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a b s t r a c t

The proof of Serre’s conjecture onGalois representations over finite
fields allows us to show, using a method due to Serre himself, that
all rigid Calabi–Yau threefolds defined over Q are modular.

© 2010 Elsevier GmbH. All rights reserved.

In themid-1980s, J.-P. Serre conjectured in [11] that all absolutely irreducible odd two-dimensional
representations of GQ = Gal(Q/Q) over a finite field come frommodular forms of prescribed weight,
level, and character. This has now been proved by Khare and Wintenberger; see [6,7]. Because this
result can be seen as a generalization of Artin Reciprocity to the GL2 case (over Q), we will refer to it
as ‘‘Serre Reciprocity’’.

Already in [11], Serre showed how, given a compatible system of ℓ-adic Galois representations and
bounds on the weight and level of the predicted modular forms in characteristic ℓ, one can use Serre
Reciprocity to obtain results in characteristic zero. We refer to this as ‘‘Serre’s method’’ and state and
prove a generalized form of it in Section 1.

Serre’s method allows us to show that certain geometric Galois representations are modular.
Specifically, we show that the representation obtained from the third étale cohomology of a rigid
Calabi–Yau threefold defined over Q comes from a modular form of weight 4 on Γ0(N). The proof is
an application of Serre’smethod; it can, in fact, be read off directly from [11, Section 4.8], which is why
one might describe this short paper as a ‘‘footnote to Serre’’. Recent results allow a slightly simpler
version of the proof.

The observation that the proof of Serre’s reciprocity allows us to establish the modularity of odd
irreducible motives of rank two has also been made independently, in more general terms, by Mark
Kisin in [8] (see his Corollary 0.5).
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The question of the modularity of the Galois representations obtained from Calabi–Yau threefolds
overQhas beenmuch studied, and a large number of examples are nowavailable; see [10] for a survey.
Since current methods restrict us to low-dimensional Galois representations, many of the examples
involve rigid Calabi–Yau threefolds, defined below, simply because in that case the representation is
automatically of dimension two.

Dieulefait andManoharmayumhave shown in [2] that if X has good reduction at small primes then
it is modular. Richard Taylor showed in [12] that rigid Calabi–Yau manifolds over Q are potentially
modular, i.e., that there exists a totally real field F such that the restrictions to Gal(Q/F) of the
representations ρℓ are attached to automorphic representations over F . These results were based on
the same family of modular lifting theorems that was used to finally prove Serre reciprocity.

As we will indicate below, the same methods also apply to the non-rigid case if one can isolate
an irreducible two-dimensional ‘‘piece’’ of the cohomology. In this case, we obtain modular forms of
weight 4 and of weight 2, in agreement with many examples found by Meyer and others. In general,
however, the middle cohomology groups of non-rigid Calabi–Yau threefolds do not decompose into
products of two-dimensional pieces.

1. Serre reciprocity

Let G = Gal(Q/Q) be the absolute Galois group of Q, let F be a finite field of characteristic ℓ, and
let ρ : G → GL2(F) be an absolutely irreducible representation. We will assume throughout that ρ is
odd, that is, we will assume that if c ∈ G is (any) complex conjugation, we have det ρ(c) = −1. We
will let S be the finite set of primes such that ρ is unramified at all primes not in S.

In [11], Serre associated to any such ρ a triple (N, k, ε), where N and k are positive integers, k ≥ 2,
and ε is a Dirichlet character modulo N . We will briefly recall below how this triple is obtained, but
we refer the reader to [11] and [4] for details.

In order to avoid technical problems related to finite fields of small characteristic, we assume
ℓ ≠ 2, 3. See [4] for how to modify the statement below so that it remains true in those cases.

The result conjectured in [11] and proved in [6,7] is:

Theorem 1 (Serre–Khare–Wintenberger). Let G, ℓ, and F be as above. Suppose ρ : G → GL2(F) is an odd
absolutely irreducible representation, and let (N, k, ε) be the Serre parameters attached to ρ . Then there
exist:
• a cuspidal modular eigenform f on Γ0(N), of weight k and character ε and defined over a number field

K , and
• a prime λ of K with residue field F

such that the reduction modulo λ of the λ-adic representation attached to f is isomorphic to ρ .

Part of the power of this result comes from the fact that the triple (N, k, ε) is specified in advance
in terms of ρ, which restricts us to a finite number of possibilities for the eigenform f . It will be helpful
to recall how these parameters are obtained.

The level N is fairly easy to describe: it is the prime-to-ℓ part of the Artin conductor of the
representation ρ. As such, it is divisible only by primes p ∈ S, p ≠ ℓ. If we set

N =

∏
p∈S

pe(p),

the exponent e(p) is entirely determined by the image of the inertia group at p. In particular, it is useful
to note that if ρ is tamely ramified at p then e(p) = 1.

This choice of the level parameter has as a useful side effect that themodular form f will necessarily
be a newform, i.e., it will not come from a level lower that N . (If f did come from a form of lower level,
the p-adic representation attached to f would have smaller conductor, and therefore so would the
mod p representation.)

The weight k is the most delicate of the three parameters. It depends only on the image of the
inertia group at ℓ, but the recipe for computing k is complicated; see [11] and [4] for details. We will
use Serre’s normalization of the weight, so that k ≥ 2.
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Finally, the character ε is determined by the formula

det ρ = εχ k−1
ℓ ,

where χℓ is the (reduction mod ℓ of the) ℓ-adic cyclotomic character. Notice that this formula
determines k modulo ℓ − 1.

While Serre Reciprocity is a statement about Galois representations over finite fields, it can often
be used to show the modularity of representations in characteristic zero as well. The idea is due to
Serre himself; it will perhaps be useful to have a formalized version of it.

Theorem 2 (Serre’s Method). Fix a number field K , and let λ run over primes of K . For each λ, let Kλ

denote the completion of K at λ and let κ(λ) be the residue field. Let ℓ be the characteristic of κ(λ).
Fix a finite set S of primes in Q. For each p ∉ S, let Frobp be a choice of arithmetic Frobenius element

in Gal(Q/Q).
Suppose we have, for each λ, a two-dimensional Kλ vector space Vλ with a continuous action of

G = Gal(Q/Q). This gives a continuous representation ρλ. Assume ρλ is odd and unramified outside
S ∪ {ℓ}.

For each λ we can find a G-stable lattice, reduce modulo λ, and semisimplify if necessary to obtain a
semisimple odd two-dimensional Galois representation

ρλ : G −→ GL2(κ(λ))

unramified outside S ∪ {ℓ}.
Fix an infinite set I of primes in K . Suppose we can show that:

(1) For all λ ∈ I , the representation ρλ is absolutely irreducible.
(2) There exists a family Qp(X) = X2

− ApX + Dp ∈ K [X] of polynomials of degree 2, indexed by primes
p ∈ Q, p ∉ S, such that for all λ ∈ I and (given λ) all p ∉ S ∪ {ℓ}, the characteristic polynomial of
Frobp acting on Vλ is equal to Qp(X).

(3) There exists an integer k0 such that for all λ ∈ I the Serre weight kλ attached to ρλ satisfies
1 < kλ ≤ k0.

(4) There exists an integer N0 such that for all λ ∈ I the Serre level Nλ attached to ρλ is a divisor of N0.
We choose N0 to be minimal with this property.

Then there exists a cuspidal Hecke eigenform form f (new of level N dividing N0, weight k less than or
equal to k0, defined over K) such that for all λ the λ-adic representation ρf ,λ attached to f is isomorphic
to ρλ.

Proof. Wemay, and will, assume that the set S has been chosen to be as small as possible, so that for
every p ∈ S there is at least one λ that does not divide p and such that ρλ is ramified at p. Note also
that since ρλ is absolutely irreducible for some λ, so is ρλ. (Because characters can be inserted into
compatible systems, it follows from the compatibility condition (2) that ρλ is absolutely irreducible
for all λ. We will not actually use this, and once we have shown that the representation comes from a
cuspform, it will follow that all the ρλ are absolutely irreducible.)

Choose λ ∈ I and apply Serre Reciprocity to ρλ. We get an eigenform fλ of weight kλ less than or
equal to k0, character ε, and level dividing N0. A priori, f may be defined over an extension of K whose
residue field at a prime λ′ over λ is still κ(λ). The fact that fλ corresponds to ρλ tells us that

Ap ≡ ap(fλ) (mod λ′)

and

Dp ≡ ε(p)pkλ−1 (mod λ′)

for all p ∉ S ∪ {ℓ}.
Since the set of all eigenforms of weight bounded by k0 and level dividing N0 is finite and there are

infinitely many λ ∈ I , there must exist a modular form f such that fλ = f for infinitely many λ. Let k
be the weight of f . But then, for each p ∉ S we will have

Ap ≡ ap(f ) (mod λ)
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and

Dp ≡ ε(p)pk−1 (mod λ)

for infinitely many λ.
This implies that in fact Ap = ap and Dp = ε(p)pk for all p ∉ S. Since we know f is a newform, this

is enough to show that f is the eigenform we wanted to find and (together with the minimality of S)
implies, in particular, that it has coefficients in K . �

In the case of representations coming fromgeometry, the representationswill typically be obtained
from the (dual of the) étale cohomology of an algebraic variety X defined over Q. The field K is then
just Q. The set S is then contained in the set of primes of bad reduction for X and the existence of the
Qp(X) follows from the Weil Conjectures as proved by Deligne.

For an example with K a totally real field, consider the case of abelian varieties with real
multiplication; see [11, Section 4.7].

2. Modularity of rigid Calabi–Yau threefolds over Q

Wewant to apply Serre’smethod to the representation obtained from themiddle étale cohomology
of a rigid Calabi–Yau threefold defined over Q. We recall the definitions.

Definition 1. Let X be a smooth projective threefold defined over C. We call X a Calabi–Yau threefold
if

(1) H1(X, OX ) = H2(X, OX ) = 0, and
(2) KX := ∧

3 Ω1
X ≃ OX , that is, the canonical bundle is trivial.

As usual, we define the Hodge numbers

hi,j(X) := dimCH j(X, Ω i
X ).

By complex conjugation, hi,j(X) = hj,i(X), and by Serre duality, hi,j(X) = h3−j,3−i(X) for 0 ≤ i, j ≤ 3.
The Hodge decomposition gives

hk(X) = dimCHk(X, C) =

−
i+j=k

hi,j(X).

The number hk(X) is called the kth Betti number of X and often denoted Bk(X).
If X is Calabi–Yau, then the first condition implies that

h1,0(X) = h2,0(X) = 0,

and the second condition, together with Serre duality, yields

h3,0
= h0,3

= 1.

We can summarize all this by drawing the ‘‘Hodge diamond’’ of X:

1 h0(X) = 1
0 0 h1(X) = 0

0 h1,1(X) 0 h2(X) = h1,1(X)

1 h2,1(X) h1,2(X) 1 h3(X) = 2(1 + h2,1(X))

0 h2,2(X) 0 h4(X) = h2,2(X) = h1,1(X)

0 0 h5(X) = 0
1 h6(X) = 1.

Calabi–Yau threefolds are Kähler manifolds, so h1,1(X) > 0. All 2-cycles on Calabi–Yau threefolds
are algebraic, as follows from the Lefschetz (1, 1) theorem that H2(X, Z) ∼= Pic(X). In particular,
h1,1(X) = h2(X) = rk Pic(X).
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Definition 2. Let X be a Calabi–Yau threefold defined over C. We say that X is rigid if h2,1(X) =

h1,2(X) = 0, so that h3(X) = 2.

The name ‘‘rigid’’ comes from the fact that the space of deformations of a Calabi–Yau manifold
has dimension h1,2(X). There are more than 50 known examples of rigid Calabi–Yau threefolds (up
to birational equivalence over C). It is still an open problem to decide whether the number of such
examples is finite up to birational transformation over C.

Since we are interested in Galois representations, we focus on Calabi–Yau threefolds defined over
Q. Of course, a given Calabi–Yau threefold over C may well have many different realizations over Q.
Notice that the fact that X is a rigid Calabi–Yau manifold is independent of the choice of model over
Q, but the Galois representation (and therefore the modular forms we will find) depend strongly on
that choice. We will comment further on this below.

Let X be a rigid Calabi–Yau threefold defined over Q. Then X always has a model defined over Z;
we assume one has been chosen and fixed. Wewill apply Theorem 2with K = Q and S the (finite) set
of primes at which X has bad reduction. Let X = X ⊗ Q. For each prime ℓ in Q, let

Vℓ = H3(X, Qℓ)
∨.

(We need to dualize because we want to work with the arithmetic Frobenius.) We know that if
p ∉ S ∪ ℓ, this representation will be unramified at p.

The assumption that X is rigid means that Vℓ is two dimensional and that its Hodge decomposition
is of the form (3, 0) + (0, 3). By Pontryagin duality, we have

det ρℓ = χ3
ℓ

so that ρℓ is odd. Let ρℓ be the representation obtained by reducing modulo ℓ.
In [11, Section 4.8], Serre checked that conditions (1) and (2) above hold for sufficiently large ℓ. A

theorem of Fontaine (see also [4]) shows that for all large enough ℓ the Serre weight parameter will
be k = 4.

In order to verify the condition on the level, Serre used a bound for the Artin conductor proved
in [11, Section 4.9]: under certain congruence conditions on ℓ, the conductor N is a divisor of

N0 =

∏
p∈S

pe(p),

where e(2) = 8, e(3) = 5, and e(p) = 2 for all other primes p ∈ S. We can therefore let I be the
(infinite) set of primes ℓ that satisfy Serre’s congruence conditions.

This can now be simplified by using the results in [12]. Since the Hodge numbers are 0 and 3 and
we know that the representation is crystalline at all p ∉ S (because X has good reduction at all such
primes), the ρℓ formwhat Taylor calls aweakly compatible system of representations; by TheoremA in
[12], the systemmust in fact be strongly compatible, which implies that the conductorN is independent
of ℓ ∉ S. (We thank Luis Dieulefait for pointing this out to us.) Hence we can take our infinite set to
be all primes not in S.

Theorem 2 then gives our result:

Theorem 3. Let X be a rigid Calabi–Yau threefold defined over Q, and use the notations above. Then there
exists a Hecke eigenform f of weight 4, level dividing N, and trivial character such that ρℓ is equivalent to
ρf ,ℓ for all ℓ.

In other words, all rigid Calabi–Yau threefolds defined over Q are modular. In particular, this
implies that the L-function corresponding to the third étale cohomology of such a threefold is the same
as that of a modular form of weight 4, and hence is holomorphic and satisfies a functional equation
relating values at s to values at 4 − s.

Notice that while we do not need to use Serre’s bound on the level for the argument, a posteriori
the bound will apply to the level of the form f . This is in fact the bound obtained by Dieulefait in [1].

Serre’s method is applicable, as he shows in [11], to all odd-dimensional smooth algebraic varieties
whose middle-dimensional cohomology is of dimension two and of Hodge type (∗, 0) + (0, ∗).
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3. The non-rigid case

The reason to focus on the rigid case is, of course, that we get a Galois representation of dimension
two, which should then come from a modular form. Higher-dimensional representations should be
automorphic, but the type of corresponding automorphic representationweexpect to findwill depend
on that dimension.

Ifwedrop the assumption that the Calabi–YaumanifoldX is rigid, then h3 will not be equal to two. It
is still possible, nevertheless, that theGalois representation attached to the third cohomology contains
an irreducible subrepresentation of dimension two. If such a subrepresentation occurs in H3(X, Qℓ)
for every ℓ and the resulting Galois representations are (weakly) compatible, the same argument will
apply. Such a system of compatible representations is usually described as a submotive of rank two.

If the submotive happens to be the (3, 0) + (0, 3) part, exactly the same argument will show that
it is modular, i.e., the subrepresentation of dimension two over Qℓ will be isomorphic to the ℓ-adic
representation attached to a modular form f of weight 4.

If the submotive Mℓ occurs instead in the (2, 1) + (1, 2) part, the method described above is not
directly applicable, because the Serre weight kℓ will in general be ℓ + 3, and hence not bounded.
This can be easily fixed, however, by twisting:Mℓ ⊗ χ−1

ℓ has Hodge numbers (1, 0) + (0, 1), and the
argument above will show that it corresponds to a modular form of weight 2. HenceMℓ = Vℓ(f )⊗χℓ

is a Tate twist of the representation coming from such a form of weight two.
There are several (proved and conjectural) examples of this in [10]. Many of them are of the type

studied in [5], namely, Calabi–Yau threefolds containing a large number of elliptic ruled surfaces. To
be specific, let

Vℓ = H3(X, Qℓ)
∨.

The examples in [5] and [10] look like

Vℓ
∼= Vℓ(f ) ⊕ [Vℓ(g1) ⊗ χℓ] ⊕ [Vℓ(g2) ⊗ χℓ] ⊕ · · · ⊕ [Vℓ(gk) ⊗ χℓ] ,

where h3(X) = 2 + 2k, f is a modular form of weight 4, the gi are all modular forms of weight 2,
and Vℓ(h) is the ℓ-adic representation attached to a modular eigenform h. In many cases, Meyer finds
examples where the gi are in fact all the same; see, for example, pages 23–24 of [10]. Another example
can be found in [9], where we have h3

= 4 and the representation splits into two two-dimensional
components.

Finally, if the decomposition of the cohomology representation takes place only after extending
scalars, but we still obtain weakly compatible systems, Serre’s method applies to deduce modularity
(after twisting) of all of them, the only difference being that the relevant modular forms are no longer
defined over Q. We thank the referee for pointing that out to us.

4. Some speculations

Let X be a rigid Calabi–Yau threefold defined over Q, and let f be the associated modular form of
weight 4.

(1) The level N of the form f is going to be a delicate arithmetic invariant of X (over Q, rather than
over the algebraic closure). The primes dividing N should be primes at which X has bad reduction in
every model of X over Z, but it is unclear whether N must be divisible by all such primes. In addition,
the precise power of such primes that occurs in N presumably depends on the type of singularities,
but we do not know how that should work.

(2) Supposewe have X and itsmodular form f of levelN . Then if we twist f by a quadratic character
of level d, we get another eigenform of weight 4 and level dividing Nd2. Will this form be attached to
another rigid Calabi–Yau threefold over Q? If so, then there must exist an algebraic correspondence
between X and Xd that is defined overQ(

√
d).Wemight even hope that Xd is a Galois twist of X , so that

X ⊗ Q(
√
d) ∼= Xd ⊗ Q(

√
d). (Note that the existence of Xd which are Galois twists is compatible with

the conjecture that there are only finitely many rigid Calabi–Yau threefolds over C up to birational
equivalence.)
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Helena Verrill has found an example where such a Galois twist Xd can be constructed (see [13]),
M. Schütt pointed out that twists exist for all fiber products; does such a ‘‘twist’’ always exist? In [10],
Meyer conjectured that the answer is yes. An interesting test case is the Schoen quintic

X5
0 + X5

1 + X5
2 + X5

3 + X5
4 = 5X0X1X2X3X4.

This is a singular threefold, and resolving those singularities produces a rigid Calabi–Yau threefold X
that is known (see [10] and the references therein) to be associated to amodular form of weight 4 and
level 25. Can one construct the requisite Galois twists?

Bert van Geemen has informed us that the answer is ‘‘yes’’. Since the Schoen quintic X has an
automorphism φ of order 2 defined over Q, which acts on H3(X) by −1, and we can use this to
twist the quintic X . Let K = Q(

√
d) and let XK be the quintic defined over K . Descend XK back to

Q by taking the quotient by the automorphism which is φ on the coordinates and which is the non-
trivial automorphism of K on the scalars. Then we get a quintic Xd on whose H3(Xd, Qℓ) the Galois
representation is the twist of the one on H3(X, Qℓ).

In fact, the automorphism φ of order 2 is given, for instance, explicitly by

φ(X0) = X1, φ(X1) = X0, φ(Xi) = Xi for i = 2, 3, 4.

Put U = X0 + X1 and V = X0 − X1. Then the equation for the quintic equation can be written as a
polynomial in U and V 2 as follows:

U5
+ 10U3V 2

+ 5UV 4
+ 16(X5

2 + X5
3 + X5

4 ) − 20(U2
− V 2)X2X3X4 = 0.

Now replace V by
√
dV , then we obtain the quintic equation for Xd:

U5
+ 10dU3V 4

+ 16(X5
2 + X5

3 + X5
4 ) − 20(U2

− dV 2)X2X3X4 = 0.

By counting points on Xd, we can see explicitly that the Galois representation has been twisted.
(3) Can we reverse this process? In other words, given an eigenform f of weight 4 on Γ0(N) and

defined over Q, does there exist a rigid Calabi–Yau threefold X corresponding to f ? Since Barry Mazur
first called attention to this question, it is known asMazur’s problem.

Of course, Mazur’s problem is also connected to the issue of whether there are infinitely many
different birational equivalence classes of rigid Calabi–Yau threefolds. If the answer to Mazur’s
question is ‘‘yes’’, thenwe can translate the question to the setting ofmodular forms,where it becomes
the question of understanding whether there are, up to twists, infinitely many modular forms of
weight 4 (of any level) that are defined over Q.
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