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Skeletal Muscle Microvascular Flow
in Progressive Peripheral Artery Disease
Assessment With Continuous Arterial
Spin-Labeling Perfusion Magnetic Resonance Imaging

Wen-Chau Wu, PHD,*# Emile Mohler III, MD,† Sarah J. Ratcliffe, PHD,‡ Felix W. Wehrli, PHD,*
John A. Detre, MD,*� Thomas F. Floyd, MD§�

Philadelphia, Pennsylvania; and Taipei, Taiwan

Objectives We present the novel application of continuous arterial spin-labeling (CASL) magnetic resonance imaging (MRI)
for the measurement of calf muscle perfusion in subjects with progressive peripheral arterial disease (PAD).

Background Peripheral arterial disease is largely considered to be a disease of conduit vessels. The impact of PAD upon mi-
crovascular flow in the end-organ, muscle, remains unknown. Continuous arterial spin-labeling is a noninvasive
MRI method capable of measuring microvascular flow and might assist in our understanding of the impact of
PAD upon the microvasculature.

Methods Forty subjects with varying degrees of PAD and 17 age-matched PAD-free subjects were recruited and under-
went measurement of the ankle-to-brachial index (ABI) and CASL. Peak hyperemic flow (PHF) and time-to-peak
(TTP) were computed and assessed as a function of ABI and calf muscle group.

Results An ABI dependence was found in both PHF (p � 0.04) and TTP (p � 10�4). Whereas TTP increased almost
immediately with increasing PAD severity, PHF was, in contrast, relatively well preserved until later stages of
disease.

Conclusions The CASL flow measurements correlate with disease state as measured by ABI and demonstrate preserved mi-
crovascular flow reserve in the presence of early to intermediate vascular disease. (J Am Coll Cardiol 2009;53:
2372–7) © 2009 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2009.03.033
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eripheral artery disease (PAD) refers to disorders of the
irculatory system outside the brain and heart as a conse-
uence of narrowing and/or obstruction of peripheral arter-
es that carry blood to the extremities (1). Recent studies
emonstrate that the atherosclerotic process in lower ex-
remity PAD is not confined to conduit vessels but also
ffects skeletal muscle flow reserve (2), metabolism (3),
ndothelial and muscle mitochondrial function (4), gene
ranscription (5), and apoptosis (6). Several methods have
een applied to measure skeletal muscle perfusion, such as
ositron emission tomography (7), dynamic susceptibility
agnetic resonance imaging (MRI) (8), and ultrasound (9),
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lthough each involves either ionizing radiation and/or the
dministration of exogenous contrast agents.

Arterial spin labeling (ASL) (10) is a noninvasive MRI
echnique that offers quantitative perfusion measurements.

typical ASL experiment comprises 2 scans: the “tag”
mage is acquired after the protons in arterial blood are
tagged” by radiofrequency pulses, most commonly by
nverting the blood proton magnetization, whereas the
control” image is obtained without net magnetization
erturbation in arterial blood. Blood flow is then computed
rom the signal difference between the tag and control
mages. Currently, the gold standard for measuring perfu-
ion in skeletal muscle is the microsphere experiment (11),
hich is highly invasive, because it requires arterial injection

nd subsequent arterial sampling as well as tissue sampling.
comparison study of ASL and microsphere methods (12)

as shown a clear agreement in rat leg muscle, whereas ASL
ffers improved spatial and temporal resolution.
Arterial spin labeling has also been successfully applied to

he measurement of blood flow in the extremity muscle of

ealthy humans (13–16). We present the first attempt to
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mploy a continuous version of arterial spin labeling
CASL) to measure calf muscle perfusion in subjects with
arious degrees of PAD.

ethods

ubjects and MRI. The Institutional Review Board ap-
roved the study protocol, and written consent was obtained
rom all subjects. A cohort of 40 subjects diagnosed with PAD
nd 17 age-matched PAD-free subjects were recruited in this
tudy (age 26 to 86 years, 24 women and 33 men).

Subjects first underwent measurement of ankle-to-
rachial index (ABI). An ABI between 0.90 and 1.30 is
enerally considered to be normal, with an ABI between
.90 and 1.00 indicating borderline PAD; an ABI between
.50 and 0.90 can represent a wide range of moderate
isease, and an ABI below 0.50 usually indicates severe
AD (17). Therefore we defined 4 clinical categories of
BI in the following manner: category 0: 0.90 � ABI
1.30; category 1: 0.70 � ABI �0.90; category 2: 0.50 �
BI �0.70; and category 3: ABI �0.50. We then stratified

ubjects accordingly. Fourteen of the subjects in category 0
ere also included in a previous study (16).
The MRI was conducted on a 3.0-T Siemens Trio system

Erlangen, Germany) with a transmit/receive knee coil (Nova
edical, Inc., Wakefield, Massachusetts). Subjects were im-

ged supine. A single-slice version of the CASL sequence was
sed (18) with a single-shot gradient-echo echoplanar readout:
eld-of-view � 22 cm, in-plane matrix size � 64 � 64, slice
hickness � 1 cm, repetition time � 4 s, echo time � 17 ms, flip
ngle � 90°, tagging duration � 2 s, post-labeling delay � 1,900
s (15). The labeling plane was 6 cm apart from the imaging slice,

roximally for the tag scan and distally for the control (15).
An ischemic-hyperemic paradigm was chosen to create
uniform challenge across all muscle groups and across

ll subjects. A Zimmer 1000 (Warsaw, Indiana) nonmag-
etic tourniquet system, with thigh cuff, was used to
reate a 5-min period of ischemia at 250 mm Hg,
ollowed by a period of hyperemic flow. The CASL

Figure 1 Cross-Sectional Images of the
Mid-Calf in a Representative Subject

High-resolution anatomic image (left), echo-planar (EPI) image (middle), and
mean hyperemic flow (HF) map (right). The regions of interest for anterior com-
partment (blue), lateral compartment (green), soleus muscle (yellow), and
medial gastrocnemius (red) are overlaid on the anatomic image. Mean HF is
the average flow during the hyperemic period.
maging commenced upon cuff
nflation and ended 3 min after
uff deflation. A 2-dimensional
poiled gradient-echo sequence
repetition time/echo time �
0/3.4 ms, field-of-view � 220
m, in-plane matrix size � 256
256, flip angle � 50°, with 4

verages) was used to acquire a
igh-resolution anatomic im-
ge of the slice where CASL
maging was performed.

ata processing and image
nalysis. Reconstructed magni-
ude images were analyzed offline
ith VoxBo (19) and IDL

RSI, Boulder, Colorado). The
ASL signals were generated by
air-wise subtraction of tag and
ontrol images, and 2 adjacent
ata points in time were aver-
ged, resulting in an effective
emporal resolution of 16 s. The CASL signal (Delta M)
as then converted to quantitative flow (f) in ml/100 g/min:

f �
��M

2�T1M0�exp��
PLD

T1
�� exp��

PLD � �

T1
�� [1]

here M0 is the fully-relaxed blood signal, � is the tagging
fficiency (0.80), PLD is the post-labeling delay, and � is the
agging duration (20). We assumed that T1/T2* � 1,600/
00 ms for arterial blood at 3.0-T and the blood/tissue
artition coefficient (�) � 0.9 ml/g, comparable to the value
easured in the brain (21). For further details regarding the
odel, please refer to Wu et al. (16).
Four muscle groups in the mid-calf were analyzed,

epresenting the vascular distributions of the 3 major
ranches of the popliteal artery. The soleus muscle (SolM)
eceives a dual vascular supply from both the posterior tibial
nd the peroneal arteries. The medial gastrocnemius muscle
GstrcM) is supplied by the posterior tibial artery. The
nterior compartment contains extensor muscles, including
he extensor digitorum longus, extensor hallicus longus,
ibialis anterior, and peroneus muscles, and is supplied by
he anterior tibial artery. Finally, the lateral compartment
ontains the peroneus longus and peroneus brevis muscles,
nd is supplied by the peroneal artery. Regions of interest
ere hand-drawn on the high-resolution spoiled gradient-

cho anatomic images (Fig. 1). Two flow indexes were
omputed as defined in the following (Fig. 2):

. Peak hyperemic flow (PHF) (ml/100 g/min): the peak
flow observed in hyperemic period, which spans from the
time (tbeg) when flow increases above a threshold (fT) to

Abbreviations
and Acronyms

ABI � ankle-to-brachial
index

ASL � arterial spin labeling

CASL � continuous arterial
spin-labeling

GstrcM � gastrocnemius
muscle

MRI � magnetic resonance
imaging

PAD � peripheral arterial
disease

PHF � peak hyperemic flow

SolM � soleus muscle

T1 � longitudinal
relaxation time constant

T2 � transverse relaxation
time constant

TTP � time-to-peak
the time (tend) when flow returns
 to fT. Here, tbeg is later
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than the time of cuff deflation, and fT is chosen to be 1
SD of the “flow” during the center 3-min occlusion when
ideally flow is 0.

. Time-to-peak (TTP) (s): measured from the time when
cuff is deflated to the time when hyperemic flow peaks.

tatistical analysis. A random effects model (22) was
mployed to test the dependence of PHF upon the variables
uscle group and ABI as well as for any interaction effects

etween muscle group and ABI (muscle � ABI). Because
TP was a count of the number of 16-s epochs and

ollowed a Poisson distribution, the TTP measure was
odeled with generalized estimating equations (23) with a
oisson family assumption. The ABI was treated as a
ontinuous measure in all analyses.

esults

able 1 gives a breakdown of demographic data for the
opulation studied by ABI category. Overall, the groups
re well-balanced by age, disease characteristics, and sex.
he relatively fewer number of subjects in category 3 reflects

he decreased frequency of PAD of this severity and the
ifficulty of enrolling subjects with more severe disease.
Table 2 offers a breakdown of mean � SD measurements

or PHF and TTP by muscle group and ABI category. In
igure 3, the average of subjects’ individual flow-time curves

s plotted for different muscle groups as well as the PAD
tages defined by ABI. Qualitatively it can be seen that with

Figure 2
Schematic Illustration of
the Ischemic-Hyperemic Paradigm
and the Flow Indexes Measured in This Study

PHF � peak hyperemic flow; TTP � time-to-peak.

Demographic Summary of the Patients Recruite

Table 1 Demographic Summary of the Patie

ABI Category n Sex

0.9 � ABI �1.3 0 17 6/

0.7 � ABI �0.9 1 17 8/

0.5 � ABI �0.7 2 16 7

ABI �0.5 3 7 3/
ABI � ankle-to-brachial index; DM � diabetes mellitus; HTN � hypertension.
ncreasing disease severity, PHF decreases, TTP increases,
nd the hyperemic period is broadened. Figure 4 graphs
oth mean TTP and PHF by ABI category and muscle
roup. From Table 2 and Figures 3 and 4, there is evidence
f a fall in PHF in all muscle groups with increasing disease
everity, as reflected in the ABI category. For SolM, the
ecrease in PHF seems to be delayed until category 3. In
ontrast, the TTP increase in response to increasing disease
everity seems to occur in a nearly parallel fashion for all
uscle groups. Thus, for most muscle groups, falling PHF

s well as increasing TTP occur with early stages of disease;
et uniquely for SolM, increasing TTP might be a more
ensitive indicator of early vascular disease.

Shown in Figure 5 is a scatter-plot with mean TTP versus
ean PHF. The data show that TTP is inversely associated
ith PHF. The TTP of 60 s in combination with PHF of
3 ml/100 g/min provides an approximate demarcation
etween categories 0 to 1 and 2 to 3, with an exception of
ategory 2 SolM (see the arrow). This might indicate
omewhat better flow preservation with severe PAD in
olM than in other muscle groups.
Statistical analysis of the dependence of PHF and TTP

pon ABI and muscle groups is summarized in Tables 3 and 4,
espectively. The PHF was dependent upon muscle group
his Study

ecruited in This Study

Age (yrs) DM HTN Smoking

59 � 15 5 9 5

65 � 15 8 13 9

60 � 14 7 12 8

62 � 17 4 4 5

ummary of Measured Flow Indexes

Table 2 Summary of Measured Flow Indexes

Muscle Groups/
Categories

Flow Indexes

Peak Hyperemic Flow
(ml/100 g/min) Time-To-Peak (s)

SolM 0 91 � 39 47 � 12

1 97 � 47 54 � 13

2 100 � 48 68 � 21

3 60 � 13 77 � 26

GstrcM 0 71 � 42 53 � 18

1 69 � 27 57 � 19

2 61 � 33 71 � 26

3 50 � 17 88 � 38

AC 0 71 � 28 45 � 8

1 80 � 44 49 � 15

2 55 � 19 65 � 24

3 53 �20 86 � 51

LC 0 67 � 41 55 � 23

1 66 � 35 56 � 15

2 51 � 28 76 � 29

3 44 � 19 99 � 38

alues expressed as mean � SD.
AC � anterior compartment; GstrcM � medial head of gastrocnemius; LC � lateral compart-
ent; SolM � soleus muscle.
d in T

nts R

(F/M)

11

9

/9
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p � 0.0001) and ABI (p � 0.04). Within the muscle groups
tudied, PHF for SolM demonstrated relative resistance
coefficient � 26, p � 0.0001), and lateral compartment
emonstrated relatively greater sensitivity (coefficient �
14, p � 0.0001) to the effect of increasing ABI, all relative

o the GstrcM reference group. The TTP was found to be
ependent upon both muscle group (p � 0.001) and ABI
p � 0.0001), with TTP increasing with increasing severity
f disease. Although TTP was dependent upon muscle

Figure 3 Perfusion-Time Curves for Different Muscles and Cate

Vertical dotted lines indicate the time when cuff is released. AC � anterior comp
GstrcM � medial head of gastrocnemius; LC � lateral compartment; SolM � sole

Figure 4 Relationship Between Flow Indexes, Muscle Group, a

Flow indexes: (A) peak hyperemic flow, (B) time-to-peak. Two main effects: “musc
“category” (disease severity assessed by the ankle-to-brachial index). Abbreviation
roup, only anterior compartment seemed to demonstrate
ignificant deviation in the behavior of TTP from the
eference GstrcM group.

iscussion

eripheral artery disease is usually associated with discrete
esions within 1 or several vessels. The traditional under-
tanding of PAD is one of progressive blood flow impair-

s of the Ankle-to-Brachial Index

t;
scle.

sease Category

p” and
Figure 3.
gorie

artmen
us mu
nd Di

le grou
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ent in conduit vessels that, through the creation of chronic
schemic environment, ultimately affects the end organ,
keletal muscle (2). Whereas arterial supply varies between
uscle groups, flow heterogeneity between muscle groups is

hought to be a consequence of different composition of
yofibril type and/or metabolic profile (7,16). Therefore it

s conceivable that muscle groups might be differentially
ffected by PAD.

In the present study, we measured 2 indexes of post-
schemic reactive hyperemia, PHF and TTP, in healthy
ubjects and in subjects with a range of PAD with a
ompletely noninvasive MRI methodology, CASL. The
HF was noted to decrease and TTP to increase with
ecreasing ABI and in conjunction with increasing PAD
everity. Whereas TTP seems to respond almost immedi-
tely to PAD progression, PHF is relatively well-preserved
ntil subjects fall into cateogory 2 and seems to be preserved
ven longer in the SolM.

Figure 5 Relationship Between
Time-to-Peak and Peak Hyperemic Flow

Muscle groups are denoted by mark styles (triangle: SolM, square: GstrcM,
circle: AC, cross: LC). Categories (peripheral arterial disease stages) are
numerically labeled. Abbreviations as in Figure 3.

ummarized Statistical Results of theependence of PHF Upon Muscle Group and ABI

Table 3 Summarized Statistical Results of the
Dependence of PHF Upon Muscle Group and ABI

Factor Coefficient Est SEM p Value

Intercept 43 14 0.0044

SolM 26 2.7 �0.0001

AC �4.3 2.8 0.13

LC �14 2.9 �0.0001

Muscle group — — �0.0001

ABI 36 17 0.04

random effects model was used. The interaction between muscle group and peak hyperemic flow
PHF) was not found to be significant (R2 � 0.73, p � 0.99). Within the muscle groups studied, PHF
ensitivity to the effect of increasing ankle-to-brachial index (ABI) was tested relative to the
eference group medial head of gastrocnemius (GstrcM). Negative coefficients (anterior compart-
ent [AC] and lateral compartment [LC]) indicate relatively greater sensitivity, whereas positive
P
oefficients (soleus muscle [SolM]) indicate relatively greater resistance of PHF within these
ndividual muscle groups to increasing severity of disease.
We and others have previously demonstrated that PHF is
igher in SolM than in all other calf muscle groups at
aseline in healthy subjects (8,16). However, the relative
esilience of hyperemic flow to advancing PAD in SolM, as
ompared with other muscle groups, is revealed for the first
ime. SolM is composed of approximately 70% to 80%
low-twitch type I fibers with a higher capillarity and
xidative capacity, which enables SolM to convert and use
nergy more effectively and thus better endure insufficient
upply of flow, oxygen, and nutrients accompanying disease
rogression (i.e., greater resistance to hypoxia). By contrast,
astrocnemius is more evenly composed of type I (50% to
0%) and type II fibers. Myofibril composition and differ-
nces in metabolic profiles might also account for the
elative resistance of the SolM to the presence of PAD.

We also observed an early prolongation in TTP with disease
rogression that increased in a parallel fashion amongst all the
uscle groups studied (Fig. 4B). This greater similarity in

ehavior of TTP across muscle groups is not surprising in that
e have previously demonstrated that TTP is independent of
uscle group (16). We also found an inverse correlation

etween TTP and PHF (Fig. 5). Although TTP increased
arly in disease, PHF did not decrease immediately, suggesting
hat microvascular reactivity partially compensates early on for
he narrowing in large feeding vessels. In comparison with
HF, TTP seems more sensitive to early disease progression.

combination of the 2 flow indexes might offer more
omprehensive information for the grading and/or diagnosis of
AD.

onclusions

ASL flow measurements correlate with disease state as
easured by ABI and demonstrate preserved microvascular

ow reserve in the presence of early-to-intermediate vascu-
ar disease (categories 0 to 2). Changes in the ABI, an
ndirect measure of large vessel stenosis, tracks closely with
TP, preceding perfusion changes, and appears to be

ountered by a preserved microvascular flow reserve until
ate stage in disease progression. The ASL approach might
ave several unique properties in the diagnosis and study of

ummarized Statistical Results of theependence of TTP Upon Muscle Group and ABI

Table 4 Summarized Statistical Results of the
Dependence of TTP Upon Muscle Group and ABI

Factor Coefficient Est SEM p Value

SolM 0.92 0.04 0.079

AC 0.88 0.06 0.049

LC 1.1 0.06 0.34

Muscle group — — 0.001

ABI 0.4 0.075 �0.0001

eneralized estimating equations were used. Within the muscle groups studied, time-to-peak (TTP)
ensitivity to the effect of increasing ABI was tested relative to the reference group GstrcM.
lthough TTP was found to depend upon muscle group, only AC demonstrated significant deviation

n the behavior of TTP from the reference GstrcM group.
Abbreviations as in Table 3.
AD, offering an extrinsic “contrast free” approach to assess
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nd-organ microvascular results of chronic disease and
herapy.
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