay - -an+1)byb,)

where (by,.., b,)=C(ay,., a,) in (1,.., n) arranged in descending order. In
terms of reduced expressions, this could be described as follows. If
w=ww, - wae W9, then i(w)=w,w, - wuuy, - u,, where u,,
t<i<n isgiven by u;=s, s, s; (in W(SL,, ,)) (cf. Section 2). The fact
that the partially ordered set Z is bounded is clear, the unique maximal
{(resp. minimal) element in Z being (n) (resp. (123 ---n—1). The fact that
any two maximal chains in Z have the same length can be easily seen. For
instance, this fact may be concluded from the fact that a cover in Z con-
tinues to be a cover in i(Z) and the fact that any two maximal chains in the
interval [i((12---n—1}), i((n))] have the same length. (“A cover ¢ — 7 in
Z continues to be a cover in i(Z)” is obvious if ¢, 1€ W9 for some d,
1<d<n—1;if e W9 and 1e WY say g =(a, - a,), t=(a, " azm),
then i(¢)=i(t)s,,,;, where s,,, is the transposition (d+1, d+2)
(in S,,.,) and obviously i(¢) covers i(r) in i(Z).) Now, proving
lexicographic shellability for Z is equivalent to proving the same for i(Z).

Lexicographic shellability for i(Z). Let w, be the unique element of
maximal length in W(SL, , ) and let us take a reduced expression for w, as
Wo=1u U " u,. Now if v, denotes i((r)), then it is clear that v,=s,w,,
so that a reduced expression for v, may be taken to be
Vo= (S,_1""*S28,) Uputy - u,. Starting with this reduced expression for vy,
the maximal chains in i(Z) shall be labelled by the rule prescribed in [2]
so that (L1) is easily seen to be satisfied.

Verification of (L2). Let ([1, ¢], ¢) be a rooted interval in i(Z). Further
let t=i(ty), #=1i(¢o), where t,=(a, -a;), do=(b,---b,) for some
g<j<n—1and a,<b, 1 <r<q (in view of the partial order in Z, cf. Sec-
tion 2). Then we have 1=t " tu; " u,, p=¢, b u, ., - u,, where

T, = Id(namely if a, =k) or

T =Sq—1"" " Sir 15 (if @ >k), 1<k<j
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and
¢, =Id(namely if b, =k) or

Ge=Sp 1" Ses1Sk T Dp>k), L <k<gq

(cf. Remark 2.6(ii)). In particular we have 7, <¢,, | <k<m;infact 7, is a
right-end segment of ¢,, 1 <k<n. Let then ¢, =5 ---s{s{7,, 1<r <)

Now going down from v, to ¢ through the elements of i{(Z) (in par-
ticular, through the elements in ¢} it is easily scen that we end up with the
above reduced expression for ¢. The required maximal chain in [1, ¢ ] with
increasing label is given by

(1) (1) N
S S5 s
¢ LN 7(11) i ,L.(21) L ,L.(I)

2) 0
5 Y
2, @2,

where by w, —* w, we mean w, covers w, and w, =s,w,. {Here one should
observe that all t{}e Z, in view of Proposition 2.5. Also, following [2], and
edge 0 —* p is labelled by the integer m, where m denotes the position of s,
(in vy) that is dropped out in getting p from 6.) The fact that the above
chain has increasing label is obvious. Now suppose £ denotes the least
integer such that 7,<¢, (observe that k<g+1), then in any other
maximal chain, the first reflection that is dropped out occurs in ¢, for some
rz k. If r>k, then at some point, one has to. work with dropping out the
reflections in ¢, and thus the corresponding label is not increasing and the
corresponding label is (clearly) lexicographically > the above increasing
label. Suppose r =k (we may assume, the corresponding chain has the first
edge to be different from the first edge of the above chain with increasing
label, by using induction on (7, ¢]), the proof for the starting point of
induction, namely [(t)=1I[(¢)—1 (note that [{[1,¢])=1H{¢)—{r)) being
trivial); then it can be easily seen that the element corresponding to the
first edge has length </(¢)— 1 and hence is not covered by ¢. To make it
very precise, if ¢o=(b, - -by--+b,) and t,=(a, - a;), where a,=b,,
t<i<k—1, a.<b, (in the case k<g) so that ¢,=s5, "5,
Te=5,_1" "5 or Id (depending on whether a,>k or a,=k), the
corresponding element is obtained by dropping out s,, in ¢, for some
m, k<m<b,—1 and is not covered by ¢ (observe (see Remark 3.2 below)
that a cover 8 —-p in WY, 1<r<n—1, looks like ={(c; - -m-c,),
p={c; " (m—1)--c,) for some m<n). If k=g+ 1, the resulting element
looks like (b, " b,x), where x <n (observe that b,,,=#n+ 1) and hence is
not covered by ¢. Thus the possibility that r =k does not exist.

This completes the verification of (L2) and hence the proof of Theorem
3.1
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Remark 3.2. If ¢o=(b;---b,) and to=(a; '-a;) then the unique
maximal chain with increasing label is obtained by first reducing b, one by
one till we arrive at a,, then reducing b, to a,, etc., and b, to a; (recall (cf.
[15], for example) that a cover 8 — p in W(QL,) is given by 0= (¢,
Cer ey, p=A(cy e e cy,), Where ¢, > ¢, for every j, k<j<l, ¢
is either >c, or <c; and p =60(k, I). Hence a cover 8 — p in W for some
i<n—11s given by 8=1(¢c,"""cp - ¢;), p=(cy ¢, ¢;), where ¢, >¢,
I>i(I<iwould imply ¢, * ¢,) and p=6(k, ])). (Note that 6 as an element
of Wis given by 0= (c; " ¢;¢c;y 1" Cn), Where {¢; s €y} =C(Cppes €;) 10
(1,..,n) thrown in ascending order). Now, if ¢,=r and c¢,=p, where
p<r<n,then any t, p<t<r, t¢ {c;\ 1, ¢;_1} (since e W, ¢;<c,, for
j<m<iori<j<m), t¢{c,, s C,} (since te W and the /th entry in ©
is 1), 1€ {CryirmCn) (since c,=r and 0e WD) t¢{c,,.,c,_,} (since
1€ W' and the kth entry in t is p). Thus we obtain any ¢, p<t<r,
t¢ {cy,., ¢,}. This is impossible unless p =r — 1. Thus a cover 6 — p in WV
looks like 0 =(a;-'r+a;) and p=(a, - -r—1---a;) for some r<n (r
being replaced by r—1 in 68)). Returning to the description of the unique
maximal chain in [7g, #,] with increasing label, as described above one
first reduces b, to @, (one by one), then b, to a,, etc, b, to a;; then
(@, - a;) is allowed by (a, - a,n) (e WU*1) (observe that a;<n, since
a;<a; ;< ‘- <a;<n. Also observe that (a;---a,)— (a, -~ a;n) is a cover
in Z). Then (ay---a;n) is followed by (a,---q;n—1), (a; - a;n—2),..,
(a,--ra;a;.;), which in turn is followed by (a,--ran—1),
(a, -a;n—2),.., (a, -a;a;.;), which in turn is followed by
(ay -a;a;,,n) and so on.

Remark 33. If ¢ > 1 is a cover in i(Z), say ¢ =i(dy), T=i(1o), Where
¢=(b, - b,) for some g<n—1, then the label for the cover ¢ — © depends
only on (b;--+b,) and not on any maximal chain ¢ of which ¢ -1 is an
edge. In other words, the covers ¢ — 7 in i(Z) have been given a global
labelling.

Next we want to prove the lexicographic shellability for Z, in the case of
W= W(Sp.,) or W(S0,,,,). We start toward proving this with the dis-
cussion of covers in W, W and Z.

Covers in W(G) (G being of type B, or C,). For the results on covers
in W(G), one may refer [15] (cf. Corollaries SABCD). Since the ter-
minology in [15] is different from our terminology, we want to discuss
(and state the results on) the covers in W(G) in our terminology. We shall
carry out the discussion for G being of type C,. The discussion for G of
type B, is completely analogous. Let then ¢ — 7 be a cover in W, say
T=¢s,, where o is a positive root and /(z)=/K¢)—1 (cf. [6, Proposition
571). Now the positive roots in G are given by (cf. [3]) ¢, —e,, ¢, +¢,,
1<k <i<n, and 2¢,, 1 <k <n; the corresponding reflections are given by
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(cf. [14]) s,=(k, NK, 1), (K, IWLEK'), (k, k'), respectively (here, for any
1<j<n, j denotes 2n+ 1 —j and for any 1 < j<r<2n, {J, r) denotes the
transposition (in S,,) of the jth and the rth entries). Since ¢ — 7 is a cover,
we have I, (1) =[5, () + m(d) — 2 —m(z) (recall (cf. [ 14, Proposition 3.1 ]}
that for any we W(Spy,), Is(w)=3{Is.(w)+m(w)), where m(w)=
#{1<i<n/ f w=(d, - d,,), then d;>n}). Let ¢ =(a, - a,) (recall (cf.
Section 2), any we W(Sp,) may be denoted by the first » entries in the per-
mutation representing w). Now, if a=¢,—e¢, then m(¢}=m(t) and
ls (1) =15, {¢)— 2. Further, we have a, >, (which in turn implies @, < a;)
and for any j, k<j</ a; is either >a; or <a,.

If a=e,+e, then we have m(¢)=m(t), {5 (t)=1[5.(¢)—2; further,
precisely one of {a,, a,} is >n, a, > a; (and hence a,> a; ). Further, for any
J k<j<l a;is either >a, or <a;;if /< j<n, then g, is either >a, or <a;
and a; is either >a; or <aj (these follow in view of the fact that in
W(SL,,), ¢ - ¢k, ') and ¢(k, ') > ¢(k, '), k') are covers). These con-
ditions may be restated as follows (cf. [157). In the case a=¢, +¢,, we
have

(1) for every j, k<j<l a,>a, or <a;, and

(2) forevery j, I<j<n, |a is either >max(a,, a;) or <max(a;, a;)
(where for any r, 1 <r<2n, by |r|, we mean r or r' according as r>n or
<n).

Finally, if « =2e,, then m(t) =m(¢)— 1, I5, (1) =l (¢) — 1. Further, we
have, a, > aj. (in particular, a, >n) and for every j, k<j<n, a; is either
>a, or <da.

We shall now apply these results to obtain the covers in W7,

Covers in W%, Let ¢ -1 be a cover in W for some ¢, 1<g<n.
Further let ¢ =(a,---a,) (so that g, <a,< -+~ <a,). Then, as an element
in W, ¢ is given by ¢ =(a, - a,), where {a,, .., a,} = the set of first n — ¢
elements in C{a,,.., a,, di,.,a,} in {1,2,.,2xn} arranged in ascending
order (since ¢ € W'9). In particular a;<n, ¢ <j<n). Let t=gs,. Then the
cover ¢ — 7 is one of the following four types of covers.

(1) Let a=e,—e,. First, we have k < ¢ </, necessarily (since g W,
a *a, f k>q or [I<q) Also, since t=(a; - aq
a,a,,., " a, - a,)€ W%, we have a, <n, necessarily. Let then g, =r and
a,= p, where p <r<n. Also, since 1€ WP, we should have g, , < p and
r<a,.;. This is equivalent to the condition that for every ¢, p<r<r,
re{ag, o a,)

(2) Let a=e,+ e, Further let /<gq. Since ¢ — ¢s, is a cover, we have
(from our discussion on covers in W), precisely one of {a,, a,} is >n. This
together with the fact that a, <a, (since ¢e W@ and /<gq) implies that
a,=r<n and aq,=p’ for some p<n. Further, g, > q; implies that r> p.
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Now, for any j, n> j>q (note a;<n), we have a;>r or a,< p (cf. the dis-
cussion above on covers in W). Hence we conclude that, for any ¢, p<t<v,
neither ¢ mnor t'e{ay,.,a;_,} (since a,_,<p, as teW9),
nore {a,y,..,a,_;} (since a,=r and a_;<r, as teW®)
nore {a;, ,.,4a,} (since a,, > p'), nore{a,, ,.,a,} (since for j>g,
a,<n and a, is either >r or <p). But then this is impossible (unless
p=r—1), since given, w=(d, -~ d,)e W, for any 1, 1 <t<n, either ¢ or
t'el{d,..d,}.

(3) Let x=e;+e; Further let g</<n Observe that k<gq (since
¢e WY and a, >a,). Now a,<n and hence a, >n (since precisely one of
{ak, a;} is >n). Let a, =+, for some r, r<n and let a,= p. Also a,>a;
implies that r<p. Now, for any j, /<j<n, we have a,>a,=p (since
¢ W) and for any j, g<l, a;<r (smce te W) and for any j, k<j<g,
a;>a,=r'. Further we have a, _, < p’ (since e W'?). Hence we conclude
that forany 1, r<t<p, te{a,..a,_}.

(4) Let a=2¢, (where k<q, for, otherwise ¢=1 (mod ¥,)). Now
a > a; implies a;, > n, say a,=r' for some r<n. For any j, n >]> g (note

a;<n), we have a;<aj;=r (cf. the discussion above on covers in W). For
any k < j<g, a;>a, (and hence a;<r). For any j<k, a,<r (since t€ W9
and the kth entry in 7 is r). Thus we obtain, for all j, 1< j<n, j#k, min
a;, a;)<r. Now this implies r =n (obviously).

Let us summarize these results in the following

PROPOSITION 3.4. Let pe W'D, say ¢=(a, " a, - a,). Then any cover
¢ — 1 in W'D is one of the following four types.

(1) Lera,=r, for some r<n (and k < q). Let p be the largest integer
<r such that neither p nor p’ € {a,..., a,} and such that for every t, p <1<,
t'e{ai,.,a,}. Then t=(a, - p--a,) is obtained by replacing r by p in §.

(2) Let ap=r for some r<n and a,=(r— 1Y, where k<1< q.Then
t=(a, - (r—1)---r'---a,) is obtained by simultaneously replacing r and
(r—1) (in ¢) by (r—1) and r', respectively.

(3) Let a,=+ for some r<n {(and k < q). Let p be the smallest integer
>r such that neither p nor p’ € {a,,..., a,} and such that for every t, r <t <p,
tef{ai,.,a,}. Thent=(a, - p’ - -a,) is obtained by replacing r' by p' in §.

(4) Let ay=n+1 (for some k<gq). Then t=(a,"~-n-—--a,) is
obtained by replacing n+1 by n in ¢.

CoversinZ. Letgp—>tbeacoverinZ If ¢ and 16 W9 then g > 1 is
as in Proposition 3.4. If e W' and te W+ it can be easily seen that
there exists a r<n, such that ¢=(12--(r—1)a, - a,), where a,>r and
t=(12:--(r—1)a, - a,r") (note that there can not exist 0 € Z such that
<8< g).
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Remark 3.5. The set of ¢’s as above can be identified with

the smallest r in C (ay,.., a,, a},.., a,)

(a,-a,), 1<g<n—1/1n (1, 2,.., 2n) has the property that
q
a, =k 1<k<r—1

We shall refer to such ¢’s as special edge points. We also want to remark

that if (a,---a,) is a special edge point, so is (@, -+ a, ). Also, starting

with a special edge point ¢ =(a, - a,), the special edge points in W¢

lying below ¢ may be obtained by reducing a, by one, r<¢<q (one at a

time) following the rules (to obtain a cover) described in Proposition 3.4,
Next we want to prove the following

PROPOSITION 3.6. The poset Z is graded (i.e., Z has an unique maximal
and unique minimal element and all the maximal chains in Z have the same
length).

Proof. The fact that Z has an unique maximal (resp. minimal) element
is obvious, the unique maximal (resp. minimal) element in Z being given
by (2n)e WU (resp. (12---n)e W™).

Next, to prove that all maximal chains in Z have the same length, we
proceed as follows. Given a maximal chain ¢, let 87(c)— u" "V c),
1<r<n—1 denote those edges for which 68')(c)e W' and
p"F()e WY, To ¢, we associate a “formal weight” m(c) as follows.
Let m,(c)=dim X(0(¢)) (in G/P,), 1<r<n—1. Let N be a positive
integer, sufficiently large (say N>dim G/B). Define m(c)=(m,(c),
my(¢)y, m, _1(¢}) in the N-adic representation, ie., m(c)=

"~Vm () N"~". If ¢ and ¢’ are two maximal chains in Z, with §"){¢)=
8", 1 <r<n—1, then ¢ and ¢ have the same lengths (since in any inter-
val in WY, 1<i<n, all maximal chains have the same length (well
known)). Hence, as far as the discussion of lengths of maximal chains in &
goes, we may identify ¢ and ¢’ if 017(c) =0"(c"), 1 <r<n—1 (observe that
p*1(c) is uniquely determined by 0“)(c), 1<r<n—1). Let ¢, be the
chain such that 6"(c,)=(12---r), 1 <r<n—1. It can be easily seen that
<o has length n? + n. Now we prove Proposition 3.6 by proving the follow-
ing

LemMma 3.7. Notations as above, length of any chain ¢ = length of ¢,.

Proof (By increasing induction on m(c)). If m(c)=(0,.., 0) then ¢ = ¢y,
in which case the result follows trivially. Let mi{c)=(0,..,0, 1} (e,
m(c)=N). Now 07(c)=0"(c,), r#n—1 and 07(c)=(12- (n—2) n),
r=n—1 (note that dimX(#" Y(c))=1, since O07(c)=(12-"
(n—2)nn—1) as an element in W). Hence we may assume, ¢ and ¢
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have the same edges till 8 2(c)(= (12---n—2)). Now u" '(c)=
(12-+-n—2 n+ 2). We shall now write down the remaining edges for ¢ and
£Lo-

Remaining edges for c.

(12---n-2n+2)—>(12---n-2n+1)> (12---n—2n)

|

'u(n—l)(—c) g(nfl)(_c)
—-{(12---n—2nn+2)

n"(e)
->(12---n-2n—1n+1)=(12---n—1n).

Remaining edges for ¢,.

(12...,1*2”_;.2)_,(12---n—2n+1)—»(12---n—2n)

1"~ D(co)
-(12--n—2n-—-1)

0" V(cq)
-(12n—2n—1n+1)->(12---n—1n)

,u(")(co).

Hence, length of ¢ =length of ¢, (since the number of remaining edges in ¢
and ¢, are the same) and thus the result is true in this case. Now let
m(c)> N. Fix an r, 1 <r<n—1, such that 8"(c) > projection of 0" *(c)
on W/W, (under W— W/W,) (such an r clearly exists since m(c)>
(0,.., 0, 1)). Let 8(c)={(c;,, c,) and OV V(c)=(k,,...,k,,,), so that
(¢ v e, )>(ky k). Now (k- -'k,) is a special edge point (cf. Remark
3.5). Define the chain ¢’ as follows.

9(’)(_6') — g(t)(g)’ t#r
=(k,"° k), t=r.
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We may assume that ¢’ passes through 6(c) and ¢ passes through
u" By (observe that 87(c)<0(c)<u(c') (= ¢(c)) and
Uy < u" T V(") < u" *Y(c); (note that, since (k, - k,)<(c, - ¢,) and
both of them being special edge points, we have u " D¢y < u"t(c))). In
other words, the part where ¢ and ¢’ differ is the part from 8"(¢) to
p"+(c"). The following diagram will help in visualizing the situation.

0(0)5. |

W, e
-.'-,‘.‘ur+1(£/)

o

Now from Remark 3.5, it is clear that the part of ¢ from u'""Y(¢) to
u" D"} has the same length as the part of ¢’ going from 67(c) to 87(c’). As
already remarked, the chains ¢ and ¢’ differ only in this part. Thus ¢ and ¢’
have the same length. On the other hand, m(c¢’) <ml(c) (the first place
where they differ, is the rth place, where we have

m, (") (= dim X(60(c"))) <m,(c) (= dim X(6"(c)))

and we are through by the induction hypothesis on m(c).

This completes the proof of Lemma 3.7 and hence that of Proposition
3.6.

Lexicographic shellability for Z. Embed it Z— W(SL,,,,) by sending
(a,ra (I<d<n) to (ayaf2n+1)a,;., " as,.,), where
{Gyy2sms oy 1} =0(Ayss ag) In (1, 2,..., 2n) arranged in descending order.
Then i(Z) may be identified with

/

there exists a d, 1 <d<n, such that

|
(1) aj<a,< - <a,<2n ;

(@i @ 1) E€S21y (2) ai+aj752n+1,1<i<j<d :)
(3) agp1=2n+1 |

(4) (agyases Qi) =C{a,..,ay) in (1, 2,.,2n) %

arranged in descending order. ’
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In terms of reduced expressions (for elements in W(SL,,, )), i(Z) may be
identified with

there exists d (1 < d<n) such that

(1) wy=u;, j=d+1 (cf. Section 2 for
definition of u;)

w=w, Wy, €W(SL,, ) (2) w)<lw;; ), 1<j<d—1
(3) There do not exist i, j, 1 <i<j<d,
such that w;=s, s, 5, and
wf=s2n~t'nsn+1sn.“si
(where 1< n)

Corresponding to the five types of covers in Z, we obtain five types of
covers in i{Z) and we proceed to describe them (in terms of reduced
expressions). Let ¢ — 7 be a cover in i(Z). Further, let ¢ =i(¢,), T=1i(ty).

(1) Let ¢o=1(a, - ax - a,), where a, =r (for some r<n). Let p be
the largest integer <r such that p or p’ ¢ {4,,.., a,} and such that for every
ta P<t<r= t,E {ak+1='--a aq}- Let To‘-‘(al paq) If ¢:¢1¢2”.¢2n’
then t=1,1," " 1,,, Where

=4 J#k

=Sp71"'Sk, .]:k

(observe that ¢, =s,_ " 5;).

(2) Let ¢o=(a, "+ ay --a; ' a,), where a,=r and a,=(r—1), for
some r<n and to=(a;"-(r—1)--r--a,) If ¢=¢,¢4,-- ¢,,, then
T=7T,T," " Tp,, Where

Tj=¢j7 ]#kal
=Sr—2-”sk7 J:k
=Som—r S8 le

(observe that ¢, =s,_, s, and ¢, =55, 1, "8, " 8).

(3) Let go=(a, - a, - a,), where a,=r’, for some r<n. Let p be
the smallest integer >r such that neither p nor p'e {a,; --a,} and such
that for every f, r<t<p, t€{ay,,a,_,}. Let 1o=(a,p"~-a,) If
d=d¢, " ¢,,, then t1=1,7," " 1T,,, Where

=S2n4p".sn”.sk7 ]=k

(observe that ¢, =5,,_, " 8, " S)-
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(4) Let ¢o=(a; a, --a,) where gy =n+1and 1o=(a,-- n--a,)
fo=¢i¢, ¢y and 1=1,7, " 1,, then

=49

:Snfl..'skn

(observe that ¢, =35, 5,).

(5) Let go=(12"--r—1a, - a,), where a,>r (for some r<n) (ie,
$o is a special edge point) and 1,=(12--r—1a, --a,r’) (note that
poe W9 and 1,e WYtV If p=¢, 4> - §s,, then =1, - 1,,, where

Tj=¢j7 J,¢q—}‘1
Rl Y SR M N J=q+1
{observe that o1 =t,, (= $20 " 80 Sy 1 1))

Labelling of the maximal chains in i(Z). Let vy=i(2n)(=(2n2n+1
2n—1---1)). Let us fix the reduced expression for v, as given by v,=
Sy 1" 8181) sty " Uy,. Let ¢ — 7 be a cover in i(Z). Let ¢ = i(¢,), where
po=1(a, - a, - a,) for some g<n Then ¢=¢,4, " ¢,,, where ¢,,=u,,
m>q and ¢,,=5s, S5, f a,>m and ¢,=1d, if a,,=m (where
b,,=a,—1, 1 <m<gq). Now coming down from v, to ¢ through any path
consisting of elements of i(Z), it is clear that starting with the above
reduced expression for vy, we end up with the reduced expression
$1¢, " ¢y, for ¢. In particular, for any chain ¢ of which ¢ — 7 is an edge,
we are going to give a label (that is independent of ¢) as follows. {In other
words, we are going to give a global labelling for covers in i(Z)). We shall
label the covers by n-tuples. Now, ¢ — 1 is one of the five types of cover
described before. For each type, we shall describe the corresponding
n-tuple. Let ¢ =¢, - ¢,,. Further let ¢ =i(d,), where o= (a, --a,) for
some g < n.

(1) Letgp=s, s, (for some k<gand r<n)and 1,=s5, ;" 5,
(where p is as in (1) of Proposition 3.4), so that 7 is obtained from ¢ by
dropping the reflections s, ,, 5, ,,.,5, in ¢, simultaneously. Let x{/,
1 <j<2n, j<t<2n, denote the position of s, in u; (appearing in v,). The
corresponding n-tuple is given by (x{®,, x%) .. x{F, x®, . xF) (of
course, x* + 1 =x%® k+1<1<2n).

(2) Let ¢p=s5,_1""Sp, $;=54,.1_," "85, 5, for some k<i<g
and r<wand 1,=5,_, " S, T,=8,, , "S5, "'5;, so that t is obtained
from ¢ by simultaneously dropping out the reflections s,_; in ¢, and
Soni1—, in @, The corresponding n-tuple is given by (x®, x¥) ,_,
x8 o ew x¥) ) (the notation x{, 1 < j<2n, j<1<2n, being as in (1)
above).
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(3) Let ¢,=s5,,_, "5, "5, (for some k<q and r<n) and 1, =
Syn_p" S, 8k, SO that 7 is obtained from ¢ by simultaneously dropping
the reflections s,, ,, 52,_, 15w S2u41_, I @4 The corresponding n-tuple
is given by (x§;._,, X5, o X501 o0 X401 X501 ).

(4) Let ¢p=s, 5, (for some k<q)and 1, =5, , "5, so that 7 is
obtained from ¢ by dropping the reflection s, in ¢,. The corresponding
n-tuple is given by (x*), x©)__ x),

(5) Let ¢;=1Id, j<r—1, ¢;>1d for j=r for some r<n. (in other
words, ¢ =i(@,), where ¢o=(12---r—1a, --a,), where a,>r for some
r<n Letrt,, =55, ,""5,,1, so that t is obtained from ¢ by dropping
out the reflections s,,, S5, i, S204.1_, 10 ¢, simultaneously (note that
¢ is a special edge point). The corresponding n-tuple is given by

(g+1 (g+1 +1 +1 +1
(XZZ )a szz—l)"--a x(2?1+1)—r’ x(2‘111+1)fr’"-a x(2€l+1)—r)'

TureoREM 3.8. Let G be of type B, or C,. Then Z=\)"_, W is
lexicographically shellable.

Proof. Labelling the covers in Z (or i(Z)) by n-tuples as described
above, condition (I.1) is immediately verified.

Verification of (L2). Let [1, ¢] be any interval in i(Z) (since the covers
have been labelled globally, enough to consider [z, ¢] rather than a rooted
interval ([, ¢, ¢), where ¢ is some chain going down from v, to ¢). Let
T=1T,T, Ty, and g=¢, 4, ¢,,. Alsolet ¢=(b,---b,) and 1= (a, - q;),
g < j<n. Further, let & be the smallest integer such that t, < ¢, (note that
k<g+1 and that 7,<¢,, 1 <m<2n). A maximal chain in [z, ¢] with
increasing label may be obtained by starting with ¢, and dropping the
reflections in ¢, one after the other from left to right until we end up with
7., bearing in mind the fact that if at any step the element under con-
sideration looks like =06, ---0,, (= i(8,), where 8y=(c;c,° " ¢,)),
where 0,=1,, 1 <t<k—1and 8,>1;:

(1) if 0,=5y, ,**5, "5, for some r<n and p is the smallest
integer >r such that neither p nor p’ e {c,,.., ¢,} and such that for every ¢,
r<t<p,te{cy,..,c, }, then the reflections s,,_,, 52, , 1ses S2441_, 100
8, will be simultaneously dropped out;

(2) 8,=s,_1"""58;, for some r<pn and c¢,=(r—1) for some [
(k<I<g), then the reflections s,_, in 8, and s,,,.,_, in 6, will be
simultaneously dropped out, if ¢,<(r—1)". If g,=(r—1)" and if p is the
largest integer <r such that neither p nor p'€ {c,,.., ¢,} and such that for
every t, p<t<r, '€ {¢; 1. ¢,}, then the reflections s,_;, s, ,..., 5, in
8, will be simultaneously dropped out. (Here we want to observe that
a, < p. This will follow if we show that for every ¢, p<t<r, if s is the
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integer such that ¢, =1, then a,=1". This we shall prove by induction on
r —1, the starting point of induction being r — /=1, in which case the result
is true, since ¢, = (r— 1) =a,. Now, lct r — 1> 1 and assume the induction
hypothesis. Let ¢, =¢" for some s, s < ¢ (by the assumption on p, for every
Lp<t<r,t'€{c,, . c,}) Also, we have s>/ (since ¢,=(r— 1} <1 and
0=(c,c,)e W),  Hence a,>n (since a,=(r—1)  and
t=(a, a,)e W) Also a,<1" (since 1<0) and a,>(r—1) (since
a;z>a;=(r—1)) If a,is not =¢, then ¢, =m' for some m, r<m<r-1.1f
h 1s the integer such that ¢,=m" (observe that t<m<r<1 implies
m' € {¢yy 1o ,)) then g, =m' (by the induction hypothesis). Then, A # 5.
since ¢, (= m'y#c, (= 1"). Thus a, cannot bc m’ for any m, r<m<r—1.
This together with the fact that (r— 1) < a, <1" implies that ¢, =1". Thus,
for every 1, p<t<r, t'ela,,,..,a;}. This, together with the fact that
a, < ¢, (= r) implies that ¢, < p. as required.

Proceeding thus, we first reduce ¢, to 7., then ¢, _, to 7, . ... @, 10 7,
In terms of permutations, this corresponds to reducing (b,...,5,) to
(¢y,...a,) by first reducing b, to a,, then b, to ..., b, 10 a, (keeping in
mind the two facts mentioned above). To be very precise, as before, let & be
the smallest integer such that ¢, > 1, (note that k < ¢+ 1). At any step let
0=(c, -¢,) Thenif

(a) ¢, =r" for some r<n and p is as in (1) above, then r will be
replaced by p’ (and we will take the corresponding cover).

(b) ¢,=rfor some r<n and ¢,=(r— 1) for some ! (k </<q) then
¢, and ¢, will be simultaneously replaced by r—1 and ¢’ respectively, if
a;<(r—1Y.If a,= (r— 1) and if p is the integer as in (2} above, then r will
be replaced by p (and we will take the corresponding cover).

After (b,---b,) has been reduced to (a, - a,) (as above), the remaining
path from {a,---a,) to (a, -~ a, - a,) (in case g < j} is obtained as follows.
Now let (¢, --a,)=(12---r—1a, - a,) for some r<n (where a,>r)
Then since (a, - a,  a;)€e W', we have a,<r'" Hence a, <+ for 1<}
This in particular implies that (a,---a,) is a special cdge point. Hence
i(a,---a,)-has the reduced expression 1,7, -7, u,., U, (note that
under the assumption (a, - -a,)=(12--r—1a, --a,), we have 1, =1Id,
m<r- 1). Now the reflections s,,, 53, 1.r 82, . 1=, i0 4, shall be drop-
ped out simultaneously to obtain the cover (1---r--la,---a,)—
(l---r—1a, --a,r). Then we reduce (a, - a,’) to (a, --a,a,.,) by
reducing » one by one, keeping in mind the fact that if at any step, thc
clement ¢ under consideration looks like (a, - a,l’), for some /<n, and p
is the smallest intcger >/ such that neither p nor p'e {a,.... a,} and such

that for every +. /<t < p, 1€ {a,..., a,}; then the corresponding cover to be
taken is (a,---a,l')—(a,---a,p’). (This amounts to dropping out the

reflections  $5, /v Sy 4sen Szer o, 0 O, (=80 5,00)
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simultaneously.) One proceeds thus, finally ending up with 7. Obviously
this chain has an increasing label.

Any other chain is obtained by starting with ¢,, for some m > k (recall, k
is the smallest integer such that 1, £ ¢,). Suppose m >k, then at some
point, one has to work with dropping out the reflections in ¢, and thus the
corresponding label is not increasing and the corresponding label is
(clearly) lexicographically > the above increasing label. Suppose m=k;
one may assume the corresponding chain has the first edge to be different
from the first edge of the above chain with increasing label by using induc-
tion on [ (7, ¢)] (= I,,(dy) — L,,(10), where ¢, and 7, are given by i(¢,) = ¢,
i(1y) =1, the proof for the starting point of induction, namely /,(7,)=
l,,(dy)— 1, being trivial); but then (as happened in the case of SL, (cf.
Theorem 3.1)), the element 0 (= i(6,)) corresponding to the first edge is
such that 0, is not covered by ¢, in Z. Thus the possibility m =k does not
exist.

This completes the verification of (L2) and hence the proof of Theorem
3.8.

Next we want to prove the lexicographic shellability for Z, and also for
Z%) (cf. Section 2), we W. We shall treat the two cascs, namely G=SL, or
Sp,,, separately.

First, let G=SL,. For any we W, recall (cf. Scction 2)

Z,={1e W9, 1 <qg<n— 1/t <projection of won W/W,

under W — W/W,_}.

Covers in Z,.. A cover ¢ —» 1 in Z,, is cither of the form

(1) ¢ — 1, where ¢, Te W', for some g<n—1, or
(2) ¢ —1, where pe W', e W+ for some g <n—2.

To be very precise, in (2), let w={(h,"--b,) (as a permutation). For
I<g<sn—1, let {x{, x@,., x?}=1{b,,., b, arranged in ascending
order}. Then it can be easily scen that ¢ and t look as follows:

T=(Cy s, €gs X40\Y) and ¢ = (cy,..., ), Where (¢y,..., ¢,)

/ARSI

< (by,..., b,, arranged in ascending order)

q>

PROPOSITION 3.9. The poset Z,, is graded.

Proof. The fact that Z has an unique maximal and minimal element is
obvious, namely, they are given by (b,)e W' and (12---n—1)e W 1,
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Next, we want to prove that all maximal chains in Z, have the same
length. We prove this in the same spirit as the proof of Proposition 3.6.

Given a maximal chain ¢, let 8(c) > u"*V(c), 1<r<n—2, denote
those edges for which 6(c)e W™ and u"*"(c)e W™+, To ¢, we associate
a “formal weight” m(c) as follows. Let m,(c)=dim X{0"(c)) (in G/P,),
i<r<n—2 Let N be a positive integer sufficiently large (say
N>dim G/B). Define m(c) = (m,(c), m,(c),..., m,,_,(c)), in the N-adic
representation, i.e., m(¢)=3"-2m,(c) N*~"~'. If ¢ and ¢’ are two maximal
chains in Z,,, with 87(c)=0")(c"), 1 <r<n—2, then ¢ and ¢’ have the
same lengths (since in any interval in W%, 1 <i<#n—2, all maximal chains
have the same length). Hence for the discussion of lengths of maximal
chains in Z,, we may identify ¢ and ¢ if 09(c)=0"(c"), 1<r<n—~2
(observe that u" " (c) is uniquely determined by 6(¢). In fact, if 87(c) =
(e, ¢,), then pv*(c)=(c; ¢, x’V), from our discussion above on
covers in Z,). Let ¢, be the chain (in Z,) such that §(cy)=(12---r),
I <r<n—2. Now we prove Proposition 3.9 by proving the following

LemMma 3.10.  Notations as above, length of any chain ¢ in Z,, = length of
£Lo-

Proof (By increasing induction on m({c)). If m(c)=(0,.., 0), then c=¢,,
in which case the result follows trivially. If m(¢)=(0,0...0,1) {ie,
m(c)=N), then 0V()=0"(cy), r#n—2, and 0" I(c)=(12---n—3
n— 1) (since by our assumption on m(c), dim X(6"~*(c)) =1). This in par-
ticular implies x{"?’>n—1 (where (recall) for 1<¢g<n—1, x\¥=
max{b,,.., b,}, (b - b,) being the permutation representing w). Also, by
our assumption on #(c¢), ¢ and ¢, have the same edges until 8"~ 2)(¢) (and
hence till u”~?(c)). We shall now describe the remaining edges of ¢ and
¢o. For this, we need to distinguish the two cases, x{"»=n or n—1
(respectively).

Let x{" " =n.

Remaining edges of c.

(12---n-3n)—>(12--n—3n—1)>(12-n—3n—1n)-> (12 -n—2n)

I

I
u"2e) 60U =2(c) 1" e)

~ (12 n—2n—1).
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Remaining edges of ¢,.

(12--n=3n)-»(12---n—3n—-1)—»(12---n—=3n-2)

1" P(eo) 0"~ ?(¢o)
(12 n—3n—2n)> (12 n—2n—1).

1" o)
Let xX"~P=n—1
Remaining edges of c.
(12--n-3n—-1)>(12--n—3n—1n)—>(12-*n—3n—2n)

|

u"=2(e) wie)

o =2(c).
—-(12---n—2n—-1)

(It may be assumed that x|V =n. For, if x"=V#n, then x{""V=n—1,

n—1

in which case b, =n and we W(SL,_,) and we may use induction on 7.)
Remaining edges of ¢,.
(12---n—3n—1)->(12--n—3n—-2)—->(12---n—2n)

1" 2 (eo) 8" > (co) 1 = V(eo).
S(12n—2n-1)

In either case, we find that the number of remaining edges is the same for
both ¢ and ¢,. Thus the result is true in this case.

Now let m(c)> N. Fix a r, 1 <r<n—2, such that 8)(c) > projection of
60U+ VY(c) on W/W,, under W— W/W,. (Such an r clearly exists since
m(c)>(0,0,...,0,1)). Let 87(c)= (¢, --¢,) and 0" V(¢c)=(k, "k, ), sO
that (¢, ¢,)> (k, -+ k,). Define the chain ¢’ as follows

00N =00), 1A
=(k1”.kr)a t=r.
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We may assume that ¢’ passes through 0"(c) and ¢ passes through
u D¢’y (observe that 07(c)<0V(c)<p(c'y (= p"¢)) and
6(’“)(_c)<u(’“)(g/)<u“+”(g) (note that p "¢ )=k, -k xV 1)<
(c; e, x"* D)= u"*1(c))). In other words, the part wherc ¢ and ¢’ differ
is the part from 0(c) to u"*P(¢’). The following diagram will help in
visualizing the situation

(cr-e)=0"c)
(Cl' c,x £r++ll)) H(r+1)(_c) 0(”(_!')2”\'1"'1(,)

.éﬂ(r»l)(():(k k\("l

rvrv i/

Now, it is clear that the part of ¢ going from ' ' (¢) to u" " V(¢') has
the same length as the part of ¢’ going from 0(c) to 6")(¢’). As already
remarked ¢ and ¢’ differ only in this part. Thus ¢ and ¢’ have the same
length. On the other hand, m(c’) <m(c) (the first place where they differ
is the rth place, where we have m,(¢’)=(dim X(8(c")))<m.(¢)
{= dim X(6")(c))) and we are through by the induction hypothesis on
m{c).

This completes the proof of Lemma 3.10 and hence that of Proposition
3.9.

THEOREM 3.11. The poset Z,, is lexicographically shellable.

Labelling of maximal chains in Z,,. Now Z,c Z and a cover ¢ —» 7 In
Z,, continues to be a cover in Z, if both ¢ and te W'/ for some j<n—1.
In the alternate case, a cover ¢ —» 7 in Z,, need not be a cover in Z (for
example, in SL,, consider w=(3124); then, (1)- :(13) is a cover in
Z,,, but is not a cover in Z). Let N be a positive integer sufficiently large
(say N> rk(Z) (= length of any maximal chain in Z}). We shall now labci
the covers in Z, by N-tuples as follows.

Given a cover ¢ — t in Z,,, consider the unique chain in Z going from ¢
to t with increasing label (cf. Theorem 3.1) {note that this unique chain
does not depend on the path chosen to come down from v, the unique
maximal element in Z to ¢, because of the global nature of the labellings of
covers in Z (cf. Remark 3.3)). Let us denote this chain by ¢=¢, -
¢, "¢, > - 5" ¢, =1 (where r < N). Now label the cover ¢ — 7 by the

48194 -6
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N-tuple (ny, ny,-y #,, H,,.., ). (Observe that because the labellings of
covers in Z are global (cf. Remark 3.3), the labellings of covers in Z,, are
also global, so (L1) follows immediately. To make the labelling very
precise, if ¢, Te W9, for some g<n—1, then ¢ — 1 is a cover in Z also
and if m is the label for the cover ¢ —»1in Z, then ny=n,= -+ =n,=m;in
the alternate case, ¢eW?@ and teWY*Y), say, $=(a," " a,),
t=(a; - a,x9H) (where x{?1Y =max{b,,.., b, .}, b/s being given by
we(byb)). I UG) =y Bytty ity (D) =Ty Tty ly
(recall i: Z — W(SL,,, ;) (cf. Proof of Theorem 3.1)), then 1, = ¢, k#q+1
and 7,,,=1Id or s,---s,,, according as x{*""=¢+1 or>qg+1 (and
t=x¢ D —1). Then n; = y*h, n,=yl*rD (= n,+1), etc, where y{/,
1<j<n, j<k<n, denotes the position of s, appearing in wu; (in
vo=1i((n))=(s, 1 " 51) uguz " u,).

Verification of (L2). Now let [1,, ¢o] be any interval in Z,. The fact
that there exists a chain in Z,, going from ¢, to 7, whose label is increasing
is immediate. In fact, if ¢o=(c,-*"¢,), To=(a; " a;), g<j<n—1 (it may
be assumed g < j, since for ¢ = j, the result follows from [2]. Observe that
in this case, the above labelling is the same as the labelling described in
[27), one first considers the unique chain in Z with increasing label going
from ¢y=0o=(c, - ¢,) to (a, - a,)=0, (observe that since (¢, " ¢,) and
(a, "~ a,) both belong to W? and (a, - a,)<(c; " ¢,) < projection of w
on W/W,, the elements of the above unique chain (in Z) in fact, belong to
Z,,). Now this chain is followed by (a,"--a,) - (a, - a,x\% V). The label
for this cover is (n,,.., 1, #,,..., n;) say; then it is > the label for 6, _, — 0,
(the latter label looks like (m, m,..., m), where m= y'%), k being the largest
integer <q such that ag,<c, (f a,=c, for all 1<k<yq, then
$o=(ay,.., a,) > (ay,.., a,, x\?*V) is the first edge in the required chain)
(here the notation y{” is as above)). Now from our description of
(Ry, Mgy Hyy ey 1) it 1S clear that m < m, so that the label for 0,_, — 0,
(= (ay,..., a,)) is < that for (a,..., a,) > (@;,., a,, ¥ V). Now ¢o=0,—
6, - =0, (ay,.,a, x%H") is followed by the unique chain in Z
going from . (a,.., a,, x{**\V) to (ay,.., a,, a,, ) whose label is increasing
and so on.

Let i(to)=1=Ty T U,y U, (po)=¢=¢, " Pu,, " u,, where
for every #; 1 <t<n, 1, is a right-end segment of ¢,. Let £ be the smallest
integer such that 7, < ¢, (note that k <¢+ 1). Now, in any other maximal
chain, the first reflection that is dropped out occurs in ¢, for some r 2 k. If
r >k, then, at some point one has to work with dropping out the reflec-
tions in ¢, and thus the corresponding label is not increasing and the
corresponding label is (clearly) lexicographicaily > the above increasing
label. Suppose r =k (may assume the corresponding chain has the first
edge to be different from the first edge in the above chain with increasing
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label, by using induction on /{1, ¢,]) (in Z.), the proof for the starting
point of induction being trivial), then the element p, corresponding to the
first edge 15 not covered by ¢ in Z,.. (this 1s obvious if A<yg. If k=¢g+ i.
then p, looks like (¢, - ¢, y) where y < x{7*/" (recall ¢, = (¢, - ¢,) and
xio M =max{b,,., b, ], where (b, ---b,) =1)). Thus the possibility r =&
does not exist.

This completes the verification of (L2) and hence the proof of Theorem
31

THEOREM 312, Let G=SL, and (j)=(j,wj.) be an r-tuple
(r<n—1), 1<j < <j, <n—1 and for any we W. let

Z\'= ) {te WYt <projection of w on WiW, under W - W:W, |.
ko1

Then 7'/ is lexicographically shellable.

Proof. First we shall prove this for w,, the unique clement of maximal
length in W. Now a cover ¢ — tin Z'/' (= Z!') continues to be a cover in
Z, if ¢, te WY for some k, 1 <k <r. In the alternate case, we have,
pe W, teWw iV, and if $=(a,.,a,), then 1=(a,,.,4a,.
n+ 1t —t..,n—1,n), where 1 =j, _, — j.. In this case onc considers the uni-
que chain in Z going from ¢ to t whose label is increasing, say,

¢=¢()A’¢l—’p_>“'_i*(/’m:r'

Now one labels the cover ¢ -t in Z'7 by the N-tuple (n,, #asey #,,
M, A, ) (Where N is a positive integer sufficiently large, say N >rank of
Z). With this labelling, one can check (proceeding as in the proof of
Theorem 3.11) that Z'” is lexicographic shellable.

The discussion for Z{2 is completely analogous. We shall just mention
what a cover ¢ — 1 in Z!/" looks like. A cover ¢ — 7 in Z!” continues to be
a cover in Z, if ¢, te W' for some k, 1 <k <r. In the alternate case. we
have ge W', teW' V. If ¢=(a, - a,) then t={(a, -a;.
Chup i € b Where {e, ¢, =the first jo,,—j, numbers in
{h v b, . arranged in descending order .

THEOREM 3.13. Let G=Sp,, and let weW. Then the set Z, Iis
lexicographically shellable.

Proof. The proof is analogous to the proof of Theorem 3.11. We shall
first describe what the covers in Z,, look like and how they are labelled. Let
w=(hy " b, by,). For 1 <j<n, let x{)=max{b,,.. b} Now a cover
¢ — T continues (o be a cover in Z, if ¢, te W' for some g <n. In the alter-
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nating case, if ¢=(a;-'-q,), then t=(a, " a,a,,,), where a,,, is the
largest integer <x{?"") such that neither a, ., nor a,, € {a,,.., a,} (to be
very precise, if x{%*')<n, then we have a,<x{¥"D and al/}" = x5V, If
x> n, say xl97V=1r', for some r<n, then, if k is the smallest integer
>r such that neither k nor k'e{a,,.,a,} and such that for every
1, r<t<k, te{ay,.,a,}, then a,,; =k’). Then as in the proof of Theorem
3.11, to get the label for the cover ¢ - 7 in Z,, one considers the unique

chain in Z going from ¢ to t with increasing label, say

(where each m, is an n-tuple and m, <m, < -+ <
cover ¢ — t by the N-tuple (m,, m,,..., m,, m,,...., m
integer sufficiently large, say N=n-rk(Z)).

Now if [t,#] is an interval in Z,, say t=(a; - a,), ¢=(c; " ¢,),
g<j<n (it may be assumed g < j; for, if g=j, then the elements in the
unique chain in Z, going from ¢ to t, whose label is increasing, all eZ,,
since they are all <¢ and ¢e Z,). Then the required chain with increasing
label is obtained by first taking the unique chain in Z going from (¢, - ¢,)
to (a; - a,), say by=(c,"~-¢,)=> 0, -~ >0,=(a, -~ a,). Then this is
followed by (a,"--a,)— (a, - a,d, . ) (the cover as described above) and
then, this is followed by the unique chain in Z going from (a,---a,d,, ;) to
(a,---a,a,,;) whose label is increasing and so on. Clearly this chain
(in Z,) has an increasing label,

The verification of (L2) is done in the same spirit as in the proof of
Theorem 3.11.

m,). Now one labels the
,) (where N is a positive

THEOREM 3.14. Given an r-tuple (ji,..j)r<n) 1<j, <j,< <
J,<n, and we W, Z\)) is lexicographically shellable.

Proof is analogous to that of Theorem 3.12.

4, KEMPF VARIETIES

In this section our main result is that G being of type 4,,, B,, or C,, on a
given Schubert variety X(w) < G/B, the two notions of monomials being
standard (cf. Section 2) coincide if and only if X(w) is a Kempf variety.
First we recall the definition of Kempf varieties (cf. [10]) for G being of
type 4, and prove the result mentioned above and then we do it for G of
type B, or C,,.



A CHARACTERIZATION OF KEMPF VARIETIES 83

Derintmion 4.1, Let Gbeof type A, and let we W, say w=w,w, " w,,
where w, (1<i<n) is a right-end segment of u; (= s, - 5,,,5;) {cf [10]).
Call w a Kempf element (and X(w), a Kempf variety} if

Iw)y<lw; ) +1 whenever Wi <uy,, 1<i<n—L

We give below another characterization of Kempf elements (cf. Proposition
4.3 below). We first start with the following

ProOPOSITION 4.2. Let w be a Kempf element. Then for any te W, w>t
if and only if w, 21, 1 <i<d, where w=w,-w,, 1=1,"""1, and w; (resp.
1,) is a right-end segment of u;, 1 <i<n.

Proof. The proof of the implication <« is obvious, since w=w, - w,
{resp. t=1,""1,) is a reduced expression for w (resp. t) and the charac-
terization of the partial order in W in terms of reduced expressions (recall
{cf. [4]) that given 0, pe W(G), G being of any type, 8 = p, if and only if a
reduced expression of # contains a subexpression which is a reduced
expression of p).

Now let w>1. If possible, let w, ® 7, for some r, r<n This implies
w,<7t, (since w, and t, are both right-end segments of u,). Let
w,=8;""5,,,5, (resp. Id) and t,=s,-""s,,;5,, where k> (resp. k= r).
The length condition for a Kempf element, together with Proposition 2.5
implies that the projection of w on W/W,, as an (increasing) r-tuple has the
entry m at the rth place, where m=1/+1 (resp. <r) while the projection of
Tt on W/W,, as an (increasing) r-tuple has the entry at the rth place to be
=k +1 (identifying W with S, ;). Thus projection of w on W/W, is *
projection of T on W/W,. Hence w * 7 (cf. Section 2, partial order on W),
which contradicts the hypothesis that w>t. Hence our assumption that
w, # 1, {for some r) is wrong.

This completes the proof of Proposition 4.2.

A

-

‘PrOPOSITION 4.3. The set {wjfor any t<w, 1,<w,, 1<k<n
precisely the set of Kempf elements.

Proof. The inclusion = follows from Proposition 4.2. Let now w be
such that for any 1 <w, 1, <w,, 1 <k <n We claim: wis a Kempf element.

If not let w,o=s;"""5¢415 and w,,, =5, 5., for some k<n—1
(here k+1<j<i). Now, w>s, 5., =1 say. Now =1, ''1,, where
1,=1d, I#k+1 and 1, ,=58,"""S,.;. Thus w1 but w,,, 2 14,
(since, by assumption j<i). (If w,,,=1Id and w,=5,"""5,. 5, Wwhere
i>k+1, then taking t=s,,,, we obtain w>1, but w,, ¥ 7, _,.) This
completes the proof of Proposition 4.3.
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Remark 4.4. Just for the sake of interest we would like to mention one
example here. Consider w = (s35,5,)(s5,)(s3) and 7= (s,)(s55,) in W(SL,).
We have, w =1, but w, 2 1, (observe that w is not a Kempf element).

THEOREM 4.5. Let we W(SL, ). Then on w (or X(w)), the two notions
of Young diagrams being standard coincide if and only if w is a Kempf
element.

Proof. Let w=w,w, --w, be a Kempf element. Since on any X{p),
p € W, any Young diagram standard on X(p) is weakly standard (cf. [13]),
proving the required result is equivalent to proving the result that any
Young diagram weakly standard on X(w) is in fact standard. Let then
0= (0;) be a Young diagram of type m = (m,,..., m,) weakly standard on
X(w), so that, we have 8,6 W, 0,>0,,,, 0,, >0, (as elements of Z)
and w>0,, 1<i<n, 1<j<m, To make it very precise, let
0,=vPv v (reduced expression for 6;, where v{¥) is a right-end
segment of u;=s, 5, (5 (cf. Proposition 2.3)). Then 0,>0, ., (in the
usual sense, i.e., as elements of W). And 0, >0,,,,, in Z, is equivalent to
the condition that p{Fp{md...plm) jg Sp{+1DyG+1D... 50+ 11 (f
Definition 2.7). Define 4 = (4;), where A;=p{# - p@pli# 1 Dpli+21)... y(n1)
(= 8;u;, say) (where v’ V) is taken to be Id, if for all s > ¢, m; =0 and v{* V) is
taken to be v¥* 1), if m,=0 and s is the least integer > such that m, #0).
The fact that A, <w follows from the fact that w>0,,, 1 <r<n, 1 <s<m,,
and Proposition 4.2. The fact that ;> 4, ; follows from the fact 6,> 6, ,
(note that A;=0,u;and 4;, =0, 4, also note that 0, and 6, , u, are
reduced (cf. Proposition 2.3)). The fact that 4,,,> 4, follows from the
fact that 6, > p{* Dyf+ 1. y(+1D (note that A,=6,, u, and

G L) G+ 1 1) L (i 1 )y ((4+21) ... (2 1
Aip11=0¢ i Dy a2 D e ple D)

=p+ Dyl 1y ),

Thus we have w1, 24,2 " 2 Ay 24012 2 Ay, (in W), where
Ay 1s a lift for 6; under W — W/W,. In other words 1 is a defining pair for 0
on X(w) (cf. 127 or [13]) and thus 6 is standard on X(w).

Conversely, let w=w,w, --w, (e W) such that all weakly standard
Young diagrams on w are in fact standard. We shall now show that wis a
Kempf element. If w is not a Kempf element, let d be the smallest integer
such that I(w,) € I(w,, )+ 1, say wy=3s; 5,4, 84 i=zd+1and w, =
S; " Sqp28441 (j<i) or Id. Now, identifying W with §,,.,, let
T=w Wy wy_;=(c, " ¢,.1) (as a permutation). Now for t>=d, ts,
remains reduced and hence /(zs,) (= {(z)+1) is >I(r). Hence z(a,)>0,
where «, is the root e, —e,, , (cf. [11, Proposition 1.47]). In particular, we
have, ¢, <c,,, d<k<m<n+1 (since (e, —e,, ;) =e, —e,., >0, so that
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cx<ce,:and so on). For any k, 1 <k<n, let w* denote the projection of
w on W/W, (note that w® is just w,w,---w,)). Now

w=tw,=(c, -,y Y12 d—1i+1d- i n+1)
=(C; Cy_1Cis1)
and
W(li+1):(cl“'cdflci-klcd) it w,. =1d

Sdt

=(cy ey 1€ 16y) it owy. =5

(note that d+ 1< j<i). Now consider the weakly standard diagram on

dd+1
X(w) of type (0,0,..,1, 1 ,0---0) given by
€1 9
*) cd._1 > 04;1 (assume w,_, #1d)
¢ ¢
Civi

(note that the d-tuples (cy,..., ¢,_y, ¢;) and (¢y,..., ¢,_y, ¢;. ¢;. ) May not be
in the ascending order; nevertheless, it is easily secn that

{¢ys C4_1, C;, arranged in ascending order)

> (C1ys Ca15 €55 €4 1> arranged in ascending order since ¢, > ¢;).

Also, they are both <w. In fact (¢, - c,_,¢;) (resp. (¢, " ¢, ;¢;¢;. )} has
the reduced expression wy - w, ;(s; ;" s,) (resp. w, w,u (8
848, Sq41), where (¢; - c,_;c;) asanelementin W (= S,, |} is identified
with the permutation (¢, "¢, 1¢.X,, 1" "X,y 1). Where {x,, .., x,,,}=
CCyss €a_ysc) in (1,2,., n+ 1) arranged in ascending order. A similar
remark holds for ¢, -+~ c,_yc;c; (). Let {ay,..., a,} (resp. {b ... by, }) be
{Ciy a1y} (resp. {¢i,ycy_1, ¢ €501 )) arranged in ascending
order. Now the smallest 1 on which (*) is standard is given by the smallest
element in W, which has the projection (a, - a;) on W:/W, and which is
>(by--b,. 1) (cf. Remark 2.16 and [13, Corollary 11.2"]). Now (*) is
standard on w if and only if w> 4 (cf. Remark 2.16). But now w * 4, since
projection of w on W/W,, , * projection of 4 on W/W, | (note that pro-
jection of w (resp. A) on W/W, . is (¢ ..cqy 1. ¢ ¢y ) (rESP.
(Clses €y 15 €4 Cipp)) arranged in ascending order and also note that
¢;<c,<c;yy) Ifw,, ,=1d, we carry out the same argument replacing ¢, by

i
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¢y To be very precise, onc takes (*) to be the weakly standard Young
diagram

¢y <y
Cy 1 > Ca 1

& Ca
Civn

Now the smallest 4 on which this is standard has the projection on
WiW,_,tobe (¢, cy_ic;¢; ) (arranged in ascending order), while the
corresponding projection for wis (¢, - ¢,_,¢y4¢;,,) (arranged in ascending
order). Thus w@*1 % j4+1 (note that i>d + 1, so that ¢, <c;,).

Thus in either case w 2 4 and hence (*) is not standard on w con-
tradicting the hypothesis that on w all weakly standard diagrams are stan-
dard. Hence such a d as above, namely /(w,} > /(w,.,)+ 1 does not exist.
Thus for all d, 1 <d<n—1, l(w,)<l(w,, )+ 1, and hence w is a Kempf
element.

This completes the proof of Theorem 4.5.

Now, Theorem 4.5 Icads to the following

DerINITION 4.6. Let Q be any parabolic subgroup of G. Then a
Schubert variety X(w) in G;/Q will be called a Kempf variety if X(w) has the
property that all weakly standard Young diagrams on X{w) are in fact
standard.

We next prove the result (analogous to Theorem 4.5) for Kempf varieties
in the case G is of type B, or C,. We first recall the decfinition
of a Kempf varicty in G/B (G being of typc B, or C,). Lect
U, =5S;"""8, 5, $:+15;- Then (recall cf. [10, Propositions B.1 and C.1])
any we W has a reduced expression w=w,w, - w,, where w, is a right-
end scgment of u,, 1 <i<n

DerFiNITION 4.7. Given w=w,---w, call w a Kempf clement if the
following holds. Let 1 <i<n—1.

If w,,,=u,,,, then w, is arbitrary.

Hw, ,=s,8,,,i+l<r<n—1, then w,;<s, " s,, 5,

Ifw,, =5, 85,5, ,,i+l<r<n then w,<s, , - s,_,5;

If w,,,=1d, then w;<s,.

PROPOSITION 4.8. Let w be a Kempf element. Then for any te W, we
have wzt if and only if w.zt,, 1<r<n, where w=w, --w, and
T=1,"""1

Proof. The proof of the implication < is obvious. Now let w>r. If
possible let w, < 1,, for some k, | <k <n This implics in particular that
weFu, (= 5.5, 5,). Now we distinguish the following two cascs.
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Case 1. Let wy=s," 5., for some r<n—1, so that
T 28,1 " Sp.15. Now identifying W with W{(Sp,,) the projection of w
on W/W,, as an (increasing) k-tuple has the entry at the kth place to be
r+1 (since w is a Kempf element, we have w,<s, - *s,, 5, t<k) while
the projection of T on W/W,, as an {increasing) k-tuple has the entry at the
kth place to be =r+2 (since 7,>5,,; " 5. .5) Hence w*' 2
(where for any pe Wand ¢, 1 <t <n, p'” (¢ W) denotes the projection of
p on W/W,. Thus w * 1, which contradicts the hypothesis that w>r.
Thus, this case does not exist. (The same argument holds in the casc
w,=1Id. To be very precise, if w, =1Id, then 1, =5, and now, w®*’ has the
entry at the kth place to be r where r<k (since w is a Kempf element,
w, <8, 8, t<k—1), while T has the entry at the kth place to be
>k +1 (since 1, =s5,). Thus w® 2 ¢, which in turn implies that w % 7
contradicting the hypothesis that w > . Thus this possibility again does not
exist.)

Case 2. Letw,=5,"5, S 1S k<r<mandlet t,=5,""5, 5,
where t<r (since w, <7, and both w, and 1, are right-end segments of
Sk 8,8 ). Now w is a Kempf element, implies that w,<s, -5, 5,
i<k—1. Hence we obtain w*) has the entry at the kth place to be
¥ (= 2n+1—r), while, t®¥) has the entry at the kth placc to be
>2n+1—1 (since 7,=s,-"5, +5,). Hence w™ £ 1% (since r' <1’ (as
t<r)). Thus w % 7, contradicting the hypothesis that w > .

Thus both the cases lead to contradictions. Hence our assumption
w, ® 1, is wrong. Thus w,>1, for all 1<k <n

ProposITION 4.9. The set {we W/for any t<w, 1, < w,, 1<k<n) is
precisely the set of Kempf elements.

Proof. The inclusion = follows from Proposition 4.8. Let w be such
that for any t<w, 1, <w,, 1 <k <n

Claim.  w is a Kempf element.

If not, let & be such that w, and w,,, do not satisfy the condition in
Definition 4.7. In particular we have wi % ug, (= Sp 185, " Sia1}
We distinguish the following five cases.

Case 1. Let wy=u5,"""5, 15 and wy, =85, ,, k+1<j<i<n
Consider t=1, " 1,, where

7,=1d, I#k+1
=8 Sk, I=k+1.

Now w=1t, but we,, ® Tey .
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Case 2. Letw,=s,-s, spandwy =588, i<n—1landt>k
Consider t1=1,7, " t,, where

7,=1d, I#£k+1

=8, S, Sk s I=k+1.

Now w=rt, but w,, | & 7,,4.

Case 3. Let wy=s,"5,, t<n—1 and w,, {=s5,""5,"""S., 1
r—1<zt
Consider t=1,1,"'*1,, where

7,=1d, l#k+1

=8, 18, S, Sk 1 I=k+1.

Now wzt, but we, | * 1., 4.

Case 4. Let wp=s,"8,"""S,2 =2k and wi, (=5 "S, " Se.1
r>k+1. (r>k+1, since wy | #u ). Consider t=1,7,--1,, where

1,=1d, I#k+1

=Sy 1S, Sy Sk, I=k+ 1.

Now wz1t, but w1 3+ 7, 4.

Case 5. Let w,=s,, 5, and w,, ,=1d.
Consider t=1, - 1,, where

1,=1d, 1£k+1
=Sk+15 l:k+1

Nowwz=t, but w,,, 2 1, 4.
Thus all possible cases contradict the hypothesis. Hence such a &k does
not exist, which implies that w is a Kempf element.

THEOREM 4.10. Let we W (G being of type B, or C,). Then, on X(w) the
two notions of Young diagrams being standard coincide if and only if w is a
Kempf element.

Proof. The proof of the implication < is completely analogous to the
proof of the corresponding implication in Theorem 4.5 (one uses
Proposition 4.8, etc.).

Let now X{(w) be such that on X(w) a weakly standard Young diagram
is in fact standard. Let w=w,w, --w,. Claim: w is a Kempf element. If
not, let d be the smallest integer such that the conditions relating w, and
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wy.1 (cf. Definition 4.7) are not satisfied (in particular this implies
Wys1<tgy1 (= Sgy17" SuSp_1°" Sz, 1)) Then we have the following five
possible cases. We shall now show that all the possible cases lead to con-
tradictions, from which the claim will follow. (In the following proof, for a
w e W, we shall repeatedly use, both its reduced expression (in terms of the
simple reflections, cf. Proposition 2.3) and its representation as a per-
mutation identifying W with W(Sp,,). To be very precise, given a Young
diagram 6 weakly standard on G/B, to see 6 is a diagram on X(w) (cf.
Definition 2.9) we use the reduced expression for w and to get the smallest
Schubert variety X{(/) on which @ is standard (cf. Remark 2.16), we use the
permutation forms of elements of W).
Before discussing the various cases, we want to observe the following:

{i) The element s,---s,. 5, (where r <#—1) as a permutation

d d+1 - r+l
=(12-d—1r+1 d d+1- r r+2-n)

(ii) The element s, -5, s, (where d<¢<n) as a permutation

dd+1 - t
=(12--d-1t d d+1--t—1t+1"n), where ' =2n+1—1

We also need the following lemma for our discussion.

LemMa 4.11. Let W= W(SL,) and let we W'Y, say w=w,w,---w, for
some d, 1 <d<n (¢f. Proposition 2.5). Further let w={(a, - a,a,, """ a,);
where 1<a,<a,< - <au<n and 1<a,, <a,,.,< " <a,<n Then
for 1<i<n—d,

ay,=d+i, it w,)<i

=k+i—1, where & is the smallest integer such that {(w, ) > i.

Proof. (By decreasing induction on 7 and decreasing induction on /(w).}

Starting point of Induction. i=n—d. Then d+i=n We need to show
a,=n. Suppose {(w,) <n-—d, this implies in particular that w,<s,_, -
S4. 15, and hence a,<n—1 (cf. Remark 2.6(ii)). Hence ne {a,. .., a,)
and in fact g, =n (since a,, (<ay,,< - <a,)

{w) (= dim G/P,)=d(n—d). In this case we have Hw;)=n—d
I1<k<d and w=(n~d+1, n—d+2,., n1,2,3,.., n—d). In particular
we have a, ;=1 1 <i<n-—d Now, forevery i, I1<i<n—d, I{w,) =1 and
hence the smallest k such that /(w,)>iis given by k=1. Hence k +/i- 1 =
i=ay,,,;, as required.

Now let i <n—d and w arbitrary. If l(w,;) <i, then w,<5,,, > " Sqp154
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(recall (cf. Section 2) that w; is Id or a right-end segment of 5, -5,
(where W=S5,)) and hence a,<d+i—1 (cf. Remark 2.6(i1)). Hence d+ i e
{4y 15 a,} (since a;<a,< -~ <ay). In fact d+i, d+i+1,.., ne
{dg. 1+ a,} and the fact thata,, , <a,,,< - <a,, implies a,, ,=d+j,
i€<j<n—d Now let /(w,)>i and let k be the least integer such that
lwy)=i Now, l[w)<i, j<k. implics w;<s;,, » 5,5, j<k and
hence a;=j+i—1<k+i—1. Also, w, 28, ;1 " 5gy 5, (since I(wy) =)
implies a, (and hence «;, k < j<d)is 2k +i. Hencc we obtain that k + i —
le{ay, 1, a,}. Now consider te W9, 1=1,1, " 1,, where

T, =W

j=we JEk—

=S8k 27 %Sk -

Then t>w (since 1, >w,_,, by our assumption on k). Now if
t=(h, " by b,), then b,, =k +i—2 (by induction hypothesis on /(1)).
Hence a,,,2k+i—2 (observe that, since t=2w, (by,.., h,) =2 (a;,... ay)
equivalently (b, _ ..., b,) <(ay. ;s a,)). Claim. a,, ,=k+1—1.

For, we have

ad_’_,‘*_1=(1+i+1, 1f [(“‘d)<i+]

=k +1i where &’ is the least integer such that /[(w,.) =i+ |

{by induction hypothesis on /). Now &’ = k and hence in either case ¢,
18 =k + i. This together with the fact that a,, ;2 k + ¢/ — 2 and the fact that
k+i—1le{a,_,,.,a,} implies that a,., =k +i—1, as required.

COROLLARY 4.12. Let we W'Y, say w=(a,---a, --a,). Let r>d be
such that a, (= x) is <r. Then w=s.s ‘s

v+1"] r—1-

Proof. Write i=r—d Then, since a,<r, we have /(w,) =i and
a,=k+i—1, where k is the least integer such that /(w,)>i (by Lemma
4.11 above). Now w = s,,; | "8, 8 (since {(w,)=1). Hence for cvery J,
k<j<d, w;zs,,, ;-s;,18 (cf. Proposition 25). In particular
WyZSgoi 1  Sqs15=S8,_y " "Sqe184 f(note that r=d+i). Thus
wi=wy o wgoow,) contains the subexpression [[Y_,s,,; =
SeSeo 7Sy, as required.

Return to the proof of Theorem 4.10.

Case A. w, (=5,8, " S;,.,, wherec r>d+1 (since w,, , <uy,, =
Sgs1" Sy 84,y and w,,, 1 <m < a, is either Id or a right-end segment of
u,, (cf. Proposition 2.3)).

Wu=15,""" 8, r—1<tg<n—1.
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Let wy w,_ =(a; ray_,"a,) Now, for &k d<ki<n,
wywy o wy_ 8, is reduced (cf. Proposition 2.3) and hence a, <a;, d<k <
j<n—1, and a,<n, d<k<n (because, if t=w, -~ w,_,, then t5,>1,
d<k<n, implies 1(x,)>0, d<k<n, and <t(y)=e,—e, ,, if
Op=er—¢ 1, k<n—1, and t(x,)=2e, {cf. [14, Sect.3])). Thus
{ag, ag4q 1oy} =C(ay,0 ag_1) in (1, 2,..., n) arranged in ascending order
{note that a, <n, for k <d— 1, since by our assumption on 4, the condition
in Definition 4.7, relating w,_, and w, is satisfied for A<d and
WysS,_ " S,). In particular we have a,, <m, for d<m<n. Leta,_,=x.

Observe that x>1 (for x=1 would imply r— I =4, which is not true,
since r>d+1). Let

U, =8:8c1 " S,_as if x<r—1

=1d, if x=r—1.

Then wy --- w,_, contains v, as a subexpression (cf. Corollary 4.12). Hence
UeS,_(Wa Sw  (since wy=s,"""5,,15, where r=r—1). Denote
v.S, Wy, by 6. Let
H=8__ """ Sz, 1S4 if xzd+1
=S8 1S4 154 if x<d

(note that x> 1, as already observed). Now u<w; for, if x=d+ 1, then
p<w, (since w,=s, " 8,5, where t=r—12x); if x<d, (one may
assume w,_,>1Id, for if w, _,=1Id, then we W(Sp,,,_.,,) and one may
use induction on the rank of G; thus in fact, we may assume w, > Id, which
implies that w, >1d, k<d, since the condition in Definition 4.7, relating
w,_, and w, is satisfied for k<d (by our assumption)), then
WSS Sa_18q (= p)

Now (= 5,8, 1" "8, 28,15, "8, Sz,1)<u (as element of Z) In
fact as permutations # and u are given by

d+1d+2 - x
=1 x" d+1d+2-x—1x+1-n), if xzd+1
x x+1- d d+1
=(l"-x+1x+2 - d+1 x" d+2--n), i x<d
and
dd+1-- x
u={1-x d - x—1x+1-n) f xzd+1
x—1 x - d d+1

=(1- x x+1 d+1x—1d+2---n), if x<d
and 6 < (as elements of Z). Thus
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(*) O<pis a weakly standard Young diagram on X(w) (since both 0
and p<w as already observed). Now the smallest X(2) on which (*) is
standard is such that 2“* ") (projection of 2 on W/W,, ) as an increasing
(d+ 1)-tuple has the entry at the (d+ 1)th place to be {x—1)" whereas
w@*D has the entry at the (d+ 1)th place to be x' (for w“*"=

(ayraq_y ra,) wawy,y (mod W, 1))
d d+1--1+1
Recall, w, (resp. w,,)=(1-d—1t+1 d -+ t (+2-n)
d+1d+2- r

(resp.1---d r d+1---r—1r+1-n))
=(a,"ray \a,,,a, **) (notethatd+2<r<t+1)
:(al.-.ad_la1+lxl...)

(where a, <n, 1 <k<d—1 and also for k=1r+1).

Thus w'* " £ 5 D and hence w * 4, which implies that (*) cannot be
standard on X(w). This contradicts the hypothesis that all weakly standard
diagrams on X(w) are in fact standard.

Case B.

Wil =38,°°8, Sy (where r>d+ 1)

w(/:sl...sn...sd’ dstgn.

Let k£ be the smallest integer <d such that w,>s, - s, (recall (cf.
Proposition 2.3) that for 1 <m<n, w,, is either Id or a right-end segment
of u,=s,, s, s, Then, we have, w,<s, , s, for m<k—1 and
w,, =U,,, for k+1<m=<d (since by our assumption on d, the condition in
Definition 4.7 which we shall henceforth refer to as the Kempf condition
relating w,,. , and w,, is satisfied for m<d). Now for k<m<n, 1s,, is
rcduced and hence 7(z,,) > 0, kK <m < n. This implies that for k <m < j<n,
a,, <a;<n (since
(2,,)=¢, —¢ il a,=e,.—€, . (m<n—1)

Gm

=2e

am 17

@ if a,=2e,,.

Also, a,,<n, form<k —1 (sinccform<k—~1, w,, <s,_," 5, etc.). Thus
(ass ay)=Cla,,.,a, ;) in (1,.,n) arranged in ascending order. For
1 <1<n, let w'9 denote the projection of w on W/W, (observe that w''' =
wiw,  w, (cf. Remark 2.4)). Now writing w'“'" and w'® as increasing
d-tuples, we have
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WOITD = (1) (€ yers Ch 1 Ahy ALty @y g yovey Ai)s if w,=u,
=A{2) (Cyemy Croe 1> Aoy Algy Qg 1 ey Al)s fw,=8,""5," "8
where k<1 <d
={3) (Cpoeny Cpr g5 by Ayl 1y Aic)s ifd<t<r (weasin(2))
={4) (Copens Coom (s iy Ao (s Ay_ 15 i)y 127 (wyasin (2})
where {c¢,,.., ¢, _(}={a;,., a,_,} arranged in ascending order) and

1

d) 7
W( Cysee >Ck~1:ad7ad oo Ai

3

! I
Clomy Cho— 13 Gy Qg 15005

=(1) ( )

= 2) (Coyeeey Cl— 1> Aipy Qg rer A)

=(3) ( a)
)

=(4) (e Cho 15 Apy Qg {5eees Q)

respectively. Now consider the weakly standard Young diagram (g, ), on
X(w), where ue W and 6e W+, ;i and 6 being defined as follows.

O =wld+D (in all the four cases)
and

luz(l) (Cla"" Ck——13a£1+1’a£1""’ a;c+l)

2(2) (cla-"’ Ck719a21’+1’a£l"'" a]r{+1)
={(3) (@) (Clrerms Clom 1> Ay Aogyones A 4 1) if t>d
(D) (Cpooms Chts @y gs @y @y o y), i 1=d

=(4) (Croms Co 1y @y Ay A 10s Ty 1)-

Observe that 8 < pu (as elements of Z (in fact in cases (1}—(3) 6 and y have
the same entries in the first d places, except the kth place, where the entries
are given by a. (resp. aj, ) in the first two cases; a, (resp. a,} in (3(a); a,
(resp. @y, 1) in (3(b)); in (4), 6 and p have the same entries in the first d
places except the (k + 1)th place where the entries are given by a,_, and
a, respectively. And we have, a,<ajy, y, a,_1 <dy, a,<a, (in (3(a)) etc,,
(since a,>a,,,, a,>a,, (when r>t) by our work on w, ~'w, ;=
(a,"*a,_,a, -a,), in the beginning of case B). Also, u <w'® (obvious)
and 0 =w'*1, Thus (u, §) is weakly standard on X(w). Now the smallest
X(A) on which (g, 8) is standard is given by

A

Il

(1) (clr"s Cr—1s a:z'+ 1s a;z'w-’ a;c-{—la a}(,.‘.)

Il

(2) (Clo"'a Ck- 1» a:i+ 1s aijw-a a;(+ 19 a}c,...)

I

(3) (@) (Cryoms Cho1s Ay Algpeves Tpey 1> Tpeses )s if t>d

(5) (Cpyoms Cho s Qan gy @tyos Ao 1y dien), i 1=d

= (4) (Cyyes Cp— 1> Apy Aoty Qyerey A 4 15 Arene )-
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In all cases, one finds that w¢+ 1 % 1@+D (for in (1)-(3), the entry at the
kth place in w“* " % the entry in the kth place in 2+ "), since a, <a, ,
(in (1) and (2)), 4, <a, (in (3(a))), a,<aj,, (in (3(b))); in (4), the entry
in the (k + 1)th place in w@*" % the corresponding entry in A" ! (since
a._,<ay)). Thus w 2 4 and hence (y, §) cannot be standard on X(w) con-
tradicting the hypothesis that all Young diagrams weakly standard on
X(w) are in fact standard.

It should be remarked that for the above argument to be valid, one
requires d > k. Suppose d=k. The above argument holds in (1), (2), and
(3b)) only. (In (3(a)) and (4), the d-tuple (corresponding to u) as a set is
< the (d+ 1)-tuple corresponding to #). Hence (u, 8) in fact remains stan-
dard (a defining pair for (u, §) may be taken to be (4, A), where

A=(Clyoms Cr—y, )y AL) in case (3(a))
=(C{yeeer Ch_15 Q1> Ap_1) in case (4).

Nevertheless, in (3(a)) and (4), we consider the weakly standard Young
diagram (y’, 6’), where

Ill = (al'»--’ g 1» at)’ if r<r
=1y Ay_1,ar_ 1), if r<t
and
0 = (A, Qy_1,8,_1,a)), if t<r
= (a5 g1, Ar 2, Ay _y), if r<i

(observe that 8’ <y’ (as element of Z), since a, ,<a,, a,_,<a,  (recall
that for k=d<m<j<n, a,,<a;and that t—1>d and r—2>d in (3(a))
and (4)); also, observe that, 8 <w'“*1D and u' <w'®. Thus (u,0') is
wekaly standard on X(w)). Now the smallest X(1’) on which (y, 8') is
standard is such that 2“1 & w!* 1 (The (d+ 1)th entry in A“*Vis a,,
(resp. a,_,) while the corresponding entry in w'*) is a; (resp. a,_;)).
Thus (u', 8’) can not be standard on X(w) contradicting the hypothesis
that on X(w), all weakly standard Young diagrams are in fact standard.

Case C.
Wai1=S8,"""Sq01, . d+1<r<n
Wy=5,"" 84, r+l1<i<n

For k< d, we have w, <s, -5, (by our assumption on d). The discussion
in this case is completely analogous to the proof of Theorem 4.5.
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Case D.
Wd+1=Sr"'Sd+1, d+1\<\r<i’l—“1

We=8,"""8,"" S84 d<it<n.

The discussion in this case is very much analogous to that of Case B. Let
k be the smallest integer <d such that, w,>s, ;' s5,. Now the Kempf
condition in Definition 4.7 implies that w,,<s, ; s, m<k—1 and
W,=U,, k+1<m<d Let t=w, --w, ,=(a; - a, ,a, - a,). Then,

for k<m<n-—1, we have a,<a, <r (since 1s,, mzk remains
reduced, we have t(a,,) >0 (and

) =e, —€, . ., if msn—1>
=2e,, if m=n
Hence
WD = (1) (€ s Ch» Alpreons Ay it ow,=u,
=(2) (€1 ey Cho» Aopyorr @), i ow,o=5,5," 5

where k<t<d

=(3) (Cppons Cps Ay Ay yys Ax)y I d<t<r+1
(w, as in (2))

=(4) (Cypemy Cpoy Ay Aig_ 1 yorey Qi) if t=2r+1
{(w, as in (2))
where {¢,, ¢} = {dysr sy, @, ., arranged in ascending order} in
(1)}-(3) (resp. {@y,e @i 1, a, arranged in ascending order} in (4)), and
wD = (1) (by,s by 1, .., al)

=(2) (Byyes B, Agyers Q%)

= (3) (blr"'ﬂ bk71> Cl,,, a;,',l,..., a;)

=(4) (Byys B (s Ay Gy ey Q)
where {by,... b, }={a,,., a,_,, arranged in ascending order}. Now
consider the weakly standard Young diagram (g, 8) on X{w), where

pe W and 9e WY, 1 and @ being defined as follows:
G=w"¥"1 (in all the four cases) and

u=(1) (brows b1, Ay 15 Qagyers A1)

=(2) (Byses b 15 Qi 15 Agsos Qi1 1)
={3) (@) (biss br_ 1,8y, Ay Ay 150y G 41 f i>d
(B (B b1y Qs 15 Aoy Aoy 5oy A1) if t1=d

= (4) (bl""’ bkfl’ a;’ a,d: ali-lan-’ a;<+ 1)'

481/94/1-7
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Observe that 0 < u (as elements of Z) and u < W', Thus (u, 0) is weakly
standard on X(w). Now the smallest A on which (u, 8) is standard has the
projection A“*Y on W/W,, , to be

2AXD (1) (By o Bas 1y Qg gy @y @)
=(2) (B by 1y A (s Ay @)

= (3) (a) (bl yeeey bk 1 a;’ a:l"", a;( )9 lf t>d
(0) (bys b 12,1y dpndl), il t=d

=(4) (b, by 15 a;, dyy..., ap).

In all (four) cases, one finds that w“"" % A*D (for the simple reason
that the kth entry in 2“* ! > n, while the corresponding entry in w“* " js
<n (recall that a,, <n, for k <m<n).

As happened in Case B, the above argument holds in (1}(3), without
any condition on & and in (3(a)) and (4), one requires d > k. Lct us then
consider cases (3(a)) and (4) when k=d. In this case, one considers
(u', 0), where

Iu, = (al""9 ad-— 1 al)
and

O =(a),,ay 1,a, 1,a), if 1<r+1

=(dy,ty 1,a,,4a,), if r+1<t

Now a, ;<a, and a,<a, (when r+ 1<) (since a,,<q,, for k=d<m<
j<n and both r—1 and r=d (since 1>d in (3(a)). Thus 0’ <y’ (as
elements of Z). Also, it is casily scen that 8’ < w'“* " (note that ¢, , (resp.
a,)is <a,., (resp. a,) in (3(a)) (resp. (4))) and p’ < w'@, Thus (g, ') is
weakly standard on X(w). Now the smallest X(2') on which (g, 0'} is stan-
dard is such that 2“* ! & w“*+1; for, the entry at the (d+ 1)th place in
A“* D is g/ | while the corresponding entry in w'* Y is ¢ and ¢/_,>a!
(since a, | <ua, (recall that for k=d<m<j<n, a,<a;and that 1 — 1 >4,
in (3(a)) and (4)). Thus (¢', 8’} can not be standard on X(w) contradicting
the hypothesis that on X(w), all wecakly standard Young diagrams are in
fact standard.

Case E.
Wyie1 = Id and W'(/B S+ 154-

Ifw,=s,5,for some r<n—1, then we have w, <s, ,- s, form<d
and the discussion is completely analogous to the proof of Theorem 4.5.
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Ifwy=s,5,"s4 d<t<n, then the discussion in Case D (with » + 1
replaced by ¢ + 1) goes through verbatim (one may observe that if k =4
and w,,,=1d, then (3(a)) does not exist).

Thus all possible cases contradict the hypothesis that on X(w}) ail weakly
standard Young diagrams are in fact standard. Hence our assumption on ¢
is wrong. Thus the condition in Definition 4.7 relating w, and w, ., is
satisfied,  <d<n—1. In other words, under the hypothesis that on X(»)
all weakly standard Young diagrams are in fact standard, we have proved
that w has to be nccessarily a Kempf element.

This completes the proof of Theorem 4.10.

Now, Theorem 4.10 leads to be following

DrriniTIoN 4,11, Let QO be any parabolic subgroup of G. Then a
Schubert varicty X(w) in G/Q will be called a Kempf variety if X(sv) has the
property that all weakly standard Young diagrams on X(w) arc in fact
standard.

5. DEFORMATION

In this section G will denote a group of type 4,,, B, or C, and wce shall
identify W(G) with W(SL, , ) (resp. W(Sp,,)) if G is of type A, (resp. B,
or C,). Let Q be a parabolic subgroup of G, say, Q =P, n PN~ NP, ,
I <k <k,< - <k,<n wherc P, | <1<d, is a maximal parabolic sub-
group of G. Given m= (m;, my,,..m,)e(L" ¥ and a Young diagram
(0. 3) of type m standard on X(w) (cf. Definition 2.13), recall (cf. Theorem
2.14) that the standard monomials p, ;€ I X{w), L} form a K-basis for
HP(X(w). L) (K being the bases field), where L=L}"Q@ L} ® -+ ® Ly
and L, . 1 <1<d, is the ample generator of Pic(G/ P, ) (here we W: Wo)

ProrosiTiON 5.1.  Let F be a (non-zero) non-standard monomial on X{w},
we W W, say

F': ([):1,:;)1pr:.o;“'p:,,v},)(p/.]./up);.;z:”'pi_g.u,)( )( )

(where Ts and ¢'se WD, s and s e W), etc.). Writing F as a sum of
standard monomials, say

(*) 1'=Z( )(/711./11pzz‘ﬁ:”'pm./i,)(pn,m p‘,:‘:):“.p}\-f".)( )( )

(wherc the «'s and fse W*Y; s and d'se W™ ecic)). we have
(21, B1s %3, Bases %, Bry 710 015 Y21 Og0en 74, O4nn) 18 lexicographically
2(a(1)) 0ld)ss a(T,), 6(,). O(L)), B(A,), Olgeyhn, B(2,), O(g)s...), where
geS,,, 0eS,,, etc.
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Proof. Choose a minimal element, say o, among {o} /P« 5 OCCUTS as
the first factor in some term on the RHS of *}. Let 6= {6,>6,> ---} be
the maximal defining pair on X(w) (cf. [13, Corollary 11.27) for the stan-
dard diagram o =f,zu,=B=z - =za0.28,=y, 20,2 . Now
restricting (¥*) to X(6,), any term on the RHS either vanishes (namely if
;> o) or remains standard on X(0,) (by the choice of «; and 0) and there
is at least one term whose restriction to X(,) is not zero, namely p,, 4 -
Thus the RHS of (*) when restricted to X(6,) is a non-zero sum of stan-
dard monomials on X(6,). Hence the restriction of LHS to X(6,) should be
#0, from which we obtain 1, <, (= the projection of 8, on W/W, ). Now
any other «} is > some minimal o, and hence is >7,;.

If 7, (say 7,) is such that 1, =a,, for some o, (this in particular implies
that o, is in fact the minimal among {o}}), then on X(6#,) we have

(**) Poy gy Pergy” Py Phvn” " Pigs” ™"
=( )pal,ﬂlpzxz,ﬁz.“ +( )pal,ﬂipaé,ﬁé”. + o

(note that the first factor in every term on the RHS looks like p,, ). Now
choose a minimal, say 8, among {f}. Let 0, >0,> - - be the maximal
defining pair on X(0,) for the standard diagram o, > f;= --- on X(0,).
Now multiplying (**) by p,, 5,, we have

Py pﬁl'p¢1p12,¢2..'( )pal'pﬂlpaz,ﬂz‘“ +( )pal\/pﬁlpﬁipaé,ﬁé”' + o

up to +1. (recall (cf. [13, Proposition 6.1]) that on X(t), 1€ W/W,,
Pis=1tp. pgand p, 4 p. 4= £ poy/Pyg  Ps,)- Now cancelling p,, and con-
sidering the maximal defining pair {£,>¢,> -+~ } on X(6,) for the stan-
dard diagram {f;=>a,=f,> '--} on X(8,) and restricting to X(&,), we
obtain that the RHS is a non-trivial linear combination of standard
monomials on X(¢,). Further, each term on the RHS starts with pj, (recall
(cf. [13, Proposition 6.17) that on X(f,),

\/P—P'ZO, if p; ﬁ&)
P = ppgs i BB )
Hence, restriction of the LHS to X(&,) should be different from zero. Thus
B (= the projection of &; on W/W, ) is =¢,,1,, ¢,,... Now if ¢, =4,
then /pg, - Py, = Pp,; if ¢,= B, for some i> 1, then the corresponding 7, is
=f, (since B, >1,2 ¢,), in which case we have p. 5, = p; 5 = ps,- Thus in
either case p; appears on the LHS and each term on the RHS (of the
restriction to X(&,)) starts with py (as already observed). Now cancelling
Pg,» the LHS becomes a monomial of degree one less than that of F. Hence
using induction on degree of F, we obtain (a;, By %5 Brs V1> 015 Y2s 02,en.)
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is lexicographically =(p(1,), p(da).-, p(1,), p(@,), 0(4;). O(py),.... ). where
p€S, ,, 0€S,, etc, from which the required result follows (since
{2, B,) has been proved to be lexicographically >(t,, #,) and 1, > ¢,), the
proof for the starting point of induction, namely deg F'=2, goes on the
same lines as the proof above in the general case. In fact, we obtain
something stronger in this case; to make it very precise, if

(*) pr‘¢pﬁ,a‘__z{)px.§py,d

13 the expression for the non-standard binomial p., p,, in terms of stan-
dard binomials, (the degree of the binomial being of the type
0,0,.,0,1,0...,0,1,0,...,0) or (0,0...,0,2,0,..,0)) then the above proof
shows that for each term on the RHS, x> ¢; if x =1, then f§ 2 9.

This completes the proo{ of Proposition 5.1.

DerFiNiTION 5.2. Given we WiW,, define J (R} {where
R=R,. =@, ., H(X(w), L)) as follows:

!

there exists a straightening relation in which )
J(R)= aeZ® / there is a term on the RHS involving « (stri;tly) {

| more number of times than the number of times 1{
\ | appears on the LHS )

{here (k) denotes (k,,..k,) where Q=P NP - nP,; by a
straightening relation, we mean a relation in the K-algebra R, which
expresses a (non-zero) non-standard monomial in R as sum of standard
monomials).

Now we want to deform R (by successive flat deformations) so that for
the deformed algebra R, we have J, (R*')= (¥ and then using the results
of Sections 3 and 4, we shall show that R*" is Cohen Macaulay if w is a
Kempf clement, thus proving R to be Cohen Macaulay. To arrive at R,
we procced as follows. We fix a maximal clement, say x in J,(R) and con-
sider /, the ideal in R gencrated by p, 4's and p,,’s (x being fixed). Then we
have the following (In the following we shall denote p, gz by just (2. B}).

PROPOSITION S5.3. For j=1, I' has a basis consisting of standaid
monomials involving o at least j times.

Proof. For any monomial T. let 7, = {f. appearing in 7/f>x} and
T = {f, appearing in T/ 2 x}. Now let te/’. If T is not standard, let
T=Y a,T, be the cxpression for T as sum of standard monomials (wherc
each T, is standard). Now consider any 7, appearing on the RHS and con-
sider a f appearing in T,, where § 2 o. Now the maximality assumption
on x implies that number of times § appears in T is > the number of times
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B appears in any T, on the RHS (in particular, the number of times f
appears in T,). Now the lexicographic condition (cf. Proposition 5.1)
implies that such a 8 appears the same number of times in T and T,. Hence
the lexicographic condition in Proposition 5.1 implies that « has to appear
in T, at least as many times as it does in 7. Hence x has to appear at least j
times in T, (since it does so in 7, as Tel’) which implies the required
result.

Let #=--REAORI®R®I '@ I°t *@® ---. Observe that # is a K[ ]
algebra with algebra generators given by

By (1) pyeZl
(x, $)t™" (2) B and 7 are different from x
(y, 2)t ™! (%, having been fixed as above)

Let R'=2%/(t) (= R/I®I/I’® ---). Then using Proposition 5.3, we obtain

ProOPOSITION S5.4. R’ is a K-algebra with algebra generators given by
{(B,7)} (where B, ve Z*) and (B, y) is an admissible pair) such that the stan-
dard monomials in these generators form a K-basis and such that J (R') S
J(R)— {a}. Further, # is u flat deformation whose special fiber (t=0) is R’
and whose general fiber (1, invertible) is R.

Continuing thus we obtain

PROPOSITION 5.5. There exists a sequence {R;}q< <, of K-algebras and
a sequence {B;}o<cicm 1 0f flat deformations such that

(1) R, 0<i<m has a set of algebra generators indexed by {(B,7)
where f,7ve€Z% and (B,y) is an admissible pair} such that the standard
monomials in these generators form a K-basis for R;

(2) Ry=R

3) Jn'(Ri) c.:—: Ju’(Ri 1)'

(
4) J.R,)=.
(5) R, is a generic fiber and R, ,, the special fiber of 4,.

COROLLARY S.6. Let us denote R, by RY'. Then we have if R* is
Cohen Macaulay, so is R.

Remark 5.7. Now J,(R*")= ¢ implies that 2 monomial in R* is zcro,
cither if the «’s in it are not totally ordered (as elements of Z'*)) or if the «s
arc totally ordered but the corresponding weakly standard monomial is not
standard: in thc alternating casc, namely, when the corresponding weakly
standard monomial is in fact standard, then it is =a, thc corresponding
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unique standard monomial, where a € K (in Proposition 5.8 below, wc shall
show that a= +1,if G is of type B, or C, and w is a Kempf clement). I[f G
is of type A, (then all admissible pairs (z, #) being trivial. ie., 1 =¢), we
obtain that in R if there is any non-zero, non-standard monomial, say
F=3p. " 'PoPs " "PsP; " P, . then there is only one term on the
RHS and that is F itself; in other words, in R, there can not be any non-
zero, non-standard monomial. Thus in R, all nonstandard monomials
are in fact 0.

ProposiTioN 5.8. Let G be of type B, or C, and let X(w} be a Kempf
variety in G;/Q. Let F be a non-zero, non-standard monomial on X(w). say

F= pn.dnpt:.;ﬁz”.pt,.o,p/l],u; .“p/._;l.“.

where s and ¢'se W*); i’s and wse W' ete. (1<t,<t,< -+ <d) and

(Ty, @1, Tos Davens Ty @rs A My sees A4y Iy ) 18 totally ordered (after some
rearrangement) in Z', say (a(1;), o), 6(1;), (@), (7). (4},

Ot ey O(AL), b(pe,),..) is totallly ordered in Z'¥) (where 6€ S,,, 8¢ 85,,.
etc.). Then in the cxpression for F as a sum of standard monomials. the
monomial Doy o) Poteaisn Povinmuy  Potasi,  occurs with coef-
ficient +1 (observe that in view of Theorems 4.5 and 4.10 and Definitions
46 and 4.11 the weakly standard monomial
Pocioue Pogow, o0 X(w) is in fact standard).

pn(r:].n(o;) o 'f’mr,mw,':

Proof. The result follows essentially from {5]. In fact, Theorem 4.1{b)
and Definition 1.2 of [5] imply that

pt;ﬁ] ot 'p:naﬁ, = ipa(z:)‘o'(rm ) pr:(::jl‘nlo:y o 'Pa(r,).aw,) T [ .

(obscrve that T's and ¢'se W for some 7, 1<1<d (where Q=P, n
PrnonP)) .Now,. if Pigy " e, is any term in F', then we obtain
(11, #..... T,, &) 1s lexicographically = (o(1,). (¢ )s... a{z,). a(8,)) icl
{51, Definition 1.2). Similarly writing Pivgor Pizs™ P = Elotiii
Picioow ~ other terms and so on, we obtain

F= TPagzra0n) " Potennaton Pocipn " Potigon” " + 0.

where in G (after straightening if necessary), any term Peg) P Pia
P 1s such that (19, ¢} ..., 7, Gl AN Y e AL, il 18 lexicographically
g(a(rl),‘ (T(¢I)y"'s G(Tr)’ 6(¢r)’ 9(;'1)’ 0(:“])""5 G(;t\)‘ 0(/"\)‘)

This completes the proof of Proposition 5.8.
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6. ARITHMETIC COHEN—MACAULAYNESS FOR
MULTICONES OVER KEMPF VARIETIES

DErFINITION 6.1 (cf. [5]). Let we W. For j, 1<j<n, define

(1) («;, B;) is an admissible
pair on X(w)(=G/P,))
}Iw,j= T=((a1’.31)7 (012, ﬂz),---, (OC,, ﬁr)) (2) a1>ﬁ1>a2>ﬁ2>
(3) (B> a4 1)isnoOtan
admissible pair on X(w®)
(refer [12] or [13] for definition of admissible pairs on X(0), 0 W/W,).
Here w'”, 1<j<n, denotes the projection of w on W/W, under
W WiWw,.

Remark 62. If G=SL, then H
(where W= {0e W/o<w)).

is nothing but chains in {W{/}

w,j

DerFINITION 6.3, Given 14, 1,6 H,, ;, say

= ((1.(11)’ 1(21))5 (Tgl)’ Tz(tl))""ﬂ (T§1)9 Tgl-g 1))
1= (e, 1), (09, 1), (02, T2k 1))

define 7, >1,, if for any (), 12,), i=1, 3, 5,..., m, there exists a (t{V, 7{}),)
such that 1> 1 >, >1{}), (note that this defines a partial order on
H,)).
DerNITION 6.4. Given (k)= (k,, k3,.., k;), where 1<k, <k, <+ <
k;<n, define

(1) {i1s fapes B} S {k s Koo K}
(2) i1<i2< et <it

(3) t,eH,,, 1<I<1t

(

4) If = ((z{%, t0,..., (=0, 240, 1)),

k)
HSV)_ (Tip Tizs“'; Ti,) nr Toir

1 <1<z, then
i > i 1<I<e—1,
as elements of Z%)

Remark 6.5. 1f G=SL,, then H® is just the set of all chains in Z%.

DEFINITION 6.6. Given 1, ¢eH®, say 1=(1,,71,,.,7,) and
¢ = (¢jp ¢j2,ma¢js)a Ca]l T > ¢7 lf {jls j2='"a .]s} = {il’ iz,..., lt} and ¢j,,, < ija
1<m<s, as elements of H,, ; (note that this defines a partial order on
H®),
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THEOREM 6.7. Let X(w) be a Kempf variety in G/Q, G being of type A,
B,, or C,. Then

(1) If G is of type A,, then R is an algebra with straightening law
(cf. Section2; see also [5] and [7]) on Z,,.

(2) If Gis of type B, or C,, then R is an algebra with straightening
law on HE), where (k)= (k... k,) is given by Q=?_, P,,.

Proof. Now (1) follows from Remark 5.7. In fact, RS is the discrete
algebra (cf. [ 5, Definition 1.4 and Remark 3.17]) with straightening law on
Z,.

The proof of (2} follows from Proposition 5.8 and Definitions 6.4 and
6.6. In fact, given a chain t>¢>0> -+~ in H®, say

T= (Tfp Tip'--’ Ti,)’ ¢ = (¢j1’ ¢j2:"" ¢j‘)5

where
7, = ((t§, ), (z§, 7)., (20, 2 1)), I<r<s
¢, = (57, 50), (B4, G470)sus (B0, GL10, 1)), I1<I<s

etc., we can associate an element P_ P, P, - € RS, namely P, = p v o
Pl i, Py, Py, etc., being defined in a similar way. Now, in view of the
partial order on H® (cf. Definition 6.6), we see that

{z{W, t{V,..,, 0 1, @V, g, 9! ;,,}

is totally ordered in Z®*) and one can associate an unique standard
monomial in the p., ((p, o) being an admissible pair in W for some 1,
1<1<d) and in fact this unique monomial is = + P P, Py (in view of
Remark 5.7 and Proposition 5.8). Conversely given a standard monomial F
in the p);, it is easily seen that there exists an unique chain t>¢>6> -
in H such that F= £ P P,P,-- (in view of Remark 5.7 and Proposition
5.8). (to obtain the chain 1> ¢ >8> -, one follows the rule of associating
a standard monomial P, P, --- P, (where 1,>1,> - >17, is a chain in
H,  for some i€ {k,.., k,}), to a standard monomial in p/,, (p, ¢)'s being
admissible pairs in W9 (= {&e WY/E < projection of w on W/W.}), as
described in the proof of Proposition 3.4 of [57). Thus R¥f is K-algebra
with a set of algebra generators indexed by the elements of H®), such that
the standard monomials P, P,P, - (where t>¢ >0+ in H') form a
K-basis for R Further, the fact that the straightening relations satisfy the
required lexicographic condition (cf. Section 2 or [5] or [7]) can be seen
quite easily (using Definition 6.6).
This completes the proof of Theorem 6.7.
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THEOREM 6.8. Let X(w) be a Kempf variety in G/Q. Then the ring
R,=@ ;.0 H'(X(w), L) is Cohen—Macaulay.

Proof. In view of Corollary 5.6, enough to show that R is Cohen—
Macaulay. For the case of G being of type A4,, this is immediate; because,
by Theorem 6.7, R%*! is a K-algebra (K being the base field) with straighten-
ing law on Z®) and by Theorem 3.12, Z%) is lexicographic shellable. Hence
Z% is shellable (cf. [1] or [2]) and hence any K-algebra with straighten-
ing law over Z® is Cohen-Macaulay. In particular R% is Cohen—
Macaulay (when a poset H (or the associated simplicial complex A4(H), of
chains in H) is shellable (refer [1] for definition of shellability) using
Mayer—Viotoris sequence or [16] one may conclude the Cohen—
Macaulayness for the discrete algebra K{H} (= K[X,,.n1/(x,Xg, a, f non
comparable)) and now the Cohen-Macaulayness for K{H} implies the
Cohen—Macaulayness for any K-algebra with straightening law over H (as
discussed in Section 2 or [5] or [7]). '

If G is of type B, or C,, then by Theorem 6.7, we have that R is a
K-algebra with straightening law over H®). It can be easily seen that the
simplicial complex A(H*)) of chains in H® is a subdivision of 4(Z%*)) and
hence the discrete algebra K{H®} over H® is Cohen—Macaulay if and
only if the discrete algebra K{H} (cf. [16]) is. And now the lexicographic
shellability of Z* (cf. Theorem 3.14) implies the Cohen—Macaulayness of
K{Z®} and hence that of K{H®}. Hence R¥' (and R,) is Cohen-
Macaulay.

This completes the proof of Theorem 6.8. _

Using the result of [4] that Schubert varieties are non-singular in
codimension 1 and Theorem 6.8, we obtain

THEOREM 6.9 (see also [13, Theorem 6.27]). Let X(w) be a Kempf
variety in G/Q. Then the ring R, is normal.
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